International Journal of Control, Automation, and Systems 21(7) (2023) 2338-2349

http://dx.doi.org/10.1007/s12555-022-0182-9

ISSN:1598-6446 eISSN:2005-4092
http://www.springer.com/12555

Cooperative Online Workspace Allocation in the Presence of Obstacles
for Multi-robot Simultaneous Exploration and Coverage Path Planning

Problem
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Abstract: In this paper, a dynamic workspace allocation methodology for coverage path planning using multiple
robots in the presence of obstacles is presented. The entire workspace is initially partitioned using the Manhattan
Voronoi partitioning method, without considering the obstacles present, and the robots execute Multi-Robot Si-
multaneous Exploration and Coverage (MRSimExCoverage) using the Spanning Tree Coverage (STC) algorithm
and cover the workspace. A dynamic workspace re-allocation strategy to optimize the area covered by each robot,
whenever obstacles are detected, so as to avoid certain obstacle-induced coverage issues is studied. Simulation
experiments within the Matlab/V-rep environment are used to demonstrate and validate the performance of the pro-
posed algorithm. Though the authors used the STC algorithm for path planning for demonstration, any suitable

coverage algorithm may be used.

Keywords: Coverage path planning, dynamic partition boundaries, Manhattan Voronoi, multi-robot systems,

workspace allocation.

1. INTRODUCTION

Some of the major applications of mobile robots in-
clude cleaning, mine-sweeping, structural inspection, etc.,
in which the robots execute a complete coverage path
passing through the entire accessible workspace. The pro-
cess of planning such paths in multi-robot scenarios is a
challenging problem. The issues such as avoiding dupli-
cation of the task, attaining proper coordination between
the robots, optimal task allocation, etc, need special atten-
tion. The problem of efficient task allocation between the
robots in the presence of obstacles is the main focus of
this paper. In coverage path planning (CPP) using multi-
ple robots, one of the effective ways of allotting the area
to individual robots is the ‘divide and conquer’ approach
in which the entire area is divided into as many cells as
the number of robots in the system under consideration
[14-18,25,26]. The individual robots then cover the al-
lotted area without requiring any further communication
with other robots in the system. In such a methodology,
Voronoi partitioning or its variants [18,20,25,27-29] are

generally used for partitioning the workspace. In most of
the literature, the partitioning is performed based on the
initial position of the robots which makes the process less
efficient if there is no efficient initial deployment scheme
available. But the centroidal Voronoi-based method [26]
eliminates this shortcoming. In [27], the authors provided
a methodology that combines both exploration and cover-
age for a multi-robot system. Once the partitioning is com-
pleted, the robots start covering the region while simulta-
neously exploring it. However, the effect of obstacles is
not considered in [27]. The presence of obstacles changes
the allotted area in terms of its size, which reduces the
efficiency of the scheme. Hence, a proper strategy to al-
lot the workspace on the go must be designed. This paper
presents a multi-robot coverage path planning strategy by
designing a dynamic workspace allocation method, which
reduces the obstacle-induced inequality in workspace al-
location.

Several multi-robot CPP algorithms are reported in the
literature. A review on CPP algorithms is presented in [4].
Generally, the multi-robot coverage (MRC) algorithms re-
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ported in the literature fall under one of the following
three categories: a) Extended single robot techniques in
which the single robot coverage algorithms are extended
for accommodating the multi-robot scenario [7-10]; b) Al-
gorithms dedicated for MRC applications [11-13]; and c)
Partition and cover (divide and conquer) approach where
the workspace is divided into as many cells as the number
of robots [14-18,27]. The first two categories of the MRC
algorithms require storing the coverage map and contin-
uously communicating between either the robots within
the group (in the case of a decentralized/distributed sys-
tem) or with a central supervisor. The third category re-
duces these overheads as the area is partitioned and al-
lotted to each robot, which results in task partitioning.
The robots cover the allotted cells without any need for
communication and the memory requirement is reduced
as each robot needs to cover relatively a smaller region.
Various strategies were proposed by researchers for parti-
tioning the workspace, such as partitioning into strips of
equal size [14,17], dividing into polygonal cells [15,16],
and so on. Once the partitioning is completed, each of the
partitioned areas (cells) is allotted to individual robots via
static [15] or dynamic [14,16] approaches. A distributed
Voronoi partitioning considers the initial robot positions
thereby improving the partitioning efficiency [18].

