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Multivariable CAR-like System Identification with Multi-innovation Gra-
dient and Least Squares Algorithms
Jian Pan* � , Huijian Zhang, Hongzhan Guo, Sunde Liu, and Yuqing Liu

Abstract: This paper focuses on the identification of a multivariable controlled autoregressive-like (CAR-like) sys-
tem. A joint identification algorithm of stochastic gradient and least squares is deduced for estimating the system
parameters by decomposing the multivariable CAR-like system into two subsystems, which avoids the calculation
of the matrix inversion. To further improve the parameter estimation accuracy, a joint identification algorithm of
hierarchical multi-innovation stochastic gradient and least squares is proposed by using the multi-innovation iden-
tification theory. The simulation results confirm that these proposed algorithms are effective.
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1. INTRODUCTION

System identification is a modeling method to minimize
the error criterion function by using the input and output
data of the system [1-5] and by means of some optimiza-
tion tools [6-10]. Mathematical models are important for
studying natural sciences [11-15]. According to the num-
ber of input and output variables, the system can be di-
vided into univariate systems and multivariable systems
[16-20]. Compared with the univariate systems, the multi-
variable systems have complex structures, multiple vari-
ables, and large dimensionality. Additionally, there is a
coupling relationship between parameters, and these fac-
tors result in a heavy computational burden on identifi-
cation algorithms. With the development of the modern
industrial control field, multivariable systems are widely
used in various applications, such as UAV flight control
and weather forecast. As far as lithium battery is con-
cerned, its actual system is complex and has high coupling
characteristics. Therefore, the calculation efficiency of pa-
rameter estimation is low. Without rapid parameter iden-
tification technology, it is difficult to accurately evaluate
the actual safe operation range of lithium batteries, and
it is difficult to prevent the occurrence of lithium battery
safety accidents. Therefore, improving the calculation ef-
ficiency and the parameter estimation accuracy is a hot
issue in the above multivariable system identification.

At present, a great deal of research has been done on
the identification of the multivariable systems. Katayama
et al. showed that the best linear approximation of the

MIMO Wiener-Hammerstein systems in the mean square
sense can be obtained by the orthogonal projection sub-
space identification method [21]. Multivariable-like sys-
tems are a special class of multivariable systems. The
identification model of the multivariable-like systems con-
tain parameter vector and parameter matrix, so the tra-
ditional least squares algorithm can not directly estimate
the parameters of the system. The Kronecker product can
convert the parameter vector and the parameter matrix
into a large parameter vector, to convert a multivariable-
like identification model into a multivariable linear regres-
sion identification model [22-25]. However, the dimen-
sion of the parameter vector and information matrix of
this method is large, and the information matrix contains
multiple zero terms, which will cause the problem of the
parameter redundancy [26,27].

In the field of multivariable system identification, the
hierarchical identification pinciple has also attracted ex-
tensive attention recently. The basic idea of hierarchical
identification principle is to decompose the original sys-
tem into multiple subsystems with simple structures and
independent of each other, which can reduce the amount of
calculation [22-25]. The amount of calculation of the hier-
archical stochastic gradient (H-SG) algorithm is small, but
the convergence speed and the estimation accuracy are not
as good as the H-RLS algorithm. However, the H-RLS al-
gorithm needs to calculate the inverse of the matrix, which
produces a large amount of calculation and reduces the
calculation efficiency.

Based on the above research, a hierarchical stochas-
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tic gradient and least squares identification algorithm (H-
SG-RLS) is proposed to alternately estimate the system
parameter matrix and the parameter vector of the mul-
tivariable controlled autoregressive-like (CAR-like) sys-
tem. The main contributions of this paper are listed as fol-
lows:

1) This paper decomposes the multivariable CAR-like
system into two subsystems using the hierarchical
identification principle.

2) The proposed H-SG-RLS algorithm avoids matrix in-
version. Compared with the H-RLS algorithm, the pa-
rameter estimation accuracy is close, but the amount
of calculation is lower.

3) To further improve the accuracy of the identification
algorithm, a hierarchical multi-innovation stochastic
gradient least squares algorithm (H-MI-SG-RLS) is
used for the parameter estimation.

