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Just-in-time Learning-aided Nonlinear Fault Detection for Traction Sys-
tems of High-speed Trains
Chao Cheng � , Xiuyuan Sun � , Junjie Shao, Hongtian Chen* � , and Chao Shang �

Abstract: Traction systems in high-speed trains exhibit significant dynamic characteristics, which mainly arise from
operation-point changes. Most existing fault detection methods provide static data models for global structures,
especially for traditional multivariate statistical analysis methods constrained by constant operating points. The
symptoms of incipient faults are slight and easily hidden. Despite the moderate effect of incipient faults, they will
compromise the overall performance and remaining life of traction systems in the long run. Therefore, a just-in-time
slow feature analysis method is proposed in this study. The salient advantages of the proposed method are: 1) It can
be applied to dynamic non-linear systems; 2) It can detect incipient faults subject to environments containing noise
and unknown disturbances; 3) It mitigates false alarms caused by parameter mutation during mode-switching. A
series of experiments are carried out on a traction system platform to verify the effectiveness and superiority of the
proposed method.
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1. INTRODUCTION

With the rapid development of global transportation,
high-speed trains provide a solid boost by virtue of their
fast speeds and large carrying capacities [1]. As a conse-
quence, the safety and reliability of high-speed trains have
received significant attention from researchers in recent
years. Traction systems are recognized as central of high-
speed trains, which take the traction motor as the control
object [2,3]. Thus, if faults in traction systems can not be
dealt with in time, the operation of high-speed trains may
be disrupted.

The timely detection of incipient faults in traction sys-
tems provides an essential guarantee for the operation
of high-speed trains. Traction systems, consisting of a
large number and various types of components, are vul-
nerable to incipient faults [4]. For example, under high-
temperature conditions, the aging of insulated gate bipolar
transistors will accelerate and gradually evolve into faults.
Furthermore, short circuits in stator turns and performance
degradation of electrolytic capacitors in the DC link are
also typical faults in traction systems. Because various
components in the system are closely coupled, a fault in

one component may migrate and spread over the system
along the signal flow direction, which will affect the per-
formance of other components [5,6]. In addition, the oper-
ating states of high-speed trains can be divided into start-
up acceleration, smooth operation, deceleration when cor-
nering, and braking, which are switched according to the
actual operation. The actual operation of high-speed trains
makes dynamic nonlinearity an inherent characteristic of
traction systems [7,8].

In order to improve the detectability of incipient faults,
previous efforts have been focused on the following three
aspects [9]: model-based, signal analysis-based, and data-
driven methods. The amplitude, frequency, and phase of
the gathered signals, which are related to the operation
of traction systems, could be utilized to extract specific
fault features [10]. For instance, a fault diagnosis ap-
proach based on fractional steepest ascent Morlet wavelet
transform is developed in [11], which enables identify-
ing faults with small magnitudes in the noise environ-
ment. However, prior knowledge of the symptoms in dif-
ferent faults is essential for analyzing the signals col-
lected. The workflow of the model-based methods can
be divided into system modeling, residual generation, and
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residual assessment [6]. For example, Gou et al. [12] pro-
posed a dynamic model-based open-switch fault detec-
tion approach for rectifiers. Only the switch command
signal, the measured current, and DC-link voltage have
been employed in the model. The detection result is ro-
bust against varying grid voltage and other loads. To ac-
count for the non-stationarity of traction rectifiers, a multi-
input-multi-output evolution model with dimensionality
reduction is developed in [13]. This model enables flexible
multivariable control while ensuring that coupling faults
do not destabilize the closed loop. Nevertheless, due to
the increasing complexity of the system structure, accu-
rate mathematical models are difficult to obtain, which
will limit the application of the established fault detection
models.

