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Reinforcement Learning for Input Constrained Sub-optimal Tracking
Control in Discrete-time Two-time-scale Systems
Xuejie Que, Zhenlei Wang* � , and Xin Wang

Abstract: Two-time-scale (TTS) systems were proposed to describe accurately complex systems that include multi-
ple variables running on two-time scales. Different response speeds of variables and incomplete model information
affect the tracking performance of TTS systems. For tracking control of an unknown model, the practicability of
reinforcement learning (RL) has been subject to criticism, as the method requires a stable initial policy. Based on
singular perturbation theory (SPT), a composite sub-optimal tracking policy is investigated combining model infor-
mation with measured data. Besides, a selection criterion for the initial stabilizing policy is presented by considering
the policy as an input constraint. The proposed method integrating RL technique with convex optimization improves
the tracking performance and practicability effectively. Finally, an emulation experiment in F-8 aircraft is given to
demonstrate the validity of the developed method.

Keywords: Convex optimization, input constrained, reinforcement learning, sub-optimal tracking control, two-
time-scale system.

1. INTRODUCTION

Two-time-scale characteristics of complex systems
were described accurately by TTS systems, such as air-
craft, network control and process industry [1-3]. Take the
aircraft for example, the characteristics is embodied in a
slow phugoid mode and a fast short-period mode, where
change in position of mass center is slow and change in
angle of attack is fast [1]. The TTS systems not only have
characteristics of multi-variable, but also have different re-
sponse speeds between slow variables and fast variables.
Curse of dimensionality and ill-condition may generate
unacceptable computational complexity and performance
deficiency in performing controller design, respectively
[4,5]. That is, fast variables cannot respond immediately
to controller designing in slow time scale, and slow vari-
ables have a little response to controller designing in fast
time scale. The SPT was presented to counteract the prob-
lems as the TTS systems can be converted to singularly
perturbed systems in form [6]. Nonetheless, most of the
existing achievements rely so heavily on model informa-
tion [7,8]. Model-free method requires a large amount of
data and has poor ability to explain the influence of vari-
ables from inside [9,10]. In practice, models of the TTS
systems can be established but incomplete due to factors

of unknown mechanisms and technology. So, it is worth
exploring that the design of controller combining model
information with measured data, which ensures reliable
performance as far as possible while providing internal
interpretation.

RL as a machine learning method has been effectively
employed to find the optimal control policy under the un-
known model information [11]. A variety of RL tech-
niques, such as Q-learning, actor-critic and adaptive dy-
namic programming, were widely applied in control field
[12-16]. Recently, a composite sub-optimal control strat-
egy was developed for a class of continuous-time TTS sys-
tems [17]. In addition, reduced-dimensional RL technique
was applied to explore optimal problem with two-time-
scale [18]. There is a common requirement in aforemen-
tioned techniques: stable policy was regarded as an initial
condition. However, it is difficult to select the initial stabi-
lizing policy when the model information is incomplete.

On the other hand, the optimal tracking control (OTC)
problem for TTS system continues to be ongoing argu-
ments. It is aimed at designing a tracking controller such
that a reference trajectory is tracked by output in an op-
timal manner [19-22]. Authors of [23,24] discussed the
OTC for flotation industrial process on two-time-scales
and presented a dual-rate data-driven algorithm by mean
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of lifting technology. However, when the desired trajec-
tory is not static, the OTC problem has not been addressed
adequately. In addition, there is a challenge to analyze
the asymptotic behavior of the TTS system under single
rate sampling. Taking discrete-time TTS model under fast
sampling as an example, it is no problem to analyze the
asymptotic behavior of the fast subsystem, but accurately
asymptotic stability of the slow subsystem can not be char-
acterized in the fast time scale. To avoid misjudgment of
stability, the slow subsystem in the slow time scale is stud-
ied to characterize its asymptotic stability.

This paper is motivated the fact that the selection of the
initial stabilizing policy has difficulties and tracking per-
formance is affected by time scale in TTS systems. It aims
to develop a composite algorithm based on RL technique
and convex optimization to learn the sub-optimal tracking
control solution for TTS systems. First, fast subsystem and
slow subsystem are derived from a high-order TTS system
using SPT. To improve tracking performance, the desired
trajectory is tracked by the slow subsystem, the fast sub-
system is required to reduce oscillation. Combining LMI
technique with Lyapunov stability theorem (LST) [25],
the stabilizing policy constraints are encoded to two sub-
problems. It provides a choice of initial stabilizing policy.
Then, a composite sub-optimal algorithm is proposed by
using of RL technique and convex optimization, which not
relies on Hamiltonian. Finally, the asymptotic stability for
tracking error system in the slow time scale is analyzed
under [26].

Compared with the existing literatures [4,7,10], advan-
tages of this paper are roughly summarized in the follow-
ing three points:

1) Based on SPT, the proposed method combining data
with existing model information guarantees the accu-
racy of results and reduces dependence on model. It is
stressed that system performance is affected by time
scale. Moreover, lifting technique and inductive rea-
soning are employed to research the asymptotic behav-
ior of tracking error system in the slow time scale.

2) In TTS systems, the exploration of the initial stabiliz-
ing policy in RL method provides an idea for its se-
lection, which improves the practicability of the RL
method. Furthermore, the interpretability of learning
policy is improved by taking full advantage of avail-
able model information.

3) A new RL method integrating SPT with Lagrangian
duality theory is developed. Unlike traditional RL ap-
proach, policy evaluation and policy improvement de-
pend on Karush-Kuhn-Tucker (KKT) conditions rather
than Hamiltonian.

