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Adaptive Containment Control for a Class of Uncertain Multi-agent Sys-
tems With Unknown Virtual Control Gain Functions
Meng-Yi Jiang � , Yong-Hui Yang � , Li-Bing Wu � , and Qi Li* �

Abstract: In this paper, we consider a containment control problem for a class of uncertain multi-agent systems
(MASs). The systems contain unknown parameters and virtual control gain functions. By introducing lower bounds
of virtual control gain functions into the Lyapunov functions, a novel controller design scheme is proposed based on
an adaptive control design approach and bound estimation method. The designed controller is simpler in compar-
ison with other controllers. The simulation results show that three followers converge into the convex hull rapidly
following the sinusoidal leaders, and the effectiveness of the designed controller is verified.
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1. INTRODUCTION

Backstepping adaptive control [1-3] is one of the fron-
tier topics of adaptive control theory and application [4].
In recent years, this method has shown great potential in
improving the quality of transition process when dealing
with nonlinear systems. Backstepping can be used to de-
sign control schemes to meet the matching conditions of
triangular single input single output nonlinear systems.
Therefore, backstepping design method has attracted great
attention all over the world. In order to deal with un-
modeled dynamics in nonlinear systems, a backstepping
controller was proposed in [5], and the proposed control
scheme does not require any dynamic dominating signal
to guarantee the robustness property of Lagrange stabil-
ity. In [6], the designed observer and controller are time-
delay independent. Based on Lyapunov stability theory,
and the asymptotically stable of the closed-loop system
was achieved. In [7], a command filter and universal ap-
proximator was designed for uncertain nonlinear systems
to avoid differential explosion problem.

Uncertain systems widely exist in nature and practical
engineering applications. Objectively speaking, each ac-
tual system has different degrees of uncertainties. The in-
ternal uncertainties of the system usually refer to the struc-
ture and parameters of mathematical model, such as un-
modeled dynamics, unknown system parameters and un-
known control parameters, which can not be accurately
known to the designer in advance. As an external envi-
ronment, the impact of uncertainty on the system is of-

ten equivalent to unpredictable or random disturbances.
In [8], an adaptive backstepping control scheme was de-
signed for uncertain systems with unknown input time-
delay. By considering input saturation and external dis-
turbance, a novel adaptive control was realized in [9]. In
[10], an adaptive stabilization was implemented for uncer-
tain switched nonlinear systems. To deal with the problem
of quantized input signal, a novel adaptive backstepping
controller was designed in [11]. In [12], an adaptive fault-
tolerant control scheme was given for a class of uncer-
tain nonlinear systems by combining with command fil-
tered technique. From [8-12], the diversity and necessity
of studying uncertain systems were presented in details.

If the control direction of the closed-loop system is un-
known, it will undoubtedly bring great difficulties for con-
troller design. In fact, nonlinear systems with unknown
control direction have a wide range of applications, hence
the design of adaptive unknown control direction con-
troller is a crucial concern and many results have been
achieved. In [13], an adaptive controller was designed for
nonlinear time-delay systems based on neural networks,
and an adaptive fuzzy tracking control was realized for
nonlinear time-delay systems in [14]. In [15], an adaptive
robust control was proposed for uncertain dynamical sys-
tems. In [16], an adaptive asymptotic tracking was pre-
sented based on barrier Lyapunov function. In [17], an
adaptive finite-time control was designed for stochastic
nonlinear systems. From [13-17], it can be seen that Nuss-
baum gain technique, neural networks and fuzzy approxi-
mation are commonly used to deal with unknown control

Manuscript received April 17, 2022; revised July 19, 2022; accepted August 23, 2022. Recommended by Senior Editor Jong Min Lee. This
work is financially sponsored by the National Natural Science Foundation of China (71771112 and 21978123).

Meng-Yi Jiang, Yong-Hui Yang, and Qi Li are with the School of Electronic and Information Engineering, University of Science and Tech-
nology Liaoning, Anshan, Liaoning, China (e-mails: {mengyimiao, yangyh2636688, liqi_as}@163.com). Li-Bing Wu is with the School of
Science, University of Science and Technology Liaoning, Anshan, Liaoning, China (e-mail: beyondwlb@163.com).
* Corresponding author.

©ICROS, KIEE and Springer 2023

http://www.springer.com/12555
https://orcid.org/0000-0002-9495-7393
https://orcid.org/0000-0001-9439-2823
https://orcid.org/0000-0002-5343-4342
https://orcid.org/0000-0003-4960-2777


2836 Meng-Yi Jiang, Yong-Hui Yang, Li-Bing Wu, and Qi Li

direction for nonlinear systems.
A multi-agent system (MAS) is a set of multiple agents,

and research of MAS involves the coordination and coop-
eration between agents. In recent years, multi-agent coop-
erative control has become a hot research field. Coopera-
tive control problems of multi-agent systems include con-
sistency control [18], containment control [19] and for-
mation control [20]. The latter two can be regarded as the
generalizations of consistency control. Containment con-
trol refers to a group of followers moving in the small-
est geometric space (convex hull) surrounded by the guid-
ance of multiple dynamic leaders. Containment control
has a large number of potential applications in multiple
agents jointly completing cooperative tasks such as haz-
ardous material handling, enemy area search, fire rescue
and cooperative transportation [21]. Therefore, contain-
ment control of MASs has been widely studied in recent
years [22-27]. Generally, the agent may carry different de-
vices during the cooperative control, which may cause the
MASs with unknown control directions. To ensure the sta-
bility of the MASs, we need to design an effective con-
troller to ensure that the follower enter and maintain in
the convex hull surrounded by the leaders. From the ex-
isting achievements, there are few achievements in this
area. Therefore, it is significant to study the problem of
containment control with unknown control direction. As
a result, we consider a containment control problem for a
class of uncertain multi-agent systems. The agent contains
unknown parameters and virtual control gain functions.
Different from the related design schemes, the following
contributions are summarized.