The partition and cover approach using Manhattan
Voronoi is considered in this paper [20], which converts
an MRC problem into a number of single robot cover-
age problems. In [27], the authors presented the MR-
SimEx algorithm, which utilizes the advantages of both
online and offline coverage strategies. The robots simul-
taneously explore and cover their allotted area by inter-
mittent exploration during the coverage process, thereby
reducing power consumption to a great extent. The explo-
ration sensors need to be on only during the exploration
phase. However, the partitioning process is offline, and
hence, it is not possible in this approach to accommodate
the obstacles during the partitioning process, unless they
are known a priori. This affects the optimality due to non-
uniform area allotment to the robots. If a large obstacle
is inside a robot’s allotted cell, that robot needs to cover a
smaller area than others, resulting in reduced utilization of
the available resources. In offline MRC algorithms using
Voronoi partitioning, this problem will not arise since the
obstacle scenario is already known a priori. In such cases,
only the problem of partitioned cells being topologically
disconnected may arise, which can be handled effectively
as in [28].

In this paper, an efficient strategy is presented to im-
prove the uniformity of the area allocation for MRC im-
plementing MRSimExCoverage algorithm [27]. The al-
lotted area is dynamically re-partitioned and re-allotted
based on the obstacle scenario. Simulations are carried out
on the V-Rep platform and the proposed methodology is
shown to improve the coverage efficiency as compared to

a static partitioning of the workspace. The main contri-
bution of the paper is a workspace repartitioning scheme
resulting in a more uniform workspace allocation amongst
the robots performing online multi-robot simultaneous ex-
ploration and coverage, in the presence of initially un-
known obstacles. Some of the advantages of the proposed
algorithm in comparison with the existing work in the
literature include: achieving a non-overlapping complete
coverage, lower time taken to complete the coverage task,
lower battery consumption, and robustness to failure of a
few individual robots.

1.1. Motivation

As discussed in the previous section, the presence of
obstacles leads to non-uniform workspace allocation be-
tween the robots. If a large obstacle is accommodating
the cell allotted to a robot then that robot needs to cover
a smaller area than others, resulting in reduced utiliza-
tion of the available resources. Further, in the case of
offline MRC algorithms using Voronoi partitioning, the
problem of partitioned cells being topologically discon-
nected (non-contiguous) may arise. These are illustrated
in Fig. 1. Computation of the area to be allotted to each
robot using GM-VPC [25] seems to be a better candidate.
But since it involves the computation of the geodesic dis-
tance around an obstacle, it is an explicit offline strategy.
In the MRSimEXx algorithm, the Manhattan distance met-
ric is used [20,27], it can be implemented online. Note that
in the absence of obstacles, the geodesic distance-based
Voronoi partition is identical to the Manhattan distance-
based Voronoi partition. In the presence of obstacles,
the geodesic metric provides a more meaningful distance
measurement. Hence, a combination of both these metrics
is expected to result in a better distance metric if it can be
computed on the go. The algorithm presented in this paper
uses the MRSimex algorithm [27] for the initial partition-
ing and processing but uses the geodesic distance metric
for repartitioning as and when the obstacles are identified.
Thus, it is expected to provide a more efficient and uni-
form area partitioning strategy for multi-robot coverage
path planning applications.

The rest of the paper is organized as follows: The prob-
lem statement is provided in Section 2. In Section 3, the
proposed workspace allocation algorithm is discussed fol-
lowed by an illustrative example in Section 4. The analysis
of the algorithm is carried out in Section 5 and provided
results of simulation experiments are in Section 6. The pa-
per is concluded with a brief summary of the contribution
and a discussion on the scope of future work in Section 7.

2. PROBLEM STATEMENT

Let Q C R? be a bounded and contiguous workspace
with known boundaries and containing n obstacles, O; C
R2, i€ {0, 1, 2, ..., n}. The obstacle characteristics such
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(b)

Fig. 1. (a) A large obstacle present in the cell allotted to
a robot R1 results in it needing to cover only a
(obstacle-free) part of the corresponding Voronoi
cell, which is smaller than that allotted to robots
R2 and R3, resulting in reduced utilization of the
available resources. (b) The presence of an obsta-
cle results in a non-contiguous Voronoi cell corre-
sponding to the robot R1. The shaded region, a part
of (obstacle-free) Voronoi cell corresponding to R1
is not accessible to it.