This article is organized as follows: Section 2 uses SPT
to separate the TTS system. In Section 3, the input con-
strained OTC problem and two constrained optimization
sub-problems are formulated. Section 4 gives a composite

sub-optimal tacking controller combined Q-learning with
policy iteration to track the desired trajectory. Section 5
analyzes system asymptotic stability, as well as algorithm
convergence. In Section 6, an emulation experiment in F-
8C aircraft is considered to demonstrate the validity of the
developed method. Conclusions are presented in Section
7.

Notation: Symbol T that appears throughout the article
stands for matrix transposition; matrix inequality P > 0
and P ≥ 0 indicate positive definite matrices, positive
semi-definite matrices, respectively; the element ∗ under
the main diagonal of the symmetric matrix denotes an el-
lipsis for terms that are induced by symmetry; Tr repre-
sents trace of matrix ; ρ stands for spectral radius. ⊗ de-
notes the Kronecker product; vec(H) is a column vector
formed by stacking the columns of matrix H.

2. TTS SYSTEM DESCRIPTION AND
DECOMPOSITION

In this section, a class of linear discrete-time TTS
systems with partially unknown dynamics are discussed.
Based on SPT, the high-order TTS system is separated into
the corresponding fast dynamics and the slow dynamics.

2.1. TTS system description
Consider the fast sampling linear discrete-time TTS

system

x1(k+1) = (I + εA1)x1(k)+ εA2x2(k)+ εB1u(k),

x2(k+1) = A3x1(k)+A4x2(k)+B2u(k),

y(k) =C1x1(k)+C2x2(k), (1)

where x1 ∈ Rm1 is the slow state vector, and x2 ∈ Rm2 is
the fast state vector; σ and σ̃ are the initial state of x1

and x2 respectively. Different response speeds of the TTS
systems are caused by singularly perturbation parameter
ε that affects positions of eigenvalues in the unit circle,
where positive scalar ε is far less than 1. u ∈ Rq is the
control input vector; y ∈ Rp is the system output; k repre-
sents the fast time scale; the knowledge of the system is
partially unknown, where A3, A4, B2, C1 and C2 are known
matrices with appropriate dimensions, and A1, A2, B1, ε

are unknown.
Assumption 1: The matrix I−A4 is nonsingular.
Note that Assumption 1 is essential for separating the

discrete-time TTS system (1). Because the standard re-
quirement of the system relies on I−A4, that is, the inex-
istence of isolated root if the matrix is singular. The exis-
tence of isolated roots ensures that slow subsystem is well
defined.

2.2. Time-scale decomposition
Slow subsystem and fast subsystem are defined based

on Assumption 1 and SPT. The slow subsystem is equiv-
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alent to quasi-steady state model, which is obtained by
replacing fast state vector with its steady-state algebraic
equation. The fast subsystem, also called boundary layer
model, is deviation between the quasi-steady state model
and the whole order model.

Neglecting the fast mode in the whole order system (1),
the slow mode can be described as follows:

x1s(k+1) = (I + εA1)x1s(k)+ εA2x2s(k)+ εB1us(k),

x2s(k+1) = A3x1s(k)+A4x2s(k)+B2us(k),

y(k) =C1x1(k)+C2x2(k), (2)

note A1ε = (I + εA1). We consider slow mode x2s in the
fast time scale k as a constant, which is the slow part cor-
responding fast state vector x2. The steady-state algebraic
equation with respect to the second equation of (2) is ex-
pressed as

x2s(k) = (I−A4)
−1 [A3x1s(k)+B2us(k)] . (3)

There is no fast part in slow state vector x1 because fast
mode is neglected. Substituting (3) into (2), the quasi-
steady state model is obtained

xs(k+1) =As(k)xs(k)+Bsus(k),

ys(k) = Csxs(k)+Dsus(k), (4)

where As = I + ε[A1 + A2(I − A4)
−1A3], Bs = ε[B1 +

A2(I−A4)
−1B2], Cs =C1 +C2(I−A4)

−1A3, Ds = C2(I−
A4)
−1B2. Combining the quasi-steady state model (4) with

the whole order system (1), the fast subsystem is obtained
as follows:

x f (k+1) =A f x2 f (k)+B f u f (k),

y f (k) = C f x f (k), (5)

where A f = A4, B f = B2, C f =C2, x2 f = x2− x2s.
For example, the tracking performance of aircraft is

mainly affected by incremental pitch attitude κ and in-
cremental velocity υ , and level of oscillation is related
to pitch rate q and incremental angle of attack α . Cor-
responding to the system (1), x1 = ϖ1−Nϖ2, x2 = ϖ2 =[
αT qT

]T , ϖ1 =
[
υT κT

]T , u = δe is elevator position,
N is a matrix with appropriate dimensions. Ill-condition
is caused by different response speeds between ϖ1 and
ϖ2. To solve the problem, the slow subsystem x1s =
ϖ1s + N̄ϖ1s + Ñus is obtained by replacing ϖ2s with its
steady-state algebraic equation, and the fast subsystem
x f = ϖ2−ϖ2s is presented. The computational difficulty
of tracking problem is decreased by reducing model or-
der and the ill-condition can be solved by designing con-
trollers in different time-scale.

3. PROBLEM FORMULATION

In this section, a linear command generator system is
presented to generate reference trajectory. Then, we for-
mulate the stabilizing policies as input constraints. As

the original system (1) decomposes, the input constrained
OTC problem and input constrained the optimal control
(OC) problem are proposed. It provides ideas for initial
stabilizing and tracking performance improvement.

3.1. Linear command generator
It is assumed that the reference trajectory dynamics is

described by a linear command generator

r(k+1) = Lr(k), (6)

where r ∈ Rp is the dynamical trajectory vector; δ is the
initial state r(0); L is an unknown square matrix with ap-
propriate dimensions and ρ(L)< 1.