The rest of the paper is organized as follows: In Sec-
tion 2, the multivariable CAR-like system is decomposed
into two sub-identification models. Section 3 and Section
4 propose a H-SG-RLS algorithm and a H-MI-SG-RLS al-
gorithm. An example is given in Section 5 to illustrate the
effectiveness of the proposed algorithms. Finally, a con-
clusion is given in Section 6.

2. SYSTEM DESCRIPTION AND
IDENTIFICATION MODEL

Let us introduce some notations first. The symbol IIIn

stands for an identity matrix of order n and III is an iden-
tity matrix of appropriate sizes; 1n (or 1m×n) represents
an n-dimensional column vector (or an m×n dimensional
matrix) whose entries are 1; the superscript T denotes the
matrix transpose; the norm of a matrix XXX is defined by
‖XXX‖2 := tr[XXXXXX T].

Consider a multivariable CAR-like system,

α(z)yyy(k) =QQQ(z)uuu(k)+vvv(k), (1)

where {uuu(k)} ∈Rr and {yyy(k)} ∈Rm are the input and out-
put vectors of the system, respectively, {vvv(k)} ∈Rm is the
stochastic noise vector with zero mean, α(z) is the system
characteristic polynomial in the unit backward shift oper-
ator z−1 [z−1y(k) = y(k−1)], QQQ(z) is a matrix polynomial
in z−1, which are defined as

α(z) := 1+α1z−1 + · · ·+αnα
z−nα , αi ∈ R, (2)

QQQ(z) :=QQQ1z−1 + · · ·+QQQnq
z−nq , QQQi ∈ Rm×r. (3)

Bring (2) and (3) into (1) to obtain

(1+α1z−1 +α2z−2 + · · ·+αnα
z−nα )yyy(k)

= (QQQ1z−1 +QQQ2z−2 + · · ·+QQQnq
z−nq)uuu(k)+vvv(k). (4)

Then, (4) can be transformed into

yyy(k) =−
nα

∑
i=1

αiyyy(k− i)+
nq

∑
i=1

QQQiuuu(k− i)+vvv(k). (5)

Define the parameter vector ααα , the parameter matrix θθθ ,
and the input information vector ϕϕϕ(k) and the information
matrix φφφ(k) as

ααα := [α1, α2, · · · , αnα
]T ∈ Rnα ,

θθθ
T := [QQQ1, QQQ2, · · · , QQQnq

] ∈ Rm×nqr,

ϕϕϕ(k) := [uuuT(k−1), uuuT(k−2), · · · , uuu(k−nq)
T]T ∈ Rnqr,

φφφ(k) := [yyy(k−1), yyy(k−2), · · · , yyy(k−nα)] ∈ Rm×nα .

Then, (1) may be rewritten as

yyy(k) =−φφφ(k)ααα +θθθ
T
ϕϕϕ(k)+vvv(k). (6)

Equation (6) is the identification model of the multivari-
able CAR-like system of (1), and contains a parameter
vector ααα which consists of the coefficients of polynomi-
als, and a parameter matrix θθθ which consists of the coef-
ficients of the matrix polynomial. Introduce two interme-
diate variables, which are defined as

yyy1(k) := yyy(k)−θθθ
T
ϕϕϕ(k), yyy2(k) := yyy(k)+φφφ(k)ααα. (7)

According to the hierarchical identification principle, (6)
can be decomposed into two fictitious subsystems

yyy1(k) =−φφφ(k)ααα +vvv(k), (8)

yyy2(k) = θθθ
T
ϕϕϕ(k)+vvv(k). (9)

The proposed parameter estimation algorithms in this pa-
per are based on the two sub-identification models in (8)
and (9). Many identification methods are derived based on
the identification models of the systems [28-34] and these
methods can be used to estimate the parameters of other
linear systems and nonlinear systems [35-38] and can be
applied to other fields [39-44].

3. THE H-SG-RLS ALGORITHM

The recursive algorithms update the estimates by us-
ing new observations at each recursion [45-48] and the
iterative algorithms update the estimates by using a fixed
batch of observations [49-53]. Here uses the hierarchical
stochastic gradient and least squares identification algo-
rithm for the parameter estimation.

Refer to the works in [22-25] and based on the identifi-
cation models in (8) and (9), define two quadratic criterion
functions,

J1(ααα) :=
k

∑
j=1

[yyy1( j)+φφφ( j)ααα]2,
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J2(θθθ) :=
k

∑
j=1

[yyy2( j)−θθθ
T
ϕϕϕ( j)]2.