as shape, size, orientation, number, and location are un-
known initially. Let N robots, having the capability of per-
forming MRSimExCoverage-STC algorithm [27], are re-
quired to cover O\ O, O =J%_, O;. The robots are attached
with a square-sized coverage tool of size D. The sensors
mounted on the robots for obstacle detection have rela-
tively a larger range in comparison to their size.
Approximate cellular decomposition schemes (such as
in [8]) is considered. The coverage is said to be resolu-
tion complete if all the free cells are visited by a robot
and is said to be non-overlapping if each cell is visited
at most once. The initial partitioning and allocation of
the workspace between the robots is based on Manhat-
tan distance [20,27] and centroidal Voronoi partitioning
[26] schemes. Obstacles may be detected once the robots
start covering their respective Voronoi cells, the presence
of which reduces the uniformity in the workspace alloca-
tion, as original partitioning does not consider obstacles.

The problem discussed in this paper is to find a methodol-
ogy to efficiently allocate the workspace during the MR-
SimExCoverage process by accommodating the informa-
tion about the obstacles, so as to utilize all the robots in
the system to their best. The goal is to achieve a more uni-
formly partitioned workspace, covered completely with-
out any coverage gaps or coverage overlaps. A map of the
region is also obtained in the process as a by-product.

3. PROPOSED WORKSPACE ALLOCATION
ALGORITHM

In this section, we present the proposed algorithm for
online allotment of the workspace during MRSimExCov-
erage [27] process. MRSimExCoverage is an efficient
scheme if power usage is the only criterion to be opti-
mized since it uses the exploration sensors only at fewer
instances in comparison with the conventional online cov-
erage process. However, uniform workspace allocation is
not guaranteed with this algorithm, particularly when ini-
tially unknown obstacles are present in the region. A “Par-
tition and cover” strategy using Manhattan distance-based
Voronoi partitioning [20] is followed for initial partition-
ing. Since geodesic distance-based Voronoi Partitioning
[28] provides an effective distance measurement tech-
nique in the presence of obstacles, it is considered during
the re-partitioning stage. In addition to converting a multi-
robot coverage problem into a number of single-robot cov-
erage problems, this will improve the efficiency of task
(workspace) allotment in terms of its uniformity. Limited
communication is needed since only a few messages re-
lated to the availability, task completion, final map, etc.,
are needed to be communicated between the robots. Now
we provide a brief description of the underlying geodesic
distance-based Voronoi Partitioning, Manhattan distance-
based Voronoi partitioning, and MRSimExCoverage pro-
cess below.

3.1. Geodesic VPC

The underlying partitioning scheme used in the parti-
tioning process is Geodesic distance-based Voronoi parti-
tioning (Geodesic VPC) [28]. The geodesic distance be-
tween any two points is the length of the shortest path be-
tween them. In the context of a mobile robot moving on
a flat surface containing obstacles, the geodesic distance
is defined as the shortest path between two points in ques-
tion that avoids the obstacles. The geodesic distance-based
Voronoi partitioning is given by [28]

VE(P) = {q€0\0 | dg(q,pi) <dg(q,p;), Vi€ln},
€))

where dg(q,p) is the geodesic distance between points ¢
and p and Q is the workspace being partitioned.

Unlike in the case of the standard Voronoi partition us-
ing Euclidean distance metric, geodesic distance based
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Voronoi partition scheme decomposes the free space
rather that the whole region, which ensures that the cor-
responding cells are always topologically connected, or
contiguous.

3.2. Manhattan VPC

As the underlying partitioning scheme used in the
MRSimExCoverage process is Manhattan distance-based
Voronoi partitioning, we provide a brief description of
Manhattan VPC in this section [20]. The effectiveness
of the coverage algorithm can be improved if the en-
tire workspace is represented as a union of cells of size
2D x 2D, where D is the size of the square coverage tool
footprint of the robots. If such a provision is not provided
in the coverage algorithm, the robot has to retract and
restart coverage in some left-out pockets such as in [7].
(see Figs. 2 and 4 in [20] as well as Fig. 2 in [27] for a de-
tailed illustration). Also, as most of the robot motion is ei-
ther in horizontal or vertical directions, especially in cov-
erage applications, it is logical to use the Manhattan dis-
tance metric instead of the standard Euclidean one in the
computation of Voronoi cells. The Manhattan distance-
based Voronoi partitioning is given by [27]

Vi(P) ={q € Qldn(q,p:) <dun(q,p;),Vj< v}, (2)

where d,,(q,p) is the Manhattan distance between points
g and p and Q is the workspace under consideration.