3.2. Constrained optimal tracking control problem
The performance index Ju is denoted as follows:

Ju =
∞

∑
k=i

γ
k−i(ys(k)− r(k))T Q(ys(k)− r(k))

+(y f (k))T Qy f (k)+u(k)T Ru(k), (7)

where Q≥ 0, R> 0, y(0)= τ . 0< γ ≤ 1 is discount factor.
We formulate the input constrained OTC problem as

Primal problem I (OTC problem for the original sys-
tem):

Ĵu = min
u∈U

Ju, (8)

s.t. xs(k+1) =As(k)xs(k)+Bsus(k),

x f (k+1) =A f x2 f (k)+B f u f (k),

ys(k) = Csxs(k)+Dsus(k),

y f (k) = C f x f (k),

r(k+1) = Lr(k), (9)

where U is a set of stabilizing policy.
In problem formulation, Primal problem I is similar

with the standard linear model predictive control (MPC)
[27,28]. However, the difference can be seen at input
constraint and performance index. An implicit constraint
u ∈ U is proposed in Primal problem I, instead of explicit
constraint umin 6 uk+ j 6 umax. Discount factor γ is added
to avoid that the value of the performance index goes to
infinity. Furthermore, the linear MPC controller relies so
heavily on model information compared with Primal prob-
lem I.

3.3. Constrained optimization sub-problems
On the basis of the time-scale separation property, the

OTC achieved by the slow dynamics and the oscillation is
restrained effectively by the fast dynamics. The aim of the
constrained OTC problem is to find the optimal tracking
policy u∗ from feasible set so as to the output ys(k) tracks
the desired trajectory r(k). The structure of the tracking
control problem is displayed in Fig. 1.
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Fig. 1. Block diagram of OTC.

An augmented system is constructed by the slow dy-
namics (4) and the desired trajectory system (6) before
formulating Sub-problem 1a

ξ (k+1) =ALξ (k)+ B̂us(k),

ys (k) = Ĉξ (k)+Dsus(k), (10)

where ξ (k) =
[

xs(k)
r(k)

]
, AL =

[
As 0
0 L

]
, B̂ =

[
Bs

0

]
, Ĉ =[

Cs
T

0

]T

, ξ (0) =
[

σ

δ

]
= η .

Designing a state feedback-based policy us(k) for the
augmented system (10)

us(k) =−Fsξ (k) =−F1xs(k)−F2r(k). (11)

Another augmented system is composed of the augmented
system (10) and tracking policy (11)[

ξ (k+1)
us (k+1)

]
=

[
AL B̂
−FsAL −FsB̂

][
ξ (k)
us(k)

]
. (12)

Primal sub-problem 1a (Input constrained OTC prob-
lem): Fs is a set which contains stabilizing state feedback
gains for the slow subsystem in slow time scale n, where
the expression of Fs is presented in the form of (62). The
input constrained OTC sub-problem is described as

ĴFs = min
Fs

JFs , (13)

s.t. ξ (k+1) =ALξ (k)+ B̂us(k), (14)

Fs ∈ Fs, (15)

where JFs =
∞

∑
k=i

γk−i

[
ξ (k)
−Fsξ (k)

]T

Φs

[
ξ (k)
−Fsξ (k)

]
, Φs =[

Q̂s Q̃s

∗ R̂

]
, Q̂s = CT QC, Q̃s = CT QDs, R̂=DT

s QDs+R,C=[
Cs −I

]
. Let Fs

∗ be the optimal feedback gain for
the input constrained OTC, it can be defined as Fs

∗ =
arg min

Fs∈Fs

JFs .

Lemma 1: Let AF = As−BsF1, there exists a nonsin-

gular matrix Ψ̃=

[
I 0
−Fs I

]
, such that ρ (ΓFS)< 1 is equiv-

alent to ρ (AF)< 1.

Primal sub-problem 1b (Input constrained OC prob-
lem): Choosing a state feedback control policy u f (k) =
−Ff x f (k), the optimal control problem can be formulated
as

ĴFf = min
Ff

JFf , (16)

s.t. x f (k+1) =A f x2 f (k)+B f u f (k),

Ff ∈ F f , (17)

where JFf =
∞

∑
k=i

γk−i

[
x f (k)
−Ff x f (k)

]T

Φ f

[
x f (k)
−Ff x f (k)

]
, Φ f =[

Q 0
∗ R

]
, ς̂ f (k) =

[
x f (k)
−Ff x f (k)

]
. Similarly, defineFf

∗ =

arg min
Ff∈F f

JFf as the optimal feedback gain for the input

constrained OC.
In order to provide viable selection criteria of the ini-

tial stabilizing policies, the stabilizing policies are limited
within two sets of stabilizing feedback gains. The chal-
lenges include two aspects: the form of constraint not con-
form to standardized optimization problem; the elements
of the sets are hard to get. The explanation is presented the
following section.

4. SUB-OPTIMAL TRACKING CONTROLLER

In this section, standardized forms of sub-problems 1a
and 1b are provided to solve the problem of the initial
stabilizing policy. Then, dual sub-problems are obtained
by using convex optimization. Strong duality between the
dual problems and the primal sub-problems is presented
to guarantee the equivalence of the global optimal solu-
tions. Based on RL technique, a composite sub-optimal
algorithm is obtained. The overall flow is summarized in
Fig. 2.