Let α̂αα(k) and θ̂θθ(k) be the estimations of parameter vector
ααα and parameter matrix θθθ at time k, respectively. Refer-
ring to the hierarchical identification principle, minimiz-
ing the quadratic standard functions J1(ααα) and J2(θθθ), we
have the following least squares algorithm [22-25]:

α̂αα(k) = α̂αα(k−1)+LLL1(k)

× [yyy(k)+φφφ(k)α̂αα(k−1)−θθθ
T
ϕϕϕ(k)], (10)

LLL1(k) =−PPP1(k−1)φφφ T(k)

× [III +φφφ(k)PPP1(k−1)φφφ T(k)]−1, (11)

PPP1(k) = [III +LLL1(k)φφφ(k)]PPP1(k−1), (12)

θ̂θθ(k) = θ̂θθ(k−1)+LLL2(k)

× [yyy(k)+φφφ(k)ααα− θ̂θθ
T
(k−1)ϕϕϕ(k)]T, (13)

LLL2(k) =
PPP2(k−1)ϕϕϕ(k)

[1+ϕϕϕT(k)PPP2(k−1)ϕϕϕ(k)]
, (14)

PPP2(k) = [III−LLL2(k)ϕϕϕT(k)]PPP2(k−1). (15)

However, the right-hand sides of (10) and (13) contain the
unknown parameter matrices θθθ and unknown parameter
vector ααα so the algorithm in (10)-(15) cannot be imple-
mented. Replacing θθθ and ααα with their estimates θ̂θθ(k−1)
and α̂αα(k), we can obtain the hierarchical least squares (H-
RLS) algorithm for estimating ααα and θθθ

α̂αα(k) = α̂αα(k−1)+LLL1(k)[yyy(k)

+φφφ(k)α̂αα(k−1)− θ̂θθ
T
(k−1)ϕϕϕ(k)], (16)

LLL1(k) =−PPP1(k−1)φφφ T(k)[III+φφφ(k)PPP1(k−1)φφφ T(k)]−1,
(17)

PPP1(k) = [III +LLL1(k)φφφ(k)]PPP1(k−1), (18)

θ̂θθ(k) = θ̂θθ(k−1)+LLL2(k)[yyy(k)

+φφφ(k)α̂αα(k)− θ̂θθ
T
(k−1)ϕϕϕ(k)]T, (19)

LLL2(k) =
PPP2(k−1)ϕϕϕ(k)

[1+ϕϕϕT(k)PPP2(k−1)ϕϕϕ(k)]
, (20)

PPP2(k) = [III−LLL2(k)ϕϕϕT(k)]PPP2(k−1), (21)

φφφ(k) = [yyy(k−1),yyy(k−2), · · · ,yyy(k−nα)], (22)

ϕϕϕ(k) = [uuuT(k−1), uuuT(k−2), · · · , uuuT(k−nq)]
T. (23)

It can be seen from the above equations that the inverse
matrix needs to be calculated when using the least squares
algorithm to identify parameter vector ααα . When the num-
ber of inputs is large, massive calculation calculations will
be generated. So we use the stochastic gradient algorithm
instead of the least squares algorithm to identify the pa-
rameter vector ααα . In this way, the calculation of gain ma-
trix LLL1(k) can be avoided, to avoid the inverse operation
of calculation matrix. Thus, we can get the hierarchical
stochastic gradient and least squares identification (H-SG-

RLS) algorithm for estimating ααα and θθθ [22-25]

α̂αα(k) = α̂αα(k−1)− φφφ
T(k)

r1(k)
[yyy(k)

+φφφ(k)α̂αα(k−1)− θ̂θθ
T
(k−1)ϕϕϕ(k)], (24)

r(k) = r(k−1)+‖φφφ(k)‖2, (25)

θ̂θθ(k) = θ̂θθ(k−1)+LLL(k)[yyy(k)

+φφφ(k)α̂αα(k)− θ̂θθ
T
(k−1)ϕϕϕ(k)]T, (26)

LLL(k) =
PPP(k−1)ϕϕϕ(k)

[1+ϕϕϕT(k)PPP(k−1)ϕϕϕ(k)]
, (27)

PPP(k) = [III−LLL(k)ϕϕϕT(k)]PPP(k−1), (28)