1) An adaptive controller with simpler structure is de-
signed, and it is first attempt to the application in
MASs. Compared with other related methods, the de-
signed controller is effective in structure and calcula-
tion. The proposed controller ensures that all the sig-
nals of the closed-loop MASs are uniformly and ulti-
mately bounded, and the followers will converge into
the convex hull surrounded by the leaders.

2) In order to solve the problem of virtual control di-
rection in MASs, different from [13-17], we propose
a simple controller design method based on backstep-
ping method. By introducing the bound of virtual con-
trol gain function into the Lyapunov function, the de-
sign procedure is based on adaptive control method
and bound estimation method. The controller does not
need to know the upper or lower bounds of unknown
virtual control gain function, and the applications of
upper or lower bounds are only used for stability anal-
ysis. The controller design is not restricted by the sign
of gain function.

2. STATEMENTS AND CONTROL OBJECTIVE
OF MULTI-AGENT SYSTEMS

Consider the nonlinear strict-feedback MASs with the
form

ẋβ ,γ = gβ ,γ

(
x̄β ,γ

)
xβ ,γ+1 +θ

T
β

fβ ,γ

(
x̄β ,γ

)
,

1≤ γ ≤ n−1,

ẋβ ,n = gβ ,n
(
x̄β ,γ

)
uβ +θ

T
β

fβ ,γ

(
x̄β ,γ

)
,

yβ = xβ ,1,

(1)

where x̄β ,γ = [xβ ,1, xβ ,2, . . ., xβ ,γ ]
T ∈ Rγ , β = 1, 2, . . ., N,

γ = 1, 2, . . ., n denote the states of the β th agent, uβ ∈ R
represents the control input of the β th agent, yβ ∈ R de-
notes the output of the β th agent, θβ ∈ Rl is an unknown
system parameter vector, gβ ,γ

(
x̄β ,γ

)
∈ R, γ = 1, 2, . . ., n,

are unknown control gain functions, and fβ ,γ

(
x̄β ,γ

)
∈ Rγ ,

γ = 1, 2, . . ., n, denote known smooth nonlinear func-
tions. For the convenience of derivation, gβ ,γ

(
x̄β ,γ

)
and

fβ ,γ

(
x̄β ,γ

)
are abbreviated as gβ ,γ and fβ ,γ , respectively,

and ‖·‖ denotes the L2 norm of the vector.
In order to connect the information between agents,

graph theory is adopted in this paper. Define informa-
tion exchange graph of the agents as G =

(
s,ε,C̄

)
, where

s = {s1, . . ., sN , sN+1, . . ., sN+M} is a set of agents, and the
followers are marked as β = 1, 2, . . ., N. In other words, in
set s, the first N agents are followers and the last M agents
are leaders. For j = 1, . . ., N +M, ε =

{(
sβ ,s j

)}
⊆ s× s

denotes a edge set, where× represents the Cartesian prod-
uct, and C̄ =

[
cβ , j
]
∈ R(N+M)×(N+M) is called an adjacency

matrix.
(
sβ ,s j

)
∈ ε represents the follower β can receive

the information from its neighbour agent j. If
(
sβ ,s j

)
/∈ ε ,

cβ , j = 0, otherwise, cβ , j = 1. Noticing that c j, j = 0 (no
self-edges) and ci, j = 0 (there is no neighbour for leaders)
for i = N + 1, . . ., N +M. Define a Laplacian matrix as
L =

[
Lβ , j

]
∈ R(N+M)×(N+M) = D− C̄, and D = diag(d1,

. . ., d j, . . ., dN+M) is a degree matrix of agent j, and
dβ = ∑

N+M
j=1 cβ , j. Suppose that there is at least one neigh-

bour for each follower. Under this condition, the Laplacian
matrix of the graph can be partitioned as

L =

[
L̂1 L̂2

0M×N 0M×M

]
, (2)

where L̂1 ∈ RN×N represents the communication between
N followers and L̂2 ∈ RN×M denotes the communication
between N followers and M leaders.

Definition 1 [28]: For a convex set Θ⊆ Rl , there exists
arbitrary x1, x2 ⊆Θ and %∈ [0, 1] such that the point %x1+
(1−ρ)x2 is also in set Θ. For a set of points Λ = {x1,
. . ., xn}, convex hull Co(Λ) is a minimal convex set and
defined as Co(Λ) =

{
∑

l
i=1 %ixi | xi ∈ Λ, %i > 0, ∑

l
i=1 %i =

1
}

.
In this paper, control objective is to design a feasible

adaptive controller for MAS (1) such that the outputs yβ
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(β = 1, 2, . . ., N) of the followers converge to the convex
hull following the leaders yd, j, j = N +1, . . ., N +M, i.e.,
infw∈Y

∣∣yβ −w
∣∣ < ε, Y = Co{yN+1, . . ., yN+M}, and ε > 0

is a sufficiently small constant. In addition, all the sig-
nals of the closed-loop MAS are uniformly and ultimately
bounded.