After the partitioning, the robots execute any single-
robot coverage algorithms to cover the allotted region. In
this paper we use the Spanning tree-based coverage (STC)
algorithm [8] as the underlying single-robot CPP algo-
rithm.

3.3. MRSimExCoverage problem

In the multi-robot simultaneous exploration and cover-
age (MRSimExCoverage) problem [27], exploration and
coverage problems are combined to extract the advantages
of both online and offline coverage algorithms.

The robots are assumed to be equipped with relatively
longer-range sensors, of the order of the size of the en-
tire workspace. The robots start with generating a cov-
erage path assuming no obstacles are present using the
STC algorithm, the exploratory sensors are turned on only
when a robot reaches a boundary cell between explored
and unexplored cells (exploration windows). The informa-
tion obtained during these intermittent exploration phases
are used to update the map, which is then used for gen-
erating the coverage path. The coverage and exploration
phases continue sequentially until the entire area is cov-
ered. The outcome is the completely covered workspace
while the map of the area is obtained as a byproduct.

However, once the robots start the coverage process
using the MRSimExCoverage STC algorithm, obstacles
may be detected on the go, and the coverage load for the

robots could become non-uniform as the obstacle-free re-
gions within the Voronoi cells are now likely to be dif-
ferent depending on the obstacle scenario. To achieve a
more uniform workspace allocation some portion of the
Voronoi cells allotted to neighboring robots must be re-
allotted to the robot whose cell is occupied by the obsta-
cle while maintaining contiguity. The detailed procedure
is provided in the following section.

3.4. The proposed re-partitioning scheme

Let us consider a multi-robot scenario consisting of N
robots covering a workspace as described in Fig. 2. Sup-
pose in the process, i-th robot encounters an obstacle. The
detection can be an entire obstacle or a part of it. Sup-
pose that the robot acquired partial information about the
obstacle and hence it knows that the part of the obstacle
detected is occupying p; number of major cells in its al-
lotted Voronoi cell. This results in non-uniform task allo-
cation as the i-th robot is now required to cover p; cells
lesser than the other robots, assuming an initial uniform
partitioning. To ensure uniform area/task partitioning, the
i-th robot now needs to be allotted p;/N,; number of major
cells from the Voronoi cells of neighboring robots. Here,
Np; is the number of robots that share the common parti-
tion boundary along with the i-th robot itself. The new cell
thus formed may no longer be a Voronoi cell, though for
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Fig. 2. The initial Voronoi partitioning based on Manhat-
tan distance metric on a 2D X 2D workspace is
shown with bold lines. The rectangular region is
the obstacle present inside the Voronoi cell of R1.
The black region represents the area of the obstacle
known to R1 after initial exploration from its cur-
rent position. The grey area represents the part of
the obstacle unknown at present. There are a total
of 100 major cells of which 34 are allotted to R1,
33 to R2, and 33 to R3. Also, the striped region
represents the portion of the workspace unknown
to R1 due to the obstacle shadow.
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simplicity we still call it a Voronoi cell. The partitioning
efficiency is given
_ max(A,,)’ 3)
A(Q)/N
where A,; refers to the area covered by i-th robot (that is,
the area of the i-th Voronoi cell), A(Q) is the total area to
be covered and N is the number of robots in multi-robot
system. For optimal partitioning 17 = 1. Sub-optimal solu-
tions are obtained when 11 > 1 [26].

Once an obstacle is detected, the MRSimExCover-
age process is paused and the process of re-partitioning
of Voronoi cells begins. After the completion of the
re-partitioning process, the SimExCoverage process re-
sumes. This switching between the processes of MR-
SimExCoverage and re-partitioning continues whenever
the robot(s) encounters an obstacle, and the outcome a
completely covered workspace with uniform load alloca-
tion to each robot.

Let us now set some rules for the major cell allotment
to the i-th robot from its Voronoi neighboring robots

1) No covered major cells are allotted as this will result
in coverage overlap.

2) No known obstacle-occupied major cells are allotted.

3) Only the major cells on the common boundary of the
Voronoi cells (between the i-th robot and its neigh-
boring robots) must be allotted.

4) Cells which are on the intersection of two boundaries
of the Voronoi cells are preferred when all the above
conditions are satisfied.