Thanks to the allocation of numerous sensors in trac-
tion systems, data are easy to get and store. Data-driven
approaches are popular because they do not rely on a pri-
ori knowledge [14]. Among them, the methods based on
multivariate analysis are of great significance in practice,
such as principal component analysis, partial least squares
estimation, and canonical correlation analysis [1]. Never-
theless, traditional multivariate analysis methods can only
perform ideally in static linear systems [15]. For this rea-
son, improved multivariate analysis methods have been
enjoyed popularity. In recent efforts, including the deep-
slow feature analysis developed in [16], the original data
are separated into six modes, based on which feature ex-
traction is performed using slow feature analysis. In order
to satisfy the nonlinear characteristics of traction systems,
a linear-nonlinear hybrid model was proposed in [17]. The
hybrid model used the principal component analysis and
the kernel principal component analysis to extract the trac-
tion system’s linear and nonlinear features. Furthermore,
a new detection method was proposed in [18], considering
the limitations of canonical correlation analysis for Gaus-
sian assumptions. The new method addressed this limi-
tation by combining canonical correlation analysis with
randomized algorithm-based threshold-setting. Besides, a
distributed detection method based on fog computing is
designed in [19]. The fault detection and control of each
node are realized by an adaptive configuration method.
However, these methods only achieve the desired results
when the traction system operates stably in a single mode.
They do not take into account the effect of operating state-
switching on fault detection [20].

The state-switching during the actual operation of a
traction system makes multi-mode an inherent character-
istic. The switching of operating modes is accompanied
by mutations in state parameters. Therefore, fault detec-
tion methods based on a single steady state are prone to
false fault alarms. The inherent dynamic character of trac-
tion systems makes it challenging to achieve the desired
results with fault detection methods constrained by static
conditions. In addition, the slight symptoms of incipient

faults are difficult to trigger alarms. The complex oper-
ating environment of traction systems also leads to many
external disturbances, such as aerodynamic problems and
electromagnetic interference, which can easily cover in-
cipient faults. As a result, existing fault detection methods
have many limitations in facing these problems.

Based on these observations, a just-in-time slow feature
analysis method is proposed for fault detection in traction
systems. The following are the major contributions of this
paper

1) The proposed method does not rely on precise math-
ematical models and a priori knowledge. It can be ap-
plied to dynamic non-linear systems.

2) The online update of the local prediction model solves
the difficulty of detecting faults caused by sudden
changes in parameters during mode switching.

3) The extraction of slowness features eliminates the in-
fluence of noise and unknown interference on fault
detection. The accuracy and sensitivity of fault detec-
tion are improved.

4) This paper addresses the single-mode constraint of
traditional multivariate analysis methods by fusing an
instantaneous learning model with slow feature anal-
ysis. A new solution is provided for the extended ap-
plication of traditional multivariate analysis.

The remaining part is arranged as follows: Section 2
summarizes the internal structure, operating mechanism,
and characteristics of traction systems. Section 3 describes
the framework, principles, and specific advantages of the
proposed method. Section 4 verifies the method through
a platform of traction systems. Finally, Section 5 summa-
rizes this paper and puts forward the further work plan.

2. PRELIMINARIES

In this section, the composition of traction systems is
briefly described, in which the measurement variables, in-
cipient faults, noise, and disturbances are expressed in a
formula form. To address the challenges of real-time in-
cipient fault detection, the objectives of this study will be
presented.

2.1. Traction systems of high-speed trains
As the primary component of high-speed trains, the

mechanism of traction systems is to realize the conver-
sion between electric energy and mechanical energy [21].
The schematic diagram of traction systems is shown in
Fig. 1. Besides, traction systems mainly consist of high-
voltage equipment and power units. High-voltage equip-
ment consists of a pantograph, a vacuum circuit breaker,
a current transformer, etc. Power units mainly include a
traction transformer, a traction inverter, a traction motor,
etc. [22].



Just-in-time Learning-aided Nonlinear Fault Detection for Traction Systems of High-speed Trains 2799

M

TU1

TU2

TU3

TU4

TV1

TV2

TV3

TV4

TW1

TW2

TW3

TW4

Current 
Sensors

Speed 
Sensor

Traction Control 
Unit

Control Signals

a
b

c

Fig. 1. Schematic diagram of traction systems in high-
speed trains.
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Fig. 2. Main components of traction systems in high-
speed trains.

Fig. 2 shows the structural layout of the traction sys-
tem in the vehicle body, where Fig. 2(a) is the vehicle
body, Fig. 2(b-1) is the traction converter, and Fig. 2(c-
2) is the low-voltage component that controls the traction
converter; Fig. 2(d) is the traction motor, Fig. 2(d-3) is a
sensor in the motor, and Fig. 2(d-4) is the cover of sensors.