To achieve the control objective, the following Assump-
tions are needed.

Assumption 1: The dynamic leaders yd, j ∈ R, j = N +
1, . . ., N+M are bounded and differentiable, and their nth-
order derivatives y(n)d, j are continuous and bounded.

Assumption 2: The sign of gβ ,γ , γ = 1, 2, . . ., n is
known. In addition, if gβ ,γ > 0, the lower bound g̀β ,γ of
gβ ,γ is unknown such that 0< g̀β ,γ ≤ gβ ,γ and gβ ,γ/g̀β ,γ ≥
1; if gβ ,γ < 0, the upper bound ǵβ ,γ of gβ ,γ is unknown
such that gβ ,γ ≤ ǵβ ,γ < 0 and gβ ,γ/ǵβ ,γ ≥ 1. Without loss
of generality, gβ ,γ > 0 is used in this paper.

Assumption 3: Each follower agent has at least one di-
rected path communicated from the dynamic leader.

Lemma 1 [29]: Based on Assumption 3, L̂1 is a nonsin-
gular M-matrix, which means it is invertible. In addition,
the sum of each row of −L̂−1

1 L̂2 is equal to 1, and all the
entries of −L̂−1

1 L̂2 are nonnegative.
Define y̌ = [yd,N+1, . . ., yd,N+M]

T and y f = [y f ,1, . . .,
y f ,N ]

T = −L̂−1
1 L̂2y̌, where y f ,p ∈ R with p = 1, 2, . . ., N.

From Lemma 1, it is easy to know that infw∈Y |y f ,p−w|<
εwith p= 1, 2, . . ., N for all t ≥ 0. Then, containment con-
trol design can be transformed into tracking control design
for each follower such that

∣∣yβ − y f ,p
∣∣ < ε̌ with p = 1, 2,

. . ., N and ε̌ > 0 is a constant that can be sufficiently small.

3. MAIN RESULTS

Theorem 1: Consider the uncertain MASs (1), based on
Assumptions 1-3, for arbitrary initial conditions, the fol-
lowing state feedback control laws and adaptive law guar-
antee that the outputs yβ (β = 1, 2, . . ., N) of the followers
can track the desired signals yd, j, j = N + 1, . . ., N +M,
of the leaders, and all the signals of the closed-loop MASs
are uniformly and ultimately bounded. Additionally, con-
tainment errors between leaders and followers converge to
a tuned neighborhood of the origin.

αβ ,1 =−
1

dβ

(
bβ ,1zβ ,1ᾱ

2
β ,1 +aβ ,1zβ ,1

)
,

αβ ,γ =−
(

bβ ,γ zβ ,γ ᾱ
2
β ,γ +aβ ,γ zβ ,γ

)
,

γ = 2, 3, . . . , n, uβ = αβ ,n,

·
µ̂

β
=

n

∑
k=1

rβ

(∣∣zβ ,k
∣∣∥∥Wβ ,k

∥∥)−σβ µ̂β ,

(3)

where dβ = ∑
N+M
j=1 cβ , j, aβ ,γ > 0, bβ ,γ > 0, γ = 1, . . ., n,

rβ > 0 and σβ > 0 are positive design parameters. αβ ,γ−1,
γ = 2, . . ., n denotes the virtual control laws for the γth-

subsystem of the β th agent. The transformation errors zβ ,γ

are given by

zβ ,1 =
N

∑
j=1

cβ , j
(
yβ − y j

)
+

N+M

∑
j=N+1

cβ , j
(
yβ − yd, j

)
= dβ yβ −

N

∑
j=1

cβ , jy j−
N+M

∑
j=N+1

cβ , jyd, j,

zβ ,γ = xβ ,γ −αβ ,γ−1, γ = 2, . . . , n.

(4)

Suppose that µβ is the upper bound of the unknown vec-
tors υβ ,γ and which is defined by

µβ = max
{∣∣∣∣υβ ,γ

∣∣∣∣ ,γ = 1, . . . ,n
}
, (5)

where

υβ ,1 =

[
θ T

β

g̀β ,1
,

1
g̀β ,1

N

∑
j=1

cβ , j(g j,1x j,2−θ
T
j f j,1),

1
g̀β ,1

]T

,

(6)

and

υβ ,γ =
[
υ

T
β ,γ,1, υ

T
β ,γ,2, υ

T
β ,γ,3, υ

T
β ,γ,4, υ

T
β ,γ,5

]T
, (7)