φφφ(k) = [yyy(k−1),yyy(k−2), · · · ,yyy(k−nα)], (29)

ϕϕϕ(k) = [uuuT(k−1),uuuT(k−2), · · · ,uuuT(k−nq)]
T. (30)

The proposed algorithms in this paper can combine other
methods to study parameter identification of different sys-
tems [54-59] and can be applied to other control and
schedule areas [60-65] such as information processing and
industrial process systems and so on. The procedures of
computing α̂αα(k) and θ̂θθ(k) in the H-SG-RLS algorithm are
listed as follows:

1) Let k = 1, set the initial values α̂αα(0) = Inα
/p0, θ̂θθ(0) =

I(nqr)×m/p0, r(0) = 1, p0 = 106, uuu(i) = 0, yyy(i) = 0 as
i≤ 0.

2) Collect the input-output data uuu(k) and yyy(k), form φφφ(k)
by (29) and ϕϕϕ(k) by (30).

3) Compute r(k), LLL(k), and PPP(k) by (25), (27) and (28),
respectively.

4) Update the parameter estimates α̂αα(k) and θ̂θθ(k) by
(24) and (26), respectively.

5) Increase k by 1 and go to Step 2.

Tables 1 and 2 show the computational efficiency of the
H-RLS algorithm and the H-SG-RLS algorithm, respec-
tively. When the number of inputs m is large, the calcu-
lation amount of the H-SG-RLS algorithm is much lower
than that of the H-RLS algorithm.

4. THE H-MI-SG-RLS ALGORITHM

The multi-innovation identification theory can extract
more useful information from the observation data to im-
prove the parameter estimation accuracy. Based on the H-
SG-RLS algorithm in (24) to (30), the innovation vector
in (24) and (26) are

eee1(k) := [yyy(k)+φφφ(k)α̂αα(k−1)−θ̂θθ
T
(k−1)ϕϕϕ(k)] ∈ Rm,

(31)

eee2(k) := [yyy(k)+φφφ(k)α̂αα(k)− θ̂θθ
T
(k−1)ϕϕϕ(k)] ∈ Rm.

(32)

According to the multi-innovation identification theory,
we introduce the innovation length p to expand the vector
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Table 1. The computational efficiency of the H-RLS algorithm.

Expressions Multiplications Additions

α̂αα(k) = α̂αα(k−1)+LLL1(k)[êee1(k)] ∈ Rnα mnα mnα

êee1(k) :=[yyy(k)+φφφ(k)α̂αα(k−1)

− θ̂θθ
T
(k−1)ϕϕϕ(k)] ∈ Rm

m(nα +nqr) m(nα +nqr)

LLL1(k) =−HHH1(k)RRR′1(k) ∈ Rnα×m m2nα m2nα −mnα

HHH1(k) =PPP1(k−1)φφφ T(k) ∈ Rnα×m mn2
α

mn2
α
−mnα

RRR1(k) = III +φφφ(k)HHH1(k) ∈ Rm×m m2nα m2nα −mnα

RRR′1(k) =RRR−1
1 (k) ∈ Rm×m m3 m3−m2

PPP1(k) =PPP1(k−1)+LLL1(k)HHHT
1(k) ∈ Rnα×nα mn2

α
mn2

α

θ̂θθ(k) = θ̂θθ(k−1)+LLL2(k)[êee2(k)]T ∈ Rnqr×m mnqr mnqr
êee2(k) :=[yyy(k)+φφφ(k)α̂αα(k)

− θ̂θθ
T
(k−1)ϕϕϕ(k)] ∈ Rm

m(nα +nqr) m(nα +nqr)

LLL2(k) =
HHH2(k)
RRR2(k)

∈ Rnqr nqr 0

HHH2(k) =PPP2(k−1)ϕϕϕ(k) ∈ Rnqr (nqr)2 nqr(nqr−1)

RRR2(k) = 1+ϕϕϕT(k)HHH2(k) ∈ R nqr nqr

PPP2(k) =PPP2(k−1)+LLL2(k)HHHT
2(k) ∈ R(nqr)×(nqr) (nqr)2 (nqr)2

Sum m3 +2m2nα +2mn2
α

+2(nqr)2 +3mnα +3mnqr+2nqr

m3−m2 +2m2nα

+2mn2
α
+2(nqr)2 +2mnqr

Total flops 2m3−m2 +4m2nα +4mn2
α +4(nqr)2 +3mnα +5mnqr+2nqr

Table 2. The computational efficiency of the H-SG-RLS algorithm.