2.2. Description of incipient faults in traction systems
A complete and accurate model is of great significance

for timely detection of incipient faults. Nevertheless, the
modeling complexity will increase due to the sophisti-
cated structure of traction systems, which will increase
the computational cost and error potential. Therefore, a
signal-based description of traction systems and incipient
faults is preferred in this paper, which avoids the influence
of prior knowledge. Based on the measured signals of the
sensors distributed in traction systems, the data matrix E
consisting of the main state variables can be written as

E = [Ucd1 Ucd2 Ia Ib Ic Te], (1)

where E ∈ RN×m with N samples collected, m represents
the number of variables tested. In this application, m = 6.
Among them, Ucd1 and Ucd2 are the voltages at the up-

per and bottom support capacitors, respectively; Ia, Ib, and
Ic are the three-phase currents in the inverter, and Te is
the electromagnetic torque of the traction motor. Traction
systems can be regarded as multiple input multiple output
systems due to the internal coupling relationship. Thus,
the faults and noise in systems’ operation only affect the
output variables, rather than the input variables [23,24].
The inputs and outputs are divided as follows:

X = [Ucd1 Ucd2],

Y = [Ia Ib Ic Te]. (2)

There are many types of faults in traction systems, such
as offset faults, drift faults, gain faults, etc. To effectively
detect all types of faults in traction systems, the system
output Y is described as

Y = Y ∗+F+n, (3)

where Y ∈RN×m is the practical measured value of the out-
put, Y ∗ ∈ RN×m is the output value under ideal conditions,
F ∈ RN×m is the fault in traction systems, and n ∈ RN×m

is the noise and other unknown disturbances. The noise
and unknown disturbances are not only caused by external
environmental conditions, but also the mechanical wear,
such as friction and impact in the motor [25]. As shown
in (4), incipient faults will gradually evolve into common
faults.

F : Finc→ Fcom,

s.t. ‖Finc./Y ∗‖ ≤ 0.1. (4)

Consequently, the measured values of the system cor-
responding to incipient faults and common faults are Yinc

and Ycom, respectively.

Yinc = Y ∗+Finc +n,

Ycom = Y ∗+Fcom +n, (5)

where Finc and Fcom are incipient faults and common faults,
respectively. In this application, the faults whose fault am-
plitudes do not exceed 10% of the normal signal are de-
fined as incipient faults. Thus, Yinc and Ycom are the system
outputs in the different stages of fault evolution.

2.3. Objective and design issues
As mentioned above, the nonlinear dynamic character-

istics of traction systems are caused by the actual opera-
tion mode, which brings limitations to the application of
traditional multivariate analysis methods [26,27]. In addi-
tion, as shown in (5), both incipient and common faults
may be masked by noises, making them difficult to distin-
guish [28].

This paper focuses on incipient fault detection within
traction systems under actual operations. Unlike the previ-
ous fault detection methods, the proposed method consid-
ers traction systems’ dynamic behaviours, such as mode
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switching. Moreover, the impact of noise and disturbances
on incipient fault detection under actual operations is con-
sidered in this paper.

Consequently, this paper intends to develop a real-time
detection scheme for incipient faults of traction systems.
And the objectives are listed as follows:

1) Build a model with high sensitivity to incipient faults
without resort to a complex mathematical model and
prior knowledge.

2) Find an online modeling method suitable for dynamic
nonlinear systems.

3) Extract incipient fault features from the environment
subject to the noise and unknown disturbances for
achieving accurate incipient fault detection.

3. METHODOLOGY

A just-in-time slow feature analysis method is proposed
to tackle the challenges described above. The proposed
method merges the advantages of just-in-time learning
with slow feature analysis. It is able to satisfy multi-mode
processes in dynamic nonlinear systems by online up-
dating of local dynamic prediction models. Meanwhile,
the proposed method identifies incipient faults and distur-
bances by extracting slow features. Then the framework
of the proposed scheme is introduced in more detail.