γ = 2, 3, . . . , n,

with

υβ ,γ,1 =

[
gβ ,γ−1

g̀β ,γ−1
,

θ T
β

g̀β ,γ

]T

,

υβ ,γ,2 =

[
gβ ,1

g̀β ,γ
,

gβ ,2

g̀β ,γ
, . . . ,

gβ ,γ−1

g̀β ,γ

]T

,

υβ ,γ,3 =

 1
g̀β ,γ

,

·
µ̂

β

g̀β ,γ

T

,

υβ ,γ,4 =

[ g1,1
g̀β ,γ

cβ ,1, . . . ,
g1,γ−1

g̀β ,γ
cβ ,1, . . . ,

g j,1

g̀β ,γ
cβ , j, . . . ,

g j,γ−1

g̀β ,γ
cβ , j, . . . ,

gN,1
g̀β ,γ

cβ ,N , . . . ,
gN,γ−1

g̀β ,γ
cβ ,N

]T

,

υβ ,γ,5 =

[
θ T

1

g̀β ,γ
cβ ,1, . . . ,

θ T
j

g̀β ,γ
cβ , j, . . . ,

θ T
N

g̀β ,γ
cβ ,N

]T

,

with j = 1, 2, . . ., N and j 6= β .
µ̂β is the estimate of µβ , then the estimation error is

degined as µ̃β = µβ − µ̂β . The vectors Wβ ,k in (3) are de-
signed as follows:

Wβ ,1 =

[
dβ f T

β ,1,−1,−
N+M

∑
j=N+1

cβ , j ẏd, j

]T

, (8)

and

Wβ ,γ =
[
W T

β ,γ,1, W T
β ,γ,2, W T

β ,γ,3, W T
β ,γ,4, W T

β ,γ,5

]T
, (9)

γ = 2,3, . . . ,n,
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with

Wβ ,γ,1 =

[
zβ ,γ−1, f T

β ,γ −
γ−1

∑
k=1

∂αβ ,γ−1

∂xβ ,k
f T
β ,k

]T

,

Wβ ,γ,2 =

[
−

∂αβ ,γ−1

∂xβ ,1
xβ ,2,−

∂αβ ,γ−1

∂xβ ,2
xβ ,3, . . . ,

−
∂αβ ,γ−1

∂xβ ,γ−1
xγ

]T

,

Wβ ,γ,3 =

[
−

N+M

∑
j=N+1

γ−1

∑
k=0

cβ , j
∂αβ ,γ−1

∂y(k)d, j

y(k+1)
d, j ,−

∂αβ ,γ−1

∂ µ̂β

]T

,

Wβ ,γ,4 =


−cβ ,1

∂αβ ,γ−1

∂x1,1
x1,2, . . . ,−cβ ,1

∂αβ ,γ−1

∂x1,γ−1
x1,γ , . . . ,

−cβ , j
∂αβ ,γ−1

∂x j,1
x j,2, . . . ,−cβ , j

∂αβ ,γ−1

∂x j,γ−1
x j,γ , . . . ,

−cβ ,N
∂αβ ,γ−1

∂xN,1
xN,2, . . . ,−cβ ,N

∂αβ ,γ−1

∂xN,γ−1
xN,γ


T

,

Wβ ,γ,5 =

 −
γ−1
∑

k=1
cβ ,1

∂αβ ,γ−1

∂x1,k
f1,k, . . . ,

−
γ−1
∑

k=1
cβ , j

∂αβ ,γ−1

∂x2,k
f j,k, . . . ,−

γ−1
∑

k=1
cβ ,N

∂αβ ,γ−1

∂xN,k
fN,k


T

,

where j = 1, 2, . . ., N and j 6= β .
Proof: The controller design process is consisting of the

following n steps based on Lyapunov second method and
backstepping method.

Step 1: For the 1st subsystem of the β th agent, select
the Lyapunov function candidate Vβ ,1 as follows:

Vβ ,1 =
1

2g̀β ,1
z2

β ,1 +
1

2rβ

µ̃
2
β
. (10)

The time derivative of Vβ ,1 is obtained by

V̇β ,1 =
1

g̀β ,1
zβ ,1żβ ,1 +

1
rβ

µ̃β

·
µ̃

β
. (11)

From (1), (4), (11) and µ̃β = µβ − µ̂β , the following
results hold.

V̇β ,1 =
1

g̀β ,1
zβ ,1dβ

(
gβ ,1xβ ,2 +θ

T
β

fβ ,1

)
− 1

g̀β ,1
zβ ,1

N

∑
j=1

cβ , j
(
g j,1x j,2−θ

T
j f j,1

)
− 1

g̀β ,1
zβ ,1

N+M

∑
j=N+1

cβ , j ẏd, j−
1
rβ

µ̃β

·
µ̂

β

=
gβ ,1

g̀β ,1
dβ zβ ,1zβ ,2 +

gβ ,1

g̀β ,1
dβ zβ ,1αβ ,1−

1
rβ

µ̃β

·
µ̂

β

+
1

g̀β ,1
zβ ,1

(
dβ θ

T
β

fβ ,1−
N+M

∑
j=N+1

cβ , j ẏd, j

)

− 1
g̀β ,1

zβ ,1

N

∑
j=1

cβ , j
(
g j,1x j,2−θ

T
j f j,1

)
=

gβ ,1

g̀β ,1
dβ zβ ,1zβ ,2 +

gβ ,1

g̀β ,1
dβ zβ ,1αβ ,1

− 1
rβ

µ̃β

·
µ̂

β
+ zβ ,1υ

T
β ,1Wβ ,1. (12)