Expressions Multiplications Additions

α̂αα(k) = α̂αα(k−1)− φφφ
T
(k)

r1(k)
[êee1(k)] ∈ Rnα mnα +nα mnα

êee1(k) :=[yyy(k)+φφφ(k)α̂αα(k−1)

− θ̂θθ
T
(k−1)ϕϕϕ(k)] ∈ Rm

m(nα +nqr) m(nα +nqr)

r(k) = r(k−1)+‖φφφ(k)‖2 ∈ R mnα mnα

θ̂θθ(k) = θ̂θθ(k−1)+LLL(t)[êee2(k)]T ∈ Rnqr×m mnqr mnqr
êee2(k) :=[yyy(k)+φφφ(k)α̂αα(k)

− θ̂θθ
T
(k−1)ϕϕϕ(k)] ∈ Rm

m(nα +nqr) m(nα +nqr)

LLL(k) = HHH(k)
RRR(k)
∈ Rnqr nqr 0

HHH(k) =PPP(k−1)ϕϕϕ(k) ∈ Rnqr (nqr)2 nqr(nqr−1)

RRR(k) = 1+ϕϕϕT(k)HHH(k) ∈ R nqr nqr

PPP(k) =PPP(k−1)+LLL(k)HHHT(k) ∈ Rnqr×nqr (nqr)2 (nqr)2

Sum 2(nqr)2 +4mnα +3mnqr+2nqr+nα 2(nqr)2 +4mnα +3mnqr

Total flops 4(nqr)2 +8mnα +6mnqr+2nqr+nα

innovations eee1(k) and eee2(k) to a larger innovation vector
EEE1(p,k) and a large innovation matrix EEE2(p,k) as

EEE1(p,k) :=YYY 1(p,k)+ΦΦΦ1(p,k)α̂αα(k−1)

− (IIIp⊗ θ̂θθ
T
(k−1))ΨΨΨ1(p,k), (33)

EEE2(p,k) :=YYY 2(p,k)+ΦΦΦ
T
2(p,k)(IIIp⊗α̂αα(k))

− θ̂θθ
T
(k−1)ΨΨΨ2(p,k), (34)

where the stacked output vector YYY 1(p,k), the stacked
output matrix YYY 2(p,k), the stacked information vector

ΦΦΦ1(p,k) and the stacked information matrices ΦΦΦ2(p,k),
ΨΨΨ1(p,k) and ΨΨΨ2(p,k) are defined as

YYY 1(p,k) := [yyyT(k),yyyT(k−1), · · · ,yyyT(k− p+1)]T,

YYY 2(p,k) := [yyy(k),yyy(k−1), · · · ,yyy(k− p+1)],

ΦΦΦ1(p,k) := [φφφ T(k),φφφ T(k−1), · · · ,φφφ T(k− p+1)]T,

ΨΨΨ1(p,k) := [ϕϕϕT(k),ϕϕϕT(k−1), · · · ,ϕϕϕT(k− p+1)]T,

ΦΦΦ2(p,k) := [φφφ(k),φφφ(k−1), · · · ,φφφ(k− p+1)],

ΨΨΨ2(p,k) := [ϕϕϕ(k),ϕϕϕ(k−1), · · · ,ϕϕϕ(k− p+1)].
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Table 3. The computational efficiency of the H-MI-SG-RLS algorithm.

Expressions Multiplications Additions

α̂αα(k) = α̂αα(k−1)−ΦΦΦ
T
1 (p,k)
r(k) [EEE1(p,k)] ∈ Rnα mnα p+nα mnα p

EEE1(p,k) :=[YYY 1(p,k)+ΦΦΦ1(p,k)α̂αα(k−1)

− (III p⊗ θ̂θθ
T
(k−1))ΨΨΨ1(p,k)] ∈ Rmp

mp(nα +nqrp) mp(nα +nqrp)

r(k) = r(k−1)+‖ΦΦΦ1(p,k)‖2 ∈ R mnα p mnα p

θ̂θθ(k) = θ̂θθ(k−1)+LLL(k)[EEE2(p,k)]T ∈ R(nqr)×m mnqrp mnqrp
EEE2(p,k) :=[YYY 2(p,k)+ΦΦΦ2(p,k)(III p⊗α̂αα(k))