3.1. Just-in-time learning scheme
The just-in-time learning model belongs to a local

learning method based on data, which differs from the tra-
ditional method of global modeling [29]. It is difficult for
unified models to realize real-time online updates when
the systems’ operation mode changes [30]. For example,
the neural network-based modeling methods will increase
the computational complexity when dealing with large
data sets because of their complex structure [2]. However,
just-in-time learning differs from neural network-based
approaches in that there is no standard learning phase.
In addition, most of the local models transform complex
global problems into simple local issues with the aid of
prior knowledge or complex training strategies [31]. In
contrast, the local prediction model for just-in-time learn-
ing is built by selecting data from the database that is
strongly relevant to the query data. In addition to the ad-
vantages of online updates, just-in-time learning also has
inherent adaptive characteristics by continuously adding
fault-free data to the database. The procedure of the just-
in-time learning model to predict the output data are given
as follows:

1) The database data with high similarity to the query
data are selected according to the similarity principle.

2) Based on the query data and the most similar data set,
a local prediction model is developed.

3) The output prediction corresponding to the input
query data is obtained from the local prediction
model. In addition, the model is updated online when
new query data arrives.

A suitable similarity criterion is essential to the just-in-
time learning model. The similarity criterion needs to be
set with a balance between speed and accuracy of selec-
tion. The construction of predictive models will be slowed
down if the similarity criterion is too complex. Based
on this consideration, the similarity is determined by the
weighted combination of distance and angle in this pa-
per. For query data xq, the first l similar data are selected
from the database {xi,yi}i=1,2,...,N according to the similar-
ity criterion to form the similar sample set {xi,yi}i=1,2,...,l ,
and the corresponding prediction output ŷq is obtained.
The details of the similarity criterion are given in Subsec-
tion 3.3. Furthermore, it is worth noting that

kmin ≤ l ≤ kmax, (6)

where l represents the number of similar data selected.
The determination in the size of a similar sample set is
an essential factor in prediction accuracy. Two parameter
values, kmin and kmax, need to define beforehand, which are
the upper and lower limits of the sample size. The setting
of parameters kmin and kmax not only ensures the prediction
accuracy but also avoids the expensive calculation.

3.2. Slow feature analysis
Traditional multivariate statistical analysis methods fo-

cus on global steady-state variability. Therefore, they can-
not determine whether the cause of the alarm is a work-
ing state switch or faults. Slow feature analysis has better
interpretation capability in terms of temporal correlation.
It extracts the main variables based on the temporal vari-
ability of the data. Given a multi-dimensional vector input
signal, slow feature analysis aims to find slowly chang-
ing features from the dynamics point [32,33]. For time-
varying signals, slow-changing variables mean that they
are the main variables reflecting the changes of system
state. Thus, slow feature analysis can realize the distinc-
tion between real faults and disturbances. Mathematically,
the slow feature analysis can be expressed as follows:

For a set of input signal u(t) = [u1 (t) ,u2 (t) ,
. . . ,um (t) ]T with the dimension m, slow feature analy-
sis requires finding a feature function, as shown below.

{l j (t) = h j [u(t)]}m
j=1 , (7)

where h j (·) is the feature function, and l j (t) is the re-
quired slowness feature.

Slow feature analysis obtains the feature function under
the conditions of zero mean, unit variance, and decorrela-
tion
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〈l j〉t = 0,〈
l2

j

〉
t
= 1,

〈lil j〉t = 0, (∀i 6= j)

⇒min
h j(·)

〈
l̇2

j

〉
t
, (8)

where l̇ j is the first derivative of the variable along with
time, representing the rate of change; 〈·〉t is the mathemat-
ical mean of time. These constraints simplify the problem
while retaining generality. They remove correlations be-
tween variables and ensure that slow features carry differ-
ent information.

In general, the slowness features can be expressed by
vectors and matrices, respectively.

l j (t) = h j (u(t)) = wT
j u,

l =Wu, (9)

where wT
j and W are the mapping coefficient vector and

the coefficient matrix, respectively.
Remark 1: It is necessary to arrange the obtained slow-

ness characteristics {l j (t)}m
j=1 in ascending order to find

the main factors that affect the system state.