Lemma 2 [29]: Suppose that S ≥ 0 is a partitioned

Fig. 2. Block diagram of sub-optimal tracking controller.
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square matrix as follows: S =

(
S11 S12

S12
T S22

)
, where S11

symmetric matrices, S22 > 0. Then[
I
−F

]T

S
[

I
−F

]
> S11−S12S−1

22 ST
12, (18)

where S11 − S12S−1
22 ST

12 =

[
I

−S−1
22 ST

12

]T

S
[

I
−S−1

22 ST
12

]
. The

equality in (18) holds if and only if F = S−1
22 ST

12.

4.1. Inequality constrained optimization sub-problems
Two Primal sub-problems 2a and 2b, which are equiv-

alent to Primal sub-problems 1a and 1b, are presented by
means of spectral decomposition method and LMI tech-
nique. The purpose of the operation is to give standard
forms of convex optimization problems. Meanwhile, the
selection criteria of the initial stabilizing policies are ob-
tained, which depend on positive semi-definite matrices
composed of data. Moreover, we give two Lagrangian
functions referring to Primal sub-problems 2a and 2b.

Primal sub-problem 2a (Inequality constrained OTC
problem):

JΘ = min
Θ

tr(ΦsΘ), (19)

s.t. γΓFs ΘΓFs
T +

[
Im1+p

−Fs

]
Π

[
Im1+p

−Fs

]T

= Θ, (20)

Θ≥ 0, (21)

where Θ =
∞

∑
k=i

γk−i

[
ξ (k)
−Fsξ (k)

][
ξ (k)
−Fsξ (k)

]T

, Π = ηηT >

0.

Proof: Using spectral decomposition method, there ex-
ists an orthogonal matrixQ and a diagonal matrix Ξs such
that Φs =QΞsQT . Substituting for Ξs in (13), one has

ĴFs = min
Fs

∞

∑
k=i

γ
k−i
[

ξ (k)
−Fsξ (k)

]T

QΞsQT
[

ξ (k)
−Fsξ (k)

]
.

(22)

Putting (14) in (22) and applying LMI technique yields

ĴFs =min
Fs

Tr
∞

∑
k=i

{
γ

k−i
ΞsQT

×
[

ξ (k)
−Fsξ (k)

][
ξ (k)
−Fsξ (k)

]T

Q

}
. (23)

Note Θ =
∞

∑
k=i

γk−i

[
ξ (k)
−Fsξ (k)

][
ξ (k)
−Fsξ (k)

]T

, one can write

(23) as

ĴFs = min
Θ

Tr(ΦsΘ), (24)

where

Θ =
∞

∑
k=i

γ
k−i
[

ξ (k)
−Fsξ (k)

][
ξ (k)
−Fsξ (k)

]T

= γΓFs ΘΓFs
T +

[
I
−Fs

]
Π

[
I
−Fs

]T

.

Primal sub-problem 1a is identical to Primal sub-problem
2a. �

An implicit constraint Fs ∈ Fs is equivalent to an in-
equation Θ ≥ 0 based on LST and Schur Complement
[30]. According to the formulation of Θ, the selection cri-
terion of initial stabilizing policy under unknown model
information are converted into Θ≥ 0.

Then, Lagrangian function of Primal sub-problem 2a
can be formulated as

Ls(Ps,P0,Fs,Θ) = Tr(ΦsΘ)+Tr
[(

γΓFs ΘΓ
T
Fs
−Θ
)

Ps
]

+Tr

([
Im1+p

−Fs

]
Π

[
Im1+p

−Fs

]T

Ps

)
−Tr (P0Θ) , (25)

where Lagrange multiplier Ps is associated with the equal-
ity constraint (20) and Lagrange multiplier P0 is associated
with inequality constraint (21). Ls(Ps, P0, Fs, Θ)≥ 0.

Primal sub-problem 2b (Inequality constrained OC
problem):

JΨ = min
Ψ

tr(Φ f Ψ), (26)

s.t γΓFf ΨΓFf
T +

[
Im2

−Ff

]
χ

[
Im2

−Ff

]T

= Ψ,

Ψ≥ 0, (27)

where Ψ =
∞

∑
k=i

γk−i

[
xk

f (k)
−Ff xk

f (k)

][
xk

f (k)
−Ff xk

f (k)

]T

, χ = υυT .

Lagrange function

L f (Pf , P1,Fs,Ψ) = Tr

{[
Im2

−Ff

]
χ

[
Im2

−Ff

]T

Pf

}
+Tr

{(
γΓFf Pf ΓFf

T+Φ f−Pf
)

Ψ
}

−Tr(P1Ψ). (28)

4.2. Dual sub-problems
In this subsection, Dual sub-problems 3a and 3b are

proposed on the basis of convex optimization. It aims
to give the global optimal policies of the sub-problems.
Then, strong duality between the dual sub-problems and
the primal sub-problems is proved by using LMI tech-
nique and LST.

Dual sub-problem 3a:

Jd
s = sup

Ps,P0

ds (Ps, P0) , (29)
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where Lagrange dual function ds(Ps, P0) is the lower
bound of Lagrangian function, P0 > 0 and note

ds (Ps, P0) = inf
Fs∈Fs

Ls(Ps, P0, Fs, Θ). (30)

Dual Sub-problem 3b:

Jd
f = sup

Pf ,P1

d f (Pf , P1) , (31)

where d f (Pf , P1) = inf
Ff∈F f

L f (Pf , P1, Ff , Ψ) is Lagrange

dual function, P1 > 0.

Theorem 1: There is a strong duality between Primal
sub-problem 2a and Dual sub-problem 3a, that is Jd

s = JΘ.

Proof: The relationship between Lagrange dual func-
tion and Lagrangian function means that the inequality
Jd

s ≤ JΘ follows. To derive Jd
s = JΘ, it remains to show

that inequality JΘ ≤ Jd
s holds.