− θ̂θθ
T
(k−1)ΨΨΨ2(p,k)] ∈ Rm×p

mp(nα p+nqr) mp(nα p+nqr)

LLL(k) =HHH(k)RRR′(k) ∈ Rnqr×p nqrp2 nqrp(p−1)

HHH(k) =PPP(k−1)ΨΨΨ2(p,k) ∈ Rnqr×p (nqr)2 p nqrp(nqr−1)

RRR(k) = III p +ΨΨΨ
T
2(k)HHH(k) ∈ Rp×p nqrp2 nqrp2

RRR′(k) =RRR−1(k) ∈ Rp×p p3 p3− p2

PPP(k) =PPP(k−1)+LLL(k)HHHT(k) ∈ R(nqr)×(nqr) (nqr)2 p (nqr)2 p

Multiplications sum p3 + p2(2nqr+mnα +mnqr)+ p[2(nqr)2 +2mnqr+3mnα ]+nα

Additions sum p3 + p2(2nqr+mnα +mnqr−1)+ p[2(nqr)2 +2mnqr+3mnα −2nqr]

Total flops 2p3 + p2(4nqr+2mnα +2mnqr−1)+ p[4(nqr)2 +4mnqr+6mnα −2nqr]+nα

Thus, we can obtain the following multi-innovation based
stochastic gradient and least squares (H-MI-SG-RLS) al-
gorithm [22,23]

α̂αα(k) = α̂αα(k−1)−ΦΦΦ
T
1(p,k)
r1(k)

[YYY 1(p,k)+ΦΦΦ1(p,k)

×α̂αα(k−1)− (IIIp⊗ θ̂θθ
T
(k−1))ΨΨΨ1(p,k)], (35)

r(k) = r(k−1)+‖ΦΦΦ1(p,k)‖2,r(0) = 1, (36)

θ̂θθ(k) = θ̂θθ(k−1)+LLL(k)[YYY 2(k)+ΦΦΦ
T
2(p,k)

× (IIIp⊗α̂αα(k))− θ̂θθ
T
(k−1)ΨΨΨ2(p,k)]T, (37)

LLL(k) =PPP(k−1)ΨΨΨ2(p,k)[IIIp

+ΨΨΨ
T
2(p,k)PPP(k−1)ΨΨΨ2(p,k)]−1, (38)

PPP(k) = [III−LLL(k)ΨΨΨT
2(p,k)]PPP(k−1), (39)

φφφ(k) = [yyy(k−1), yyy(k−2), · · · , yyy(k−nα)], (40)

ϕϕϕ(k) = [uuuT(k−1), uuuT(k−2), · · · , uuuT(k−nq)]
T, (41)

YYY 1(p,k) = [yyyT(k), yyyT(k−1), · · · , yyyT(k− p+1)],
(42)

ΦΦΦ1(p,k) = [φφφ T(k), φφφ
T(k−1), · · · , φφφ

T(k− p+1)],
(43)

ΨΨΨ1(p,k) = [ϕϕϕT(k), ϕϕϕ
T(k−1), · · · , ϕϕϕ

T(k− p+1)],
(44)

YYY 2(p,k) = [yyy(k), yyy(k−1), · · · , yyy(k− p+1)], (45)

ΦΦΦ2(p,k) = [φφφ(k), φφφ(k−1), · · · , φφφ(k− p+1)], (46)

ΨΨΨ2(p,k) = [ϕϕϕ(k), ϕϕϕ(k−1), · · · , ϕϕϕ(k− p+1)].
(47)

By extending the innovation vectors eee1(k) and eee2(k) in
the H-SG-RLS algorithm to a large innovation vector
EEE1(p,k) and an innovation matrix EEE2(p,k) in the H-MI-

SG-RLS algorithm, respectively. The procedures of com-
puting α̂αα(t) and θ̂θθ(t) in the H-MI-SG-RLS algorithm are
listed as follows:

1) Let k = 1, set the initial values PPP(0) = p0IIInqr, α̂αα(0) =
Inα

/p0, θ̂θθ(0) = Inqr×m/p0, r(0) = 1, p0 = 106 , uuu(i) =
0, yyy(i) = 0 as i≤ 0.