3.3. Just-in-time SFA
The data matrix E collected by the traction system in

(1) and its further division in (2) are used as the basis for
subsequent calculation. The similarity between the test in-
put data xq and database input data xi can be performed
based on

si = α

√
e−d2(xq,xi)+(1−α)cos(θi) , (10)

where α ∈ [0,1] is the weight parameter obtained by cross-
validation, θi means the angle between query data vector
∆xq and database data vector ∆xi. Therefore, cos(θi) can
be obtained by

cos(θi) =
∆xT

q ∆xi

‖∆xq‖2 · ‖∆xi‖2
, (11)

where ∆xq = xq−xq−1 and ∆xi = xi−xi−1. The value of si

ranges from 0 and 1. And the value of si reflects the degree
of similarity between xq and xi.

Remark 2: It should be noted that cos(θi) should sat-
isfy cos(θi) ≥ 0 to ensure that the angle between vec-
tors does not exceed 90◦. Otherwise, the database data
is not related to the query data and needs to be removed
from the database. Moreover, in order to establish the
database {xi,yi}i=1,2,...,N , a large amount of data under ac-
tual healthy operation is necessary.

To determine the similar dataset {xi,yi}i=1,2,...,l , the sim-
ilarity vector is arranged in descending order as follows:

S = [s1,s2, . . . ,sNtrain ]
T → Ssort . (12)

xi and yi corresponding to the first l similarity after sorting
are selected to form a similar sample set for regression.

And the optimal solution of l is calculated by the internal
calculation of the prediction model.

To satisfy the demands of real-time detection and en-
sure prediction accuracy, the ARX model is used as a local
prediction model. It is expressed as

ŷ(k) = zT (k−1)ψ, (13)

where ŷ(k) denotes the model’s prediction, k represents
the sampling time, and ψ denotes the model parameter.

The regression vector z(k−1) is defined as

z(k−1) =[y(k−1) , . . . ,y(k−ny) ,u(k−nd−1) ,

. . . ,u(k−nd−nu) ]
T , (14)

where ny and nu represent the order of the model, and nd

is the time delay.
The traditional linear prediction model is generally de-

scribed by

ŷq = xT
q

(
pT p

)−1
pT v, (15)

p =WΦ,

v =WY, (16)

where W ∈RN×N is a diagonal matrix composed of weight
parameters, and Φ ∈ RN×n is a matrix composed of train-
ing samples xi corresponding to the weight parameters.

By mapping the traditional linear model to the ARX
model, the parameters of ARX can be represented as

Ψ =
(

pT p
)−1

pT v. (17)

The similar sample set {xi,yi}i=1,2,...,l is used to train
the ARX model, so the model parameter (16) can be rep-
resented as follows:

pl =WlΦl ,

vl =WlYl , (18)

Wl =

w1 · · · 0
...

. . .
...

0 · · · wl

 ,

Φl = [xindex1 ,xindex2 , . . . ,xindexl ]
T ,

Yl = [yindex1 ,yindex2 , . . . ,yindexl ]
T , (19)

where indexi represents the index value of the element in
Ssort that is mapped to the original vector S.

To determine the optimal number of correlation samples
l as lopt , the error function is introduced as follows:

er f l =
l

∑
j=1

s j
y j−ΦT

j

(
pT

l pl
)−1 pT

l vl

1− pT
j

(
pT

j pl

)−1
p j


2/

∑
l
j=1 s2

j .

(20)
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Therefore, the optimal solution is obtained when the er-
ror function reaches the minimum.

lopt = arg
l

min(er fl) . (21)

In this way, the optimal parameters and predicted output
of the prediction model can be obtained as follows:

Ψlopt =
(

pT
lopt

plopt

)−1
pT

lopt
vlopt , (22)

ŷq = xT
q Ψlopt . (23)

For different query data, the local model should be re-
constructed to ensure the prediction accuracy.

The residuals between the actual output yT
test and the

predicted output ŷq are the basis of the slow feature anal-
ysis. The residuals are calculated as

Re = ŷq− yT
test , (24)

U = [u1, u2, . . . , um]
T = Re. (25)

The residuals obtained via the just-in-time learning lo-
cal model are static and linear, which can be suitable for
general fault detection methods. Hence, the just-in-time
learning can be integrated with slow feature analysis.

Performing a SVD on the covariance matrix of U could
be expressed as〈

UTU
〉

t = KΛKT , (26)

where K is the feature matrix, the whitening process is as
follows:

z = Λ
− 1

2 KTU = QU, (27)

in which Q is the whitening matrix.