The pseudo-codes for the re-partitioning process fol-
lowed by each robot is given as Algorithms 1, 2, and 3.
Consider a scenario shown in Fig. 2 for illustration. Here
three robots R1, R2, and R3 are required to cover a rect-
angular region. The initial Voronoi partitioning is shown
with dark-lined borders. The rectangular region with a
thick boundary with the Voronoi cell V; corresponding
to the robot R1 is an obstacle. The black region within
the obstacle is the part of the obstacle known to the robot
R1 after initial exploration, while the grey area is the part
of the obstacle unknown to robots at present. The shaded
region beyond the obstacle is the obstacle-free area un-
known to the robot R1 due to the obstacle shadow. The
candidate major cells within V, and V3, the Voronoi cells
corresponding to the robots R2 and R3, to be allotted to
the robot R1 on partial detection of obstacle within V) is
shown in Fig. 3 as a shaded region. Rules 1)-4) above are
used to select the right number of major cells among these
candidate major cells and allot them to the robot R1.

4. ILLUSTRATIVE EXAMPLE

An illustrative example of the proposed allocation
methodology is given in this section. Consider an area

Fig. 3. The possible candidate major cells of the Voronoi
cells corresponding to the robots R2 and R3 to
be allotted to the robot R1 are shown as a green
shaded region.

Algorithm 1: Uniform SimEx coverage.
1: Partition Q into Vap,,:(P(0))

2: while 1 do

3: Explore

4: if obstacle detected then

5: Send "Repart” msg to Neighbors

6: Re-Part

7: end if

8: if Repart msg received from a neighbor then
9: Wait for Completion of RePart process

10: Recreate ST over the explored, new, free ma-
jor cells //As the Voronoi cell has now changed
11: else

12: Generate ST over the explored, new, free ma-
jor cells.

13: end if

14: Generate CP through subcells circumnavigating
ST edges on the right.

15: while The starting subcell is reached do

16: Move along coverage path by one subcell

17: if ‘exploration window’ reached then

18: Explore

19: end if

20: end while
21: end while

Algorithm 2: Explore.

1: Scan 360° sensor

Identify occupied/free space.
Update the ‘occupied cell’ list
Update the ‘free cells’ list
Update the ‘unknown cell’ list
Update the ‘frontier cell’ list.

AN AN S
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Algorithm 3: Re-Part.

1: Communicate the obstacle detection information and
"repart” msg to neighbors

2: Identify the number of major cells, p;, occupied by
the obstacle.

3: Identify p;/N;; cells from each of the neighboring
robots’ Voronoi cells which can be allotted based on
the set rules.

4: if No suitable cell then

5: return else

6: Allot the respective cells and communicate the
new Voronoi cell boundaries to all the robots.

7: end if

as shown in Fig. 4, consisting of 100 major cells of size
2D x 2D each. The area needs to be covered by three
robots R1, R2, and R3. The rectangular obstacle is occu-
pying 6 major cells which reduce the obstacle-free area to
94 major cells. The initial Voronoi partitioning based on
the Manhattan distance metric is performed and is shown
with bold lines. Out of 100 major cells, 34 are allotted to
R1, 33 to R2, and 33 to R3, since the information regard-
ing the obstacle is not considered during the partitioning
phase.

The black region represents the part of the obstacle
known to R1 after the first exploration. The grey area
shows the unexplored region due to the obstacle shadow.
Since, after the first exploration phase obstacle is detected,
the MRSimExCoverage process is paused and the cell re-
allocation begins. Here the known area of the obstacle is
occupying p; = 3 major cells. Therefore a total of one ma-
jor cell (p1/Np1 =3/3 = 1) needs to be allotted from each
of the Voronoi cells of R2 and R3. Though any boundary
cells can be allocated as the coverage has not yet started,
robots chose the major cells shaded in red and allot them
to robot R1. Now the number of major cells for R1, R2,
and R3 became 33, 32, and 32 respectively. This is shown
in Fig. 4(a). At this stage, all the robots independently cre-
ate ST within their respective Voronoi cells and start mov-
ing on the created CP through the sub-cells until the next
exploration window is encountered.

In Fig. 4(b), the spanning tree generated after the first
exploration phase is given. Since it is known that the
newly allotted major cells are free, ST is generated con-
sidering them. The robots now start covering the region as
shown in Fig. 5(a). The arrowed lines represent the path
of the robots. When the robot R1 reaches an exploration
window the coverage stops and the next exploration phase
will start.