2) Collect the input-output data uuu(k) and yyy(k), construct
the information vector φφφ(k) and the information ma-
trix ϕϕϕ(k) using (40) and (41).

3) Construct stacked output vector YYY 1(p,k) and stacked
output matrix YYY 2(p,k) by (42) and (45), construct
stacked information vector ΨΨΨ1(p,k) and stacked in-
formation matrix ΦΦΦ1(p,k), ΦΦΦ2(p,k) and ΨΨΨ2(p,k) by
(43) to (47).

4) Compute r(k), LLL(k), and PPP(k) by (36), (38) and (39),
respectively.

5) Update the parameter estimates α̂αα(k) and θ̂θθ(k) by
(35) and (37), respectively.

6) Increase k by 1 and go to Step 2.

Table 3 shows the computational efficiency of the H-
MI-SG-RLS algorithm. The amount of computation of the
H-MI-SG-RLS algorithm will increase with the increase
of the innovation length p. When p = 1, the H-MI-SG-
RLS algorithm will degenerate into the H-SG-RLS algo-
rithm.

5. EXAMPLE

Consider a two-input two-output CAR-like model,

α(z)yyy(k) =QQQ(z)uuu(k)+vvv(k),
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Table 4. The H-SG, H-RLS and H-SG-RLS estimates and errors (σ 2 = 0.12).

Algorithms k α̂1(k) α̂2(k) Q̂1(1,1) Q̂1(1,2) Q̂2(2,1) Q̂2(2,2) δ (%)
H-SG 100 0.12073 1.00630 1.28170 0.27718 -1.05330 0.24319 46.515

200 0.15542 0.99994 1.46020 0.34842 -1.13250 0.25237 37.894
500 0.19097 0.99881 1.63130 0.40068 -1.16540 0.27073 27.783
1000 0.19574 0.99909 1.70020 0.42844 -1.17340 0.28223 22.985
2000 0.19675 0.99918 1.74460 0.44918 -1.18200 0.28645 19.308
3000 0.19746 0.99927 1.76450 0.45801 -1.18630 0.28715 17.401

H-RLS 100 0.18217 0.99591 1.59560 0.40657 -1.19710 0.29721 29.877
200 0.19438 0.99782 1.71560 0.45212 -1.20920 0.29861 21.443
500 0.20000 1.00010 1.79900 0.47926 -1.20610 0.29906 13.084
1000 0.19995 0.99999 1.82590 0.48698 -1.20330 0.30343 9.2098
2000 0.19998 1.00000 1.83810 0.49161 -1.20460 0.30043 6.8055
3000 0.20005 1.00000 1.84220 0.49391 -1.20210 0.29781 5.6569

H-SG-RLS 100 0.12428 1.01470 1.55690 0.38635 -1.28930 0.27393 35.347
200 0.15598 1.00540 1.72180 0.45472 -1.28140 0.28286 25.059
500 0.19035 0.99970 1.85280 0.47755 -1.24880 0.29210 13.499
1000 0.19540 0.99949 1.85970 0.48596 -1.22420 0.29931 9.8219
2000 0.19649 0.99954 1.85440 0.49174 -1.21600 0.29804 7.8781
3000 0.19724 0.99956 1.85390 0.49397 -1.21050 0.29605 6.6068

True values 0.20000 1.00000 1.85000 0.50000 -1.20000 0.30000

Table 5. The H-MI-SG-RLS estimates and errors (σ 2 = 0.12).

p k α̂1(k) α̂2(k) Q̂1(1,1) Q̂1(1,2) Q̂2(2,1) Q̂2(2,2) δ (%)
1 100 0.12428 1.01470 1.55690 0.38635 -1.28930 0.27393 35.347

500 0.19035 0.99970 1.85280 0.47755 -1.24880 0.2921 13.499
1000 0.19540 0.99949 1.85970 0.48596 -1.22420 0.29931 9.8219
2000 0.19649 0.99954 1.85440 0.49174 -1.21600 0.29804 7.8781
3000 0.19724 0.99956 1.85390 0.49397 -1.21050 0.29605 6.6068