We first rewrite Primal sub-problem 1a as

ĴΘ = min
Fs

Tr

([
Im1+p

−Fs

]
Π

[
Im1+p

−Fs

]T

Ps

)
, (32)

s.t. γΓFs
T PsΓFs +Φs = Ps,

Fs ∈ Fs, (33)

where ΓFs =

[
AL B̂
−FsAL −FsB̂

]
, Ps =

∞

∑
k=i

γk−i
{

ΓFs
k}TQ

×ΞsQT ΓFs
k. The corresponding Lagrange function is

Ls(Ps, P0,Fs) = Tr

{[
Im1+p

−Fs

]
Π

[
Im1+p

−Fs

]T

Ps

}
+Tr

{(
γΓFs PsΓFs

T +Φs−Ps
)

P0
}
.

(34)

We have the Lagrange dual function d̂s(Ps, P0) of the prob-
lem ĴΘ

d̂s (Ps) = inf
Fs∈Fs

L̂(Ps, Fs)

=

 inf
Fs∈Fs

∆, if(Ps,P0) ∈B,

−∞, otherwise,
(35)

where B =
{

Ps : γΓFs
T PsΓFs + Φs − Ps ≥ 0, Fs ∈ Fs

}
,

∆ = Tr

{[
Im1+p

−Fs

]
Π

[
Im1+p

−Fs

]T

Ps

}
. Lagrange dual prob-

lem is Ĵd
s = sup

Ps

d̂s (Ps). Primal sub-problem 1a and La-

grangain function L̂s(Ps, P0, Fs) are equivalent to the prob-
lem ĴΘ and Ls (Ps, P0, Fs, Θ), respectively. JΘ 6 Jd

s can be
achieved by ĴΘ 6 Ĵd

s .
Obviously, d̂s (Ps)6 Ĵd

s . We next show that the equality
ĴΘ = d̂s (Ps) holds. Suppose that P is nonempty, then P ∈

P, if and only if there exists a Lagrange multiplier P such
that the inequality holds for each Fs ∈ Fs

γΓFsPΓFs
T +Φs−P ≥ 0. (36)

Putting ΓFs in (36), one has

γΓFs
TPΓFs +Φs = γℑ+Φs > P = γ℘+Φs, (37)

where

ℑ =
[
AL B̂

]T
[

Im1+p

−Fs

]T

P
[

Im1+p

−Fs

][
AL B̂

]
,

℘=
[
AL B̂

]T
[

Im1+p

−FP
s

]T

P
[

Im1+p

−FP
s

][
AL B̂

]
,

the equality holds if and only if Fs = FP
s = −P−1

22 PT
12.

Based on LST, there exists unique P such that
γΓFs

TPΓFs +Φs = P . Therefore, we have Jd
s = JΘ. �

Similarly, there is a strong duality between Primal sub-
problem 2b and Dual sub-problem 3b.

Remark 1: Since Lagrange dual function just give a
lower bound of the optimal value for primal problem.
There exists a gap on the optimal value between primal
problem and dual problem in weak duality. The strong
duality ensures the equivalence of the two optimal solu-
tions [31]. Therefore, the global optimal solutions of the
input constrained sub-problems are obtained by solving
their dual sub-problems.

4.3. Sub-optimality for the original system
The decomposability of performance index is discussed

in this subsection. It is shown that the optimization of the
original problem can be achieved by optimization prob-
lems of two subsystems. Accordingly, Algorithm 1 is
proposed to learn the composite optimal tracking policy,
which is constructed by the tracking policy of slow sub-
system and the controller of fast subsystem.

Theorem 2: If there exists a scale ε̃ > 0, matrices G0,
G1 and G2 such that an state feedback tracking policy
u(k)=−G0x1(k)−G1x2(k)−G2r(k)+O(ε) for all ε ∈ (0,
ε̃], then Ju = Jus + Ju f + O(ε), where G0 = F1 − Ff (I −
A4)
−1(A3−B2F1), G1 = F f , G2 = (Ff (I−A4)

−1B2+ I)F2,
Fs =

[
FT

1 FT
2

]T .

Proof: Substituting G0, G1 and G2 into u(k), there ex-
ists a ε̃ > 0 to guarantee (38) holds for all ε ∈ (0, ε̃] [32]

uc(k) =−Fsxs(k)−Ff x f (k)+O(ε). (38)

Obviously, the state feedback tracking policy u(k) consists
of three parts

u(k) = us(k)+u f (k)+O(ε). (39)
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Therefore,

Ju =
∞

∑
i=k

γ
i−k
[
(ys(k)− r(k))T Q(ys(k)− r(k))

+us(k)
T Rus(k)

]
+

∞

∑
i=k

γ
i−k
[
y f (k)

T Qys(k)

+ u f (k)
T Ru f (k)

]
+O(ε)

= Jus + Ju f +O(ε)

= Juc +O(ε). (40)

The designed composite control u(k) = us(k)+u f (k) can
be regarded as the global optimal solution at ε = 0. Other-
wise, it is a sub-optimal controller. The proof of Theorem
2 is completed. �

The strong duality guarantees that the Lagrange dual
sub-problems 2a satisfies the following KKT optimality
conditions

γΓFs ΘΓFs
T +

[
Im1+p

−Fs

]
Π

[
Im1+p

−Fs

]T

= Θ, (41)

Θ > 0, (42)

γΓ
T
Fs

PsΓFs +Φs−Ps = 0, (43)

γ
(
PT

s12
−Ps22 Fs

)[
AL B̂

]
Θ

[
AL B̂

]T
= 0. (44)