From (5), we have zβ ,1υT
β ,1Wβ ,1≤

∣∣zβ ,1
∣∣∥∥∥υT

β ,1

∥∥∥∥∥Wβ ,1
∥∥≤∣∣zβ ,1

∣∣µβ

∥∥Wβ ,1
∥∥. By applying µ̃β = µβ − µ̂β and (12), it

gives

V̇β ,1 ≤
gβ ,1

g̀β ,1
dβ zβ ,1zβ ,2 +

gβ ,1

g̀β ,1
dβ zβ ,1αβ ,1

− 1
rβ

µ̃β

·
µ̂

β
+
∣∣zβ ,1

∣∣µβ

∥∥Wβ ,1
∥∥ (13)

≤
gβ ,1

g̀β ,1
dβ zβ ,1zβ ,2 +

gβ ,1

g̀β ,1
dβ zβ ,1αβ ,1 +

∣∣zβ ,1
∣∣ ᾱβ ,1

+
1
rβ

µ̃β

(
rβ

∣∣zβ ,1
∣∣∥∥Wβ ,1

∥∥− ·
µ̂

β

)
, (14)

where ᾱβ ,1 = µ̂β

∥∥Wβ ,1
∥∥. According to (3), the following

inequality holds.

gβ ,1

g̀β ,1
dβ zβ ,1αβ ,1 +

∣∣zβ ,1
∣∣ ᾱβ ,1

≤ dβ zβ ,1αβ ,1 +
∣∣zβ ,1

∣∣ ᾱβ ,1

=−
(

bβ ,1z2
β ,1ᾱ

2
β ,1 +aβ ,1z2

β ,1

)
+
∣∣zβ ,1

∣∣ ᾱβ ,1

=−bβ ,1

(
z2

β ,1ᾱ
2
β ,1−

1
bβ ,1

∣∣zβ ,1
∣∣ ᾱβ ,1 +

1
4b2

β ,1

)

+
1

4bβ ,1
−aβ ,1z2

β ,1

=−bβ ,1

(
zβ ,1ᾱβ ,1−

1
2bβ ,1

)2

+
1

4bβ ,1
−aβ ,1z2

β ,1

≤ 1
4bβ ,1

−aβ ,1z2
β ,1. (15)

Substituting (15) into (14) yields that

V̇β ,1 ≤−aβ ,1z2
β ,1 +

1
4bβ ,1

+
gβ ,1

g̀β ,1
dβ zβ ,1αβ ,1

+
1
rβ

µ̃β

(
rβ

∣∣zβ ,1
∣∣∥∥Wβ ,1

∥∥− ·
µ̂

β

)
. (16)

Step γ (γ = 2, . . ., n−1): For the γth subsystem of the
β th agent, select the Lyapunov function candidate Vβ ,γ as
follows:

Vβ ,γ =Vβ ,γ−1 +
1

2g̀β ,γ
z2

β ,γ . (17)

The time derivative of Vβ ,γ is derived as

V̇β ,γ = V̇β ,γ−1 +
1

g̀β ,γ
zβ ,γ żβ ,γ

= V̇β ,γ−1 +
1

g̀β ,γ
zβ ,γ

(
ẋβ ,γ − α̇β ,γ−1

)
. (18)
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From (1) and (3), it gives that

V̇β ,γ = V̇β ,γ−1 +
1

g̀β ,γ
zβ ,γ gβ ,γ xβ ,γ+1 +

1
g̀β ,γ

zβ ,γ θ
T
β

fβ ,γ

− 1
g̀β ,γ

zβ ,γ

γ−1

∑
k=1

∂αβ ,γ−1

∂xβ ,k

(
gβ ,kxβ ,k+1 +θ

T
β

fβ ,k

)
− 1

g̀β ,γ
zβ ,γ

N

∑
j=1

γ−1

∑
k=1

cβ , j
∂αβ ,γ−1

∂x j,k

(
g j,kx j,k+1

+θ
T
j f j,k

)
− 1

g̀β ,γ
zβ ,γ

N+M

∑
j=N+1

γ−1

∑
k=0

cβ , j
∂αβ ,γ−1

∂y(k)d, j

y(k+1)
d, j

− 1
g̀β ,γ

zβ ,γ

∂αβ ,γ−1

∂ µ̂β

·
µ̂

β
. (19)

Then, the following result holds.

V̇β ,γ = V̇β ,γ−1 +
1

g̀β ,γ
zβ ,γ gβ ,γ xβ ,γ+1

+
θ T

β

g̀β ,γ
zβ ,γ

(
fβ ,γ −

γ−1

∑
k=1

∂αβ ,γ−1

∂xβ ,k
fβ ,k

)

− zβ ,γ

γ−1

∑
k=1

gβ ,k

g̀β ,γ

∂αβ ,γ−1

∂xβ ,k
xβ ,k+1

− zβ ,γ

N

∑
j=1

γ−1

∑
k=1

g j,k

g̀β ,γ
cβ , j

∂αβ ,γ−1

∂x j,k
x j,k+1

− zβ ,γ

N

∑
j=1

γ−1

∑
k=1

θ T
j

g̀β ,γ
cβ , j

∂αβ ,γ−1

∂x j,k
f j,k

− 1
g̀β ,γ

zβ ,γ

N+M

∑
j=N+1

γ−1

∑
k=0

cβ , j
∂αβ ,γ−1

∂y(k)d, j

y(k+1)
d, j

− 1
g̀β ,γ

zβ ,γ

∂αβ ,γ−1

∂ µ̂β

·
µ̂

β
. (20)