Q = Λ
− 1

2 KT . (28)

The ultimate purpose of slow feature analysis is to find
out the long-standing and slowly changing features. Thus,
the change rate of the decorrelation matrix is calculated as

ż(t) =
z(t)− z(t−∆t)

∆t
(∆t = 1) . (29)

In this paper, ∆t is set to 1. Then, SVD on covariance ma-
trix of ż could be carried out〈

żżT〉
t = PT

ΣP. (30)

The matrix P is a feature matrix, which not only re-
flects the decorrelation between variables, but also reflects
the slowness of features. The slow feature matrix of the
original data is obtained by inversely mapping the feature
matrix P to the original data space, i.e.,

W = KΛ
− 1

2 PT , (31)

l =WU. (32)

After sorting the slow features according to (12), the
approach in [33] can be used to separate the slow features
into primary and residual slow features.

l→ lsort = ld + le, (33)

ld = [l1, l2, . . . , lM]
T ,

le = [lM+1, lM+2, . . . , lM+Me ]
T , (34)

where M and Me are the number of primary features and
residual features, respectively.

As shown in (35), the T 2 test statistic is selected for in-
cipient fault detection, which mainly reflects the deviation
degree between features and the model.

T 2
d = ldT

Λ
−1ld = ldT ld ,

T 2
e = leT

Λ
−1le = leT le. (35)

Remark 3: The eigenvalue matrix obtained from the
singular value decomposition of the covariance matrix is
composed of variances. As shown in (8), one of the con-
straints of the slow feature analysis is the unit variance, so
the eigenvalue matrix Λ obtained from (26) is a unit diag-
onal matrix I. Thus, the T 2 test statistic can be simplified
to (35).

The test statistic T 2
d obeys the χ2 distribution with the

degree of freedom M, and the statistic T 2
e obeys the χ2

distribution with the degree of freedom Me.

T 2
d = ldT ld ∼ χ

2
M,

T 2
e = leT le ∼ χ

2
Me. (36)

By setting a α , the control limit can be calculated by

JT 2
d
= χ

2
M,α ,

JT 2
e
= χ

2
Me,α . (37)

Therefore, the criteria for incipient fault detection can
be summarized as follows:

1) If T 2
d ≤ JT 2

d
and T 2

e ≤ JT 2
e
, the traction system is in a

healthy state and there is no fault.
2) If T 2

d > JT 2
d

or T 2
e > JT 2

e
, the traction system is working

abnormally and faults have occurred.

Furthermore, this section summarizes the implementa-
tion process of the scheme, as shown in Algorithm 1 and
Fig. 3.

4. EXPERIMENTAL RESULTS AND
ILLUSTRATION

A traction-system platform established by Central
South University is selected for verification, which al-
lows the injection of faults with different types and am-
plitudes [34]. Then, a set of experiments demonstrate the
superiority of the proposed scheme.
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Algorithm 1: Implementation procedures.
Off-line training

1: Collect fault-free data in all states to construct a
database {xi,yi}i=1,2,...,Ntrain

.
2: Obtain a training set under the same conditions as the

data to be tested.
3: Calculate the similarity between the training set and

the database according to (10).
4: Calculate the solution of the error function (20) and

obtain the parameters (21).
5: Predict ŷq from (23) and obtain the residual signal

from (24).
6: Perform an SVD on the residual signal from (25) and

then whiten it according to (26).
7: Calculate the coefficient matrix W according to the

change rate ż.
8: Obtain the slow feature l from (33).
9: Calculate the threshold JT 2

d
and JT 2

e
according to (37).

On-line fault detection
1: Sample the online data.
2: Obtain model parameters refer to steps 3, 4 in Off-line

training.
3: Obtain the residual signal U based on ŷq.
4: Compute the slow feature l refer to steps 6, 7, and 8

in Off-line training.
5: Calculate the test statistics Td

2 and Te
2 via (33) to

achieve fault detection.

4.1. Experimental verification

The basic structure of the traction system in Fig. 4
mainly consists of a transformer, a rectifier, a DC link,
a inverter, traction motors, and a traction control unit.
The platform adjusts parameters for different components
to enable the injection of faults and noise. Injectable
fault components of the platform include sensors, traction
motors, traction converters, and the traction control unit
(TCU).