Equation (41) is initial constraints for Primal sub-problem
2a; (42) as a condition of complementary slackness; (43)
and (44) can be used to derive policy evaluation and pol-
icy improvement. Model-free RL is adopted to solve the
problem because AL and B̂ are unknown. Let Θ(F js

s ) =
Θ js , then pre-multiplying equality (43) by ΘT

js and post-
multiplying (43) by Θ js , we have

Θ
T
js P

js
s Θ js = Θ

T
js ΦsΘ js + γφ

T
js P

js
s φ js , (45)

where φ js = ∑
∞

k=1 γk−1
[

ξ (k+1)
−F js

s ξ (k+1)

][
ξ (k)

−F js
s ξ (k)

]T

. We

can express the kernel matrix P js
s as

P js
s = Φs + γ(φ js Θ

−1
js )

T P js
s (φ js Θ

−1
js ). (46)

There is no need Hamiltonian corresponding Bellman
equation to derive the policy gain improvement, the gain
can be obtained using condition (44)

Fs
js+1 =

(
P js

s22

)−1 (
P js

s12

)T
. (47)

Let the augmented system ς f (k+1) = ΓFf ς f (k), where

ΓFf =

[
A f B f

−FfA f −FfB f

]
. Applying Online LS method to

calculate matrix P j f +1
f from Bellman equation(

p j f +1
f

)T
ζ (k) = ϑ(k)+ γ

(
p j f +1

f

)T
ζ (k+1), (48)

Algorithm 1: The composite optimal algorithm.
Step 1 (Data collection): Collect trajectory date of aug-

mented system (x1(k), r(k)).
Step 2 (Initialization): Select stabilizing control policies

u0
s (k) =−F js

s ξ (k)+es(k), u0
f (k) =−F j f

f x f (k),
where es(k) is the exploration noise. ϖs and ϖ f

arbitrary small positive scalar. js and j f stand
for iteration step staring form 0, the discount
factor 0 < γ ≤ 1.

Step 3 (Policy evaluation): Action-value function is cal-
culated by solve for matrices P js+1

s and P j f +1
f

from the equation

P js
s = γ(φ js Θ

−1
js )

T P js
s (φ js Θ

−1
js )+Φs,

Pf
j f +1 = γΓ

T
Ff

Pf
j f +1

ΓFf +Φ f .

Step 4 (Policy improvement): Learned policy

u js+1
s (k) =−(P js+1

s22
)−1(P js+1

s12

)T
ξ (k),

u j f +1
f (k) =−

(
P j f +1

f22

)−1(
P j f +1

f12

)T
x f (k).

Step 5 (Termination): Let js = js +1, j f = j f +1 and go
to step 3, until ‖P js

s −P js+1
s ‖ ≤ ϖs and ‖P j f

f −
P j f +1

f ‖ ≤ ϖ f .

where ζ (k) = ς(k)⊗ ς(k), p j f +1
f = vec(P j f +1

f ), ϑ(k) =
ς(k)T Φ f ς(k). The policy iteration method based on La-
grangain dual theory is proposed to find the global optimal
controller, which makes full use of the knowledge of the
fast subsystem.

The composite optimal Algorithm 1 is given.

5. CONVERGENCE AND STABILITY ANALYSIS

In this section, the convergence of policies learned from
Algorithm 1 is analyzed theoretically. Then, we adopt the
lifting technique and inductive reasoning to prove that the
tracking error system is asymptotically stable under the
composite sub-optimal tracking policy.

Assumption 2: (AL, B̂) and (A f , B f ) are stabilization.
(AL, ws) and (A f , w f ) are detectable, where Φs = wT

s ws,
Φ f = wT

f w f .

Theorem 3: 1) The tracking policy learning in Algo-
rithm 1 converge to the global optimal solution. 2) The
policy u js+1

s at every iteration guarantees the asymptotic
stability of the tracking error system.

Proof: 1) The convergence of tracking policy can
be formulated as lim

js→∞
P js

s = P∗, lim
j f→∞

P j f
f = P∗∗. Taking

lim
js→∞

P js
s = P∗ as an example, note that for any matrix P js

s ,

we have

P js
s = Γ

T
F js

s
P js

s ΓF js
s
+Φs. (49)
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By LST, constraint F js
s ∈ Fs means that the equal-

ity (49) has a unique solution P js
s > 0. Putting ΓF js

s
=[

AL B̂
−F js

s AL −F js
s B̂

]
in (49) and using Schur Complement,

one has

P js
s ≥ Γ

T
Fs

js+1 P js
s ΓFs

js+1 +Φs. (50)

Now, defining a mapping according to the inequality (50)

Ω : P js
s → Γ

T
Fs

js+1 P js
s ΓFs

js+1 +Φs, (51)

the mapping is non-negative and monotone decreasing.
Since Φs > 0 ensures that Ω

(
P js

s

)
> 0 holds for ( js = 0,

1, · · · ). Moreover, if P js
s >

_

P
js

s , then Ω

(
P js

s

)
>Ω

(
_

P
js

s

)
.

Based on the monotone bounded convergence theorem,
there exists P js+1

s such that

lim
l→∞

Ω
l(P js

s ) = P js+1
s . (52)

Thus, we can get the P js
s ≥ P js+1

s from Ω

(
P js+1

s

)
= P js+1

s .