From xβ ,γ+1 = zβ ,γ+1+αβ ,γ and (16), (20) can be further
derived as follows:

V̇β ,γ ≤−
γ−1

∑
k=1

aβ ,kz2
β ,k +

γ−1

∑
k=1

1
4bβ ,k

+
1
rβ

µ̃β

(
γ−1

∑
k=1

rβ

∣∣zβ ,k
∣∣∥∥Wβ ,k

∥∥− ·
µ̂

β

)

+
gβ ,γ−1

g̀β ,γ−1
zβ ,γ−1zβ ,γ +

1
g̀β ,γ

zβ ,γ gβ ,γ zβ ,γ+1

+
1

g̀β ,γ
zβ ,γ gβ ,γ αβ ,γ

+
θ T

β

g̀β ,γ
zβ ,γ

(
fβ ,γ −

γ−1

∑
k=1

∂αβ ,γ−1

∂xβ ,k
fβ ,k

)

− zβ ,γ

γ−1

∑
k=1

gβ ,k

g̀β ,γ

∂αβ ,γ−1

∂xβ ,k
xβ ,k+1

− zβ ,γ

N

∑
j=1

γ−1

∑
k=1

g j,k

g̀β ,γ
cβ , j

∂αβ ,γ−1

∂x j,k
x j,k+1

− zβ ,γ

N

∑
j=1

θ T
j

g̀β ,γ

γ−1

∑
k=1

cβ , j
∂αβ ,γ−1

∂x j,k
f j,k

− 1
g̀β ,γ

zβ ,γ

N+M

∑
j=N+1

γ−1

∑
k=0

cβ , j
∂αβ ,γ−1

∂y(k)d, j

y(k+1)
d, j

−

·
µ̂

β

g̀β ,γ
zβ ,γ

∂αβ ,γ−1

∂ µ̂β

. (21)

From (7), it follows from (21) that

V̇β ,γ ≤−
γ−1

∑
k=1

aβ ,kz2
β ,k +

γ−1

∑
k=1

1
4bβ ,k

+
1
rβ

µ̃β

(
γ−1

∑
k=1

rβ

∣∣zβ ,k
∣∣∥∥Wβ ,k

∥∥− ·
µ̂

β

)

+
1

g̀β ,γ
zβ ,γ gβ ,γ zβ ,γ+1 +

1
g̀β ,γ

zβ ,γ gβ ,γ αβ ,γ

+ zβ ,γ υ
T
β ,γWβ ,γ

≤−
γ−1

∑
k=1

aβ ,kz2
β ,k +

γ−1

∑
k=1

1
4bβ ,k

+
1
rβ

µ̃β

(
γ−1

∑
k=1

rβ

∣∣zβ ,k
∣∣∥∥Wβ ,k

∥∥− ·
µ̂

β

)

+
1

g̀β ,γ
zβ ,γ gβ ,γ zβ ,γ+1

+
1

g̀β ,γ
zβ ,γ gβ ,γ αβ ,γ +

∣∣zβ ,γ

∣∣ ᾱβ ,γ , (22)

with ᾱβ ,γ = µ̂β

∥∥Wβ ,γ

∥∥ .
According to αβ ,γ in (3) and (15), then the following

inequality holds.

gβ ,γ

g̀β ,γ
zβ ,γ αβ ,γ +

∣∣zβ ,γ

∣∣ ᾱβ ,γ ≤
1

4bβ ,γ
−aβ ,γ z2

β ,γ . (23)

Substituting (23) into (22) gives that

V̇β ,γ ≤−
γ

∑
k=1

aβ ,kz2
β ,k +

γ

∑
k=1

1
4bβ ,γk

+
1

g̀β ,γ
zβ ,γ gβ ,γ zβ ,γ+1

+
1
rβ

µ̃β

(
γ

∑
k=1

rβ

∣∣zβ ,k
∣∣∥∥Wβ ,k

∥∥− ·
µ̂

β

)
. (24)

Step n: For the nth subsystem of the β th agent, choose
the Lyapunov function candidate Vβ ,n as follows:

Vβ ,n =Vβ ,n−1 +
1

2g̀β ,n
z2

β ,n. (25)

Then, the time derivative of Vβ ,n is obtained by

V̇β ,n = V̇β ,n−1 +
1

g̀β ,n
zβ ,nżβ ,n
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= V̇β ,n−1 +
1

g̀β ,n
zβ ,n
(
ẋβ ,n− α̇β ,n−1

)
= V̇β ,n−1+

1
g̀β ,n

zβ ,n

(
gβ ,nuβ+θ

T
β

fβ ,n−α̇β ,n−1

)
.

(26)

From the results in Step γ , it follows that

V̇n = V̇n−1 +
1

g̀β ,n
zβ ,ngβ ,nuβ +

1
g̀β ,n

zβ ,nθ
T
β

fβ ,n

− 1
g̀β ,n

zβ ,n

n−1

∑
k=1

∂αβ ,n−1

∂xβ ,k

(
gβ ,kxβ ,k+1 +θ

T
β

fβ ,k

)
− 1

g̀β ,n
zβ ,n

N+M

∑
j=N+1

n−1

∑
k=0

cβ , j
∂αβ ,n−1

∂y(k)d, j

y(k+1)
d, j

− 1
g̀β ,n

zβ ,n
∂αβ ,n−1

∂ µ̂β

·
µ̂

β
. (27)

Then, the following inequality holds.