1) Multi-mode operation: The operating state of high-
speed trains is divided into three modes: low-speed start,
acceleration, and high-speed smooth running. To realize
the operation of the three modes, the speed parameters of
the platform are set to 50 km/h, 150 km/h, and and 250
km/h, respectively. The data are measured under multi-

 Fault-free data in all states

Online data to 
be tested

Online data to 
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Full state 
database
Full state 
database

Fault-free 
training set

 Fault-free data in all states

Similarity calculation

Most relevant data-set

Dynamic regression prediction model

Residual matrix

SVD and whitening operation

Slow feature matrix

 Test 
threshold

 Test 
statistic

Fault detection results

Fig. 3. The proposed fault detection scheme.

mode in Fig. 5, in which each mode contains 200000 sam-
ples and a sampling interval is 1 us. The traction speeds of
the three modes in Fig. 4 are 50 km/h, 150 km/h, and 250
km/h, respectively.

2) Fault injection: As mentioned above, the voltage
outputs (Ucd1,Ucd2) of the DC link are chosen as inputs,
the three-phase current outputs (Ia, Ib, Ic) by the inverter,

Transformer Rectifier DC-link Inverter Traction Motor

Traction                           Control                          Units

Fig. 4. A diagram of traction systems in high-speed trains.
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Fig. 5. The current Ia in multimode.

Table 1. Injection fault setting.

Fault no. Fault type Fault amplitude
1 Offset sensor fault Constant value:1
2 Gain sensor fault Constant value:1
3 Drift sensor fault Slope,Initial output: [10, 3]
4 Motor bearing fault Mechanical severity: 0.1
5 TCU fault Invert Bit: 1, Register-Ts:1e-5

and the electromagnetic torque Te of the motor are chosen
as outputs. Two factors should be considered in determin-
ing the number of training and test samples: experimental
reliability and computational efficiency. As a result, 200
data are sampled in each mode, and each output corre-
sponds to 600 data for fault detection under multi-mode.

Five types of faults were selected for sensors, motors,
and TCU injection. The 100th sampling time in each mode
is taken as the injection time of faults and noise. The pa-
rameter settings related to types and amplitudes of injected
faults as shown in Table 1. It’s worth noting that the pa-
rameters related to the fault amplitude are adjusted to be
less than 20% of the platform default value. Thus, the fault
amplitude meets (4).

The setting 20% is the proportion relative to the default
fault parameter of the traction system platform. The ad-
justed fault amplitude is less than 10% of the output sig-
nal.

3) Detection of incipient faults: The comparison be-
tween the actual outputs (Ia, Ib, Ic,Te) of fault-free data and
their predicted outputs is shown in Figs. 6-9, respectively.
The red dotted line represents the actual outputs, and the
green asterisk line represents the predicted outputs. The
four figures show the prediction accuracy using the local
model.

The detection results of the five incipient faults are
given in Figs. 10(a)-10(e), where the solid blue line rep-
resents the test statistics and the dotted red line represents
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Fig. 6. Prediction results of Ia by JITL.
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Fig. 7. Prediction results of Ib by JITL.
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Fig. 8. Prediction results of Ic by JITL.

the threshold.
Fault 1: The signal change of the offset sensor fault is

a fixed offset adding the output signal. Fig. 10(a) shows
the detection results in the principal space and the resid-
ual space. As can be seen, fault 1 has been effectively de-
tected.

Fault 2: The input signal will increase proportionally if
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Fig. 9. Prediction results of Te by JITL.

the gain sensor fault happens. As shown in Fig. 10(b), fault
2 can be accurately detected except for the false alarms at
two sampling points in the principal space.

Fault 3: The change in electrical characteristics of the
drift sensor fault is to add a signal to the original signal,
and its value is proportional to the time of the output sig-
nal. As seen from Fig. 10(c), the alarm for fault 3 is accu-
rate and obvious.