Obviously,
{

P js
s

}
js=0, 1, ···

is non-negative and monotone

decreasing, using the monotone bounded convergence the-
orem again, there exists a matrix P̂s such that

lim
js→∞

P js
s = P̂s. (53)

Next, we just need to prove P̂s = P∗. Substituting (11)
in the augmented system (10), one can write closed-loop
system as

ξ (k+1) =
(
AL−B̂Fs

)
ξ (k),

ys(k) = Ĉξ (k)−DFsξ (k). (54)

The algebraic Riccati equation (ARE) can be expressed as

ϒ = Q̂s + γAL
T

ϒAL− ι

(
R̂s + γB̂T

ϒB̂
)−1

ι
T , (55)

where ι =
(
Q̃s + γAL

T
ϒB̂
)
. We note that ϒ = ϒ∗ is the

unique solution of (55).
There exists a relationship between P∗ and the unique

solution ϒ∗ of ARE for closed-loop system (55)

P∗s =

[
Q̂s + γAL

T
ϒ∗AL Q̃s + γAL

T
ϒ∗B̂

∗ R̂s + γB̂T ϒ∗B̂

]
. (56)

Combining (49) and (53) results in

Ω
(
P̂s
)
= P̂s = Γ

T
F̂s

P̂sΓF̂s
+Φs. (57)

To show P̂s = P∗, it remains to prove that ϒ̂ correspond-
ing P̂s is a solution of ARE (55). Substituting (44) in (57)
and noting

ϒ̂ = P̂s11 − P̂s12 P̂−1
s22

P̂T
s12
, (58)

one has[
AL B̂

]T
ϒ

[
AL B̂

]
+Φs = Ps, (59)

putting P̂s =

[
Q̂s + γAL

T
ϒ̂AL Q̃s + γAL

T
ϒ̂B̂

∗ R̂s + γB̂T ϒ̂B̂

]
in (59), we

can find the result that ϒ̂ satisfies ARE (55). It indicates
P̂s = P∗.

2) We will show that the control policy at the ( js +1)th
ensures the tracking error system asymptotic stability, if a
control policy at the jsth guaranteed the asymptotic stabil-
ity of the tracking error system. Note tracking error system
as

es(n) = ys(n)− r(n) =
[
C −I D

]
ςs(k), (60)

where
[
C −I D

]
6= 0. The system (60) goes to zero

asymptotically can be analyzed through the asymptotic
stability of ςs(n), where ςs(n) is the augmented system
(12) measured in slow time scale n . The relationship be-
tween the fast time scale k and the slow time scale n is
defined by k = [1/ε]n = Nn. Based on lifting technology,
Zero-Order Holder and down sampler are employed to ob-
tain the augmented system ςs(n).

ςs(n+1) = ΓFs ςs(n), (61)

where Γ̄Fs =

[
ĀL B̄
−FsĀL −FsB̄

]
, ĀL =

[
AN

s 0
0 LN

]
, B̄ =N−1

∑
g=0
AsBs

0

. We have F js
s ∈ Fs according to the as-

sumption of asymptotical stability at the jsth, and further
demonstrate on F js+1

s ∈ Fs, where

Fs =
{

Fs : ρ
(
ĀL−B̄Fs

)
< 1
}
. (62)

By lemma LST, there exists a gain matrix W =[
λ

1
2

1 Q1 λ
1
2

2 Q2

λ
1
2

1 QT
2 λ

1
2

2 Q3

]
such that ρ (AL +KW ) < 1. Let Z =[

λ
1
2

1

(
KQ2 +λ

− 1
2

2 B̂
)

Q−1
3

1
2 F js+1

s B̂ F js+1
s B̂V−1

][
λ

1
2

1 Q1 λ
1
2

2 Q2

λ
1
2

1 QT
2 λ

1
2

2 Q3

]
, in-

equation ρ(ΓF js+1
s

+Zw)< 1 holds, that is,
(

ΓF js+1
s

, W
)

is

detectable. Using LST again, F js+1
s ∈ Fs is derived, con-

trol gain at ( js + 1)th guarantees the asymptotic stability
of the tracking error system. �

Remark 2: The fast subsystem is asymptotically sta-
ble under the global optimal policy. In addition, the con-
trol policies us and u f are independent, the composite sub-
optimal tracking policy makes the original system asymp-
totically stable [31].
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6. SIMULATION EXAMPLE

In this section, a F-8 aircraft with two time-scales is
taken as an experimental example to proved that the Q-
learning framework approach performs satisfactorily [33].
In performing Algorithm 1, the initial stabilizing policies
are selected according to data of the original system and
the reference system. In Subsection 6.1, the formulations
of F-8 aircraft and tracking goal are given. The simulation
results of the proposed method are presented in Subsec-
tion 6.2. In Subsection 6.3, we verify that Algorithm 1
is effective and then prove the superiority in the tracking
performance and practicability by comparing with exist-
ing methods [6,11,14].

6.1. The dynamic formulation of F-8 aircraft and
tracking goal

The longitudinal dynamics of F-8 aircraft is given by (63).
υ̇(t)
κ̇(t)
α̇(t)
q̇(t)

= G


υ(t)
κ(t)
α(t)
q(t)

+Bδe(t),

[
nz(t)
q(t)

]
=C


υ(t)
κ(t)
α(t)
q(t)

 , (63)

where G =


Xυ −g/V0 Xα/V0 0
0 0 0 1

ZυV0 0 Zα 1
MυV0 0 Mα Mq

, B =


Xδe/V0

0
Zδe

Mδe

,

C =

[
0 dMκ −ZκV́ dMα −ZαV́ dMq

0 0 0 1

]
. Parameters in

Table 1 are partially known,where Zδe , Mδe , Xυ are un-
available.

Parameters in F-8 aircraft and its physical meaning.

Table 1. Parameters in F-8 aircraft and its physical mean-
ing.