V̇n ≤−
n−1

∑
k=1

aβ ,kz2
β ,k +

n−1

∑
k=1

1
4bβ ,k

+ zβ ,n
gβ ,n−1

g̀β ,n−1
zβ ,n−1

+
gβ ,n

g̀β ,n
zβ ,nuβ+

1
rβ

µ̃β

(
n−1

∑
k=1

rβ

∣∣zβ ,k
∣∣∥∥Wβ ,k

∥∥− ·µ̂
β

)

− 1
g̀β ,n

zβ ,n
∂αβ ,n−1

∂ µ̂β

·
µ̂

β

+ zβ ,n
θ T

β

g̀β ,n

(
fβ ,n−

n−1

∑
k=1

∂αβ ,n−1

∂xβ ,k
fβ ,k

)

− zβ ,n

n−1

∑
k=1

gβ ,k

g̀β ,n

∂αβ ,n−1

∂xβ ,k
xβ ,k+1

− 1
g̀β ,n

zβ ,n

N+M

∑
j=N+1

n−1

∑
k=0

cβ , j
∂αβ ,n−1

∂y(k)d, j

y(k+1)
d, j . (28)

Then, it follows from (28) that

V̇β ,n ≤−
n−1

∑
k=1

aβ ,kz2
β ,k +

n−1

∑
k=1

1
4bβ ,k

+
gβ ,n

g̀β ,n
zβ ,nuβ + zβ ,nυ

T
β ,nWβ ,n

+
1
rβ

µ̃β

(
n−1

∑
k=1

rβ
∣∣zβ ,k

∣∣∥∥Wβ ,k
∥∥− ·

µ̂
β

)

≤−
n−1

∑
k=1

aβ ,kz2
β ,k +

n−1

∑
k=1

1
4bβ ,k

+
gβ ,n

g̀β ,n
zβ ,nuβ +

∣∣zβ ,n
∣∣ ᾱβ ,n

+
1
rβ

µ̃β

(
n−1

∑
k=1

rβ

∣∣zβ ,k
∣∣∥∥Wβ ,k

∥∥− ·
µ̂

β

)
, (29)

where ᾱβ ,n = µ̂β

∥∥Wβ ,n
∥∥ . According to (23), substituting

uβ in (3) into (29) yields that

V̇β ,n ≤−
n−1

∑
k=1

aβ ,kz2
β ,k +

n−1

∑
k=1

1
4bβ ,k

+
1

4bβ ,n
−aβ ,nz2

β ,n

+
1
rβ

µ̃β

(
n−1

∑
k=1

rβ

∣∣zβ ,k
∣∣∥∥Wβ ,k

∥∥− ·
µ̂

β

)

=−
n

∑
k=1

aβ ,kz2
β ,k +

n

∑
k=1

1
4bβ ,k

+
1
rβ

µ̃β

(
n−1

∑
k=1

rβ

∣∣zβ ,k
∣∣∥∥Wβ ,k

∥∥− ·
µ̂

β

)
. (30)

Then, it gives the following result from substituting the
adaptive law in (3) into (30).

V̇β ,n ≤−
n

∑
k=1

aβ ,kz2
β ,k +

n

∑
k=1

1
4bβ ,k

+
σβ

rβ

µ̃β µ̂β

≤−
n

∑
k=1

aβ ,kz2
β ,k +

n

∑
k=1

1
4bβ ,k

−
σβ µ̃2

β

2rβ

+
σβ µ2

β

2rβ

=−
n

∑
k=1

aβ ,kz2
β ,k−

σβ µ̃2
β

2rβ

+
n

∑
k=1

1
4bβ ,k

+
σβ µ2

β

2rβ

≤−ϑβVβ ,n + ςβ , (31)

where ϑβ = min{2aβ ,k, σβ , k = 1, . . ., n} and ςβ =

∑
n
k=1 b̄β ,k +σβ µ2

β
/
(
2rβ

)
with b̄β ,k = 1/

(
4bβ ,k

)
. Choose

the following Lyapunov function candidate for all fol-
lowers: V = ∑

N
k=1 Vk,n, from the results of (31), we

have V̇ ≤ −∑
N
k=1 ϑkVk,n + ∑

N
k=1 ςk, it gives that V ≤

∑
N
k=1 Vk,n (0)e−ϑkt + ∑

N
k=1 ςk/ϑk. Accordingly, all the

signals of the closed-loop MASs are uniformly and
ultimately bounded. Additionally, it is implied that
(1/2) ||z1||2 ≤ ∑

N
k=1 Vk,n (0)e−ϑkt +∑

N
k=1 ςk/ϑk, with

z1 = [z1,1, . . ., zN,1]
T , it gives that ||z1||2 ≤ ∑

N
k=1 2Vk,n (0)

e−ϑkt +∑
N
k=1 2ςk/ϑk. Therefore, the error surface vector

||z1|| converges into the bound of ∑
N
k=1

√
2ςk/ϑk with the

increase of time. By increasing ϑk, ∑
N
k=1

√
2ςk/ϑk can be

tuned to an arbitrarily small value. Then, define a vector
y0 = [y1, . . ., yN ]