Fault 4: When the motor fault happens, the three-phase
current has a specific frequency component in the fre-
quency domain and fluctuates slightly in the time domain.
Fig. 10(d) shows the detection results. It can be seen that
when fault 4 happens, the result curves immediately rise
and become higher than the thresholds.
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(a) Detection results for fault 1.
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(b) Detection results for fault 2.
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(c) Detection results for fault 3.
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(d) Detection results for fault 4.
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(e) Detection results for fault 5.

Fig. 10. Detection results by the proposed method.
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Fault 5: Although TCU packaging makes the specific
signal change of the TCU fault uncertain, it will also make
the output signal error. As seen from Fig. 10(e), for fault
5, the scheme proposed in this paper can achieve correct
and timely fault alarm.

Observed from the figures above, the proposed method
can accomplish the detection tasks for incipient faults.
These results are satisfactory.

4.2. Discussion
To illustrate the superiority of the scheme, the deep

principal component analysis (DPCA), the deep slow fea-
ture analysis (DSFA), and the kernel canonical correlation
analysis (KCCA) are tested on the traction-system plat-
form. DPCA and DSFA are two recently developed meth-
ods for detecting incipient faults, which extract incipient
fault information via the depth division of space. Further-
more, their effectiveness was proved in [35] and [16], re-
spectively. Kernel function-based methods have been con-
sidered as an effective way to monitor traction systems
with multi-mode characteristics. Therefore, KCCA in [36]
is selected for performance comparison. Besides the intu-
itive detection results, this section also adds quantitative
indicators for performance comparison.

Figs. 11-13 present the detection results of DPCA,
DSFA, and KCCA for fault 2, respectively. As seen from
Figs. 11 and 12, false alarms and missing alarms are ob-
vious and hackneyed. It can be concluded that DPCA
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Fig. 11. Detection result for fault 2 by using DPCA.
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Fig. 12. Detection result for fault 2 by using DSFA.
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Fig. 13. Detection result for fault 2 by using KCCA.

and DSFA are invalid for incipient fault detection of trac-
tion systems in actual operation. As shown in Fig. 13,
the KCCA has better fault detectability than DPCA and
DSFA, but still difficult to detect incipient faults in the
traction system. In addition, JITL-PCA is selected for per-
formance comparison to highlight the contribution of slow
feature analysis to fault detectability improvement.

Based on these observations, the missing alarm rate
(MAR) and the false alarm rate (FAR) are chosen for per-
formance comparison [37]. Therefore, as shown in Table
2, the method proposed in this paper has salient advan-

Table 2. Performance comparisons for five faults.

Method Fault 1 Fault 2 Fault 3 Fault 4 Fault 5
FAR MAR FAR MAR FAR MAR FAR MAR FAR MAR

KCCA 5.50% 77.67% 5.15% 93.67% 5.15% 88.67% 5.15% 75.0% 5.15% 93.67%
DPCA 31.27% 66.67% 37.80% 80.33% 37.11% 77.33% 31.27% 71.33% 37.46% 78.67%
DSFA 31.62% 66.33% 93.13% 65.67% 32.30% 66.00% 31.62% 0.33% 95.88% 0.67%

JITL-PCA 48.33% 28.33% 42.00% 14.67% 49.33% 3.67% 42.00% 12.67% 41.67% 20.00%
JITL-SFA 0.69% 0.33% 0.34% 0% 0.69% 0% 0.34% 0% 0.69% 0%
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tages both in FARs and MARs.
From the above detection results and quantitative com-

parison, it is concluded that the proposed scheme has
superior fault detectability for various types of incipient
faults in traction systems under actual operations.

5. CONCLUSIONS

This paper presented a just-in-time slow feature anal-
ysis method for detecting incipient faults in traction sys-
tems. The online modeling method based on just-in-time
learning can address the nonlinear dynamics of traction
systems. Through slow feature analysis, incipient faults
are extracted from the environment containing noise and
unknown disturbances. With the assistance of just-in-time
learning, the internal constraints of multivariate statistical
analysis methods are solved, which provides a new idea
for the practical application of multivariate statistical anal-
ysis methods. The proposed method is finally tested via
a platform of traction systems and shows better fault de-
tectability than conventional methods.

Apart from this study, there are some open room for
further studies. For example, the further work will be, on
the basis of this effort, the improvement of computational
efficiency while ensuring the detection accuracy.
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