Parameter Physical meaning
V0 Total equilibrium velocity
M() Stable axes stability derivatives

X(),Z() Wind axes stability derivatives
q Pitch rate
κ Incremental pitch attitude
α Incremental angle of attack
δe Incremental elevator position
V Equilibrium velocity
g Acceleration due to gravity
nz Normal acceleration
d Accelerometer displacement
V́ Airstream velocity

According to [34], the two-time-scale property are
demonstrated by a proper scaling. Rewriting the matrices

of the state dynamics (63) in the form G=

[
εG11 G12

εG21 G22

]
=[

0 G12

0 G22

]
+ε

[
0 G11

0 G21

]
= G0+εG1, and a standard singu-

larly perturbed system is thus obtained[
ẋ1

ε ẋ2

]
=

[
A1 A2

A3 A4

][
x1

x2

]
+

[
B1

B2

]
u, (64)

where x1, x2 and u are mentioned in Subsection 2.2,
A1 = H̄G1Z̄, A2 = H̄G1Z̃, A3 = H̃G1Z̄, A4 = H̃G0Z̃ +

εH̃G1Z̃, B2 =

[
Zδe

Mδe

]
, B1 =

[ Xδe
εV0

0

]
− G12G−1

22 B2, H̄ =[
I −G12G−1

22
0 I

]
, H̃ =

[
0
I

]T

,
[

H̄
H̃

]−1

=

[
Z̄T

Z̃T

]T

. After dis-

cretization, the F-8 aircraft model is presented as the fol-
lowing discrete-time singularly perturbed dynamics (1).
Obviously, the slow state vector and the fast state vector
have different response speeds in singularly perturbed sys-
tem.

The command generator dynamics is described by

r(k+1) =
[
−0.740 −0.200
−0.200 −0.900

]
r(k). (65)

We collect a set of initial values r(0) =
[
−1 0.3

]
,

X(0) = [x1(0) x2(0)] =
[
0.1 0.5 −1 −0.5

]T . The dis-
count factor and weighting matrices are selected as γ =
0.9, Q = 10, Rs = R f = 0.1.

6.2. Simulation results of the proposed method
In this subsection, the simulation results of the F-8 air-

craft are presented by using Algorithm 1. The selection of
the stabilizing policy depends on r(0) and X(0).

Trajectories of the slow subsystem, the desired goal
and the tracking error system are displayed in Figs. 3
and 4. Fig. 5 shows that iteration steps of the global
optimal tracking gain F∗s and the global optimal con-
trol gain F∗f , respectively. The optimal feedback gains
are reached respectively at 10 and 43 iterations, and are
denoted as F∗s =

[
−0.0285 −0.6551 0.4135 0.1822

]
,

F∗f =
[
−3.7834 −4.8132

]
. In addition, the controller u f

and the tracker us account for the composite tracker uc in
Fig. 5. Response of the fast subsystem is presented in Fig.
6. Exploration noise in Fig. 6 is used to inspire potential
information of system in the model-free Q-learning frame-
work method. The amplitude of the reverse M-sequence is
small due to value of the optimal tracking policy, and the
maximum is selected no more than fifteen percent.

6.3. Comparison with existing methods
In this subsection, ARE method, linear MPC method

and model-free RL method are adopted to compare with
the proposed method.
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Table 2. Comparison of the optimal performance index.

Method Performance index
The proposed method J∗c = 40.6976

ARE method in [9] Jopt = 40.6970

Assuming that the model information is complete, then
the comparison of the optimal performance index is dis-
played in Table 2. The learning cost loss with model
information partially unknown is approximately 0.05%,
which proved that the proposed method is effective. It is
point that the proposed method reduces the dependence on
model.

Compared with the linear MPC method [6], the
tracking performance of the proposed method is bet-
ter. The parameters of model are obtained by parame-

ter identification, where I + εA1 =

[
0.9930 −0.0227
0.0495 0.9995

]
,

εA2 =

[
−0.0307 0.0034
−0.0007 0.0001

]
, εB1 =

[
0.0048
−0.5693

]
. The pa-

rameters B2 =

[
−0.0022
−0.1139

]
, A3 =

[
−0.0015 0
0.0005 0

]
, A4 =[

0.9886 0.0130
−0.0625 0.9932

]
are known. Discount factor γ = 0.9.

Set prediction horizon and control horizon as 8.
Trajectories of original system and tracking error sys-

tem are presented in Figs. 3 and 4. As can be seen from
Figs. 3 and 4, amplitude and convergence rate of tracking
error system and trajectories of system obtained by the
linear MPC method are at a distinct disadvantage, which
may be caused by ill-condition and variable coupling. As
shown in Table 3, integral absolute error (IAE) and mean
square error (MSE) of the proposed method are smaller.
Therefore, the proposed method is superior to the linear
MPC method in tracking performance and convergence
speed for the TTS systems.

The practicability of the proposed Algorithm 1 is im-
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Table 3. Comparison of error.

k∗ = 500, n = 200 IAE MSE
Proposed method 0.0201 2.0212e-4

MPC method in [6] 0.6593 0.0047

proved in contrast to Algorithm 2 [12]. In Algorithm 2,
the initial stabilizing policy in RL method is described
as an admissible policy. However, the literature provided
no concrete standard to select the admissible policy when
the model information is unknown. Based on convex op-
timization, we present the standard by considering the ad-
missible policy as an input constraint. The selections of
the admissible policy only need to satisfy (21) and (27).

7. CONCLUSION

A sub-optimal tracking control of discrete-time TTS
system with partially unknown dynamics is discussed in
this paper. The initial stabilizing policy is considered as
an input constraint and solved by using LST and LMI.
Two reduced-order input constrained optimization prob-
lems corresponding to the sub-optimal tracking control
problem are proposed to improve tracking performance.
Then, based on convex optimization and RL technique,
the Q-learning framework method and policy iteration
method are employed to solve the reduced-order prob-
lems. A global sub-optimal composite policy is obtained.
We also analyze the asymptotic stability of tracking error
system.
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