2 100 0.17752 0.97351 1.79800 0.46944 -1.15820 0.28896 17.911
500 0.19623 0.99571 1.85750 0.49122 -1.22510 0.29462 9.9535
1000 0.19801 0.99783 1.85710 0.49299 -1.21300 0.30060 7.5234
2000 0.19844 0.99833 1.85160 0.49448 -1.20920 0.29865 5.9897
3000 0.19877 0.99864 1.85120 0.49576 -1.20520 0.29656 5.0628

8 100 0.19043 0.97410 1.84310 0.49302 -1.14280 0.29516 16.230
500 0.19799 0.99617 1.85460 0.49584 -1.21550 0.29711 7.9670
1000 0.19886 0.99813 1.85490 0.49533 -1.20840 0.30160 6.2476
2000 0.19910 0.99858 1.85060 0.49553 -1.20690 0.29912 5.1626
3000 0.19929 0.99885 1.85040 0.49661 -1.20360 0.29698 4.4864

True values 0.20000 1.00000 1.85000 0.50000 -1.20000 0.30000

α(z) = 1+0.2z−1 +1z−2,

QQQ(z) =
[

1.85 0.5
−1.2 0.3

]
z−1.

The inputs {u1(k)} and {u2(k)} are taken as two random
sequences with zero mean and unit variances, {v1(k)} and
{v2(k)} are taken as white noise sequences with zero mean
and variances σ 2

1 = σ 2
2 = 0.12 and σ 2

1 = σ 2
2 = 0.52, re-

spectively. All the simulations are conducted in MATLAB
2018 running on Hp Pavilion Gaming (15-dk1000), with
2.40 GHz, Core-i5 processor and 8 GB RAM. Applying

the H-SG-RLS algorithm and the H-MI-SG-RLS algo-
rithm to estimate the parameters of this example system,
the parameter estimates and their errors δ are shown in
Tables 4 and 5, and the parameter estimation errors versus
k are shown in Figs. 1 to 3, where

δ :=

{
‖α̂αα(k)−ααα‖2 +‖θ̂θθ(k)−θθθ‖2

‖ααα‖2 +‖θθθ‖2

}1/2

×100%.

Fig. 4 shows the time consumption of the H-SG algorithm,
the H-MI-SG-RLS algorithm, and other algorithms. From
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Fig. 1. The estimation errors δ versus k (σ 2 = 0.12).
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Fig. 2. The H-SG-RLS errors δ versus k with σ 2.
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Fig. 3. The H-MI-SG-RLS errors δ versus k with p.

Tables 1-5 and Figs. 1-3, we can draw the following con-
clusions.

1) The H-SG-RLS algorithm requires less computa-
tional load than the H-RLS algorithm because the H-
SG-RLS algorithm does not need to calculate the gain
matrix L1(k) ∈ Rnα×m to avoid the calculation of the
matrix inversion for larger m - see Tables 1 and 2.

2) The parameter estimation errors of the H-SG, H-RLS,
H-SG-RLS and H-MI-SG-RLS algorithms become

1 2 3 4 5

      Number of simulations
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 t
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Fig. 4. The actual time consumption of the H-SG, H-RLS,
H-SG-RLS, and H-MI-SG-RLS algorithms.

(generally) smaller with the data length k increasing -
see Tables 4 and 5.

3) The parameter estimation accuracy is related to the
noise variance. The larger the noise variance is, the
lower the estimation accuracy is - see Fig. 2.

4) The innovation length p can effectively improve the
parameter estimation accuracy of the H-SG-RLS al-
gorithm. With the increase of the innovation length
p, the parameter estimation becomes more stable and
the calculation time becomes longer - see Fig. 3.

6. CONCLUSIONS

This paper derives the H-SG-RLS algorithm and the
H-MI-SG-RLS algorithm for identifying the multivariable
CAR-like system based on the hierarchical identification
theory and the multi-innovation identification theory. Sim-
ulation results show that the proposed algorithms are ef-
fective. The proposed H-SG-RLS algorithm combines the
advantages of the H-SG algorithm and the H-RLS algo-
rithm, with a small amount of calculation, short calcula-
tion time, and high precision. The H-MI-SG-RLS algo-
rithm provides more accurate parameter estimation than
the H-SG-RLS algorithm. The algorithms in this paper can
be extended to study parameter identification issues of lin-
ear and nonlinear stochastic processes [66-72] and can be
applied to engineering systems such as process control and
machine learning.
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