T , from z1 = L̂1y0 + L̂2y̌, it can be seen
that the output yβ of the followers converge into the con-
vex hull following the leaders yd, j, i.e.,

∣∣yβ − y f ,p
∣∣ < ε̌

with β = 1, 2, . . ., N and p = 1, 2, . . ., N. The proof of
Theorem 1 is completed. �

4. SIMULATION

In order to show the performance of the designed con-
trol scheme, the following MAS is given:

ẋβ ,1 =
(
1+0.1sin

(
xβ ,1
))

xβ ,2 + sin
(
xβ ,1
)
,

ẋβ ,2 = 2uβ +0.2sin
(
xβ ,1
)
+2sin

(
xβ ,2
)
,

yβ = xβ ,1, β = 1, 2, 3,

(32)
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Fig. 1. Directed communication graph.

where xβ ,1 and xβ ,2 represents the state variables, yβ den-
toes the system output, and uβ is taken as the actual
control law. The dynamic leaders 1 and 2 are yd,1 =
cos(t) + 1 and yd,1 = cos(t)− 0.7, respectively. Define
fβ ,1 = 0.5sin

(
xβ ,1
)

and fβ ,2 = 0.1sin
(
xβ ,1
)
+ sin

(
xβ ,2
)
.

Then, the unknown parameter of the MAS is θβ = 2. Ac-
cording to the directed communication graph in Fig. 1, the
relative adjacency matrix and the Laplacian matrix are de-
termined as follows:

C̄ =


0 1 1 1 0
0 0 1 1 1
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 , (33)

L =


3 −1 −1 −1 0
0 3 −1 −1 −1
0 0 1 0 −1
0 0 0 0 0
0 0 0 0 0

 . (34)

From Theorem 1, the virtual control law αβ ,1 can be
selected as

αβ ,1 =−
1

dβ

(
bβ ,1zβ ,1ᾱ

2
β ,1 +aβ ,1zβ ,1

)
, (35)

where aβ ,1 and bβ ,1 are appropriately selected positive
parameters, z1,1 = 3x1,1− x2,1− x3,1− yd,1, z2,1 = 3x2,1−
x3,1 − yd,1 − yd,2, z3,1 = 2x3,1 − x1,1 − yd,2 and ᾱβ ,1 =

µ̂β

∥∥Wβ ,1
∥∥. The actual control law uβ and adaptive law

·
µ̂

β

are given as follows:

uβ =−
(

bβ ,2zβ ,2ᾱ
2
β ,2 +aβ ,2zβ ,2

)
, (36)

·
µ̂

β
=

2

∑
k=1

rβ

(∣∣zβ ,k
∣∣∥∥Wβ ,k

∥∥)−σβ µ̂β , (37)

where aβ ,2, bβ ,2, rβ , and σβ are positive designed param-
eters, zβ ,2 = xβ ,2−αβ ,1 and ᾱβ ,2 = µ̂β

∥∥Wβ ,2
∥∥.

The specific parameters are determined as follows:
aβ ,1 = 20, aβ ,2 = 20, bβ ,1 = 1, bβ ,2 = 1, rβ = 0.0001 and
σβ = 1. The initial conditions of MAS are x1,1 (0) = 4,

Fig. 2. Tracking performance of MAS.

Fig. 3. Containment errors of MAS.

Fig. 4. Control inputs of MAS.

x2,1 (0) = 3, x3,1 (0) =−2, x1,2 (0) = x2,2 (0) = x3,2 (0) = 0,
and µ̂1 (0) = µ̂2 (0) = µ̂3 (0) = 0.

The simulation results are displayed in Figs. 2-5. The
tracking performances of the followers are given in Fig.
2, it shows the position curves of three followers and two
leaders outputs. The results imply that the followers F1, F2

and F3 converge to the convex hull following the leaders
L1 and L2. The containment errors zβ ,1 are shown in Fig.
3, and the it shows the containment errors can converge
to a tuned neighborhood of the origin. The control inputs
for leaders and followers are displayed in Fig. 4. Fig. 5



2842 Meng-Yi Jiang, Yong-Hui Yang, Li-Bing Wu, and Qi Li

Fig. 5. Adaptive parameters µ̂β .

shows the curves of adaptive parameter µ̂β for leaders and
followers. Therefore, it illustrates that the stability of the
MAS is achieved through the proposed adaptive backstep-
ping containment controller, and the effectiveness of the
designed controller is verified.

5. CONCLUSION

In this paper, a novel adaptive control scheme has been
given for a class of MASs with parametric uncertainty, and
the problem of containment control with unknown control
direction has been solved. The proposed control scheme is
based on backstepping method, adaptive control method
and bound estimation method. The designed controller is
effective in structure and calculation. It is proved that all
the signals of the closed-loop MASs are uniformly and
ultimately bounded. Additionally, containment errors will
converge to a tuned neighborhood of the origin. The sim-
ulation results illustrate the effectiveness of the designed
control scheme. For the future works, the combinations of
fault-tolerant control and event-triggered mechanism are
effective to make the MASs safe and save communication
resources between agents.
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