After the second exploration, the obstacle is completely
identified by robot R1. Three more cells are detected to
be occupied by obstacles. One each cell (p /N, =3/3 =
1) needs to be allotted to the robot R1 (Fig. 5(b)). Now
as robot R2 has already covered some of the major cells
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Fig. 4. (a) Re-partitioning Phase. The shaded cells (red)
are allotted to R1. The number of free major cells
for R1, R2, and R3 are now 33, 32, and 32, respec-
tively. (b) MRSimExCoverage STC begins. The
dotted line shows the spanning tree generated after
the first exploration phase for all three robots. The
empty cells represent the unexplored major cells
due to the presence of obstacle shadow.

on the common Voronoi cell boundary, only those which
have not yet been covered have to be allotted to robot R1.
Robots chose the major cells from the available cells, and
one cell each is allotted to R1. The major cells allotted are
shown shaded with red in Fig. 5(b). The number of allotted
free major cells for R1, R2, and R3 are now changed to
32, 31, and 31, respectively. Coverage resumes after the
allocation.

The final scenario after the execution of the exploration,
coverage, and the re-partitioning process is shown in Fig.
6. The dotted line shows the spanning tree generated and
the arrowed lines represent the path of the robots. The en-
tire workspace is explored and covered without any cov-
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Fig. 5. (a) MRSimExCoverage STC. The dotted line
shows the spanning tree generated after the first ex-
ploration phase for all three robots. The arrowed
lines represent the path of the robots. R1 reaches
an exploration window (boundary cell between ex-
plored and unexplored regions) and starts the next
exploration phase. (b) Obstacle identified com-
pletely. Re-partitioning phase 2 begins. Again, one
each cell (O/N) needs to be allotted to R1. From
the available cells, one cell each is allotted to R1
(shown as shaded (red)). The lines with arrows rep-
resent the robots’ path. The number of free major
cells for R1, R2, and R3 are now 32, 31, and 31,
respectively.

erage gap or overlap. The partitioning efficiency given in
(3) with obstacles is same as that without obstacles. This
indicates that with the proposed algorithm, the presence
of obstacles will not result in the reduction of partitioning
efficiency.
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Fig. 6. Final scenario. The dotted line shows the spanning
tree generated and the arrowed lines represent the
path of the robots.

5. ANALYSIS OF THE PROPOSED ALGORITHM

In this section, a discussion on some of the properties of
the proposed algorithm is discussed. As the Voronoi parti-
tioning is recomputed as and when new obstacles are de-
tected the partitioning is dynamic in nature. The following
assumptions are made.

Assumption 1: Each of the initial Voronoi cells gen-
erated using the Manhattan distance metric in a 2D x 2D
workspace is contiguous. But such an assumption may fail
in practical scenarios where there may be cases of topo-
logically disconnected Voronoi cells after initial partition-
ing. Such cases can be handled using the approaches given
in [23,24,27].

Assumption 2: In some practical scenarios, based on
the shape of the allotted Voronoi cells, some robots may
need to perform more turns which may use more battery
power than moving along a straight line path. But in this
paper, we neglect the battery power needed for turning.

Also, we assume that the time taken by the robots to
cover a workspace using STC depends only on the length
and not on the number of turns.

Assumption 3: We can regenerate spanning tree edges
when some of the major cells through which spanning tree
edges were earlier created are given away (allotted) to a
neighboring robot.

5.1.  Properties of the proposed algorithm

We list a few expected properties of the proposed algo-
rithms without formal proof.

Property 1: With the proposed algorithm the robots
successfully explore Q.

Property 2: With the proposed algorithm the robots
successfully cover free space Q\ O completely without
any overlap.
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Property 3: The proposed re-partitioning strategy
achieves a more uniform task partitioning, provided the
initial partitioning is uniform. This result follows from the
fact that whenever an obstacle is detected, the number of
free major cells shared by the neighboring robots is equal
to the number of major cells that the obstacle occupies.
This maintains the uniformity of the partitioning.

Property 4: With the proposed re-partitioning strategy
ensures each Voronoi cell is made of contiguous collection
of free major cells. This result follows from the fact that
only those major cells which are connected to obstacle-
free space are reallocated, thus not changing the local
topology.

Property 5: With the proposed algorithm the coverage
is achieved in lesser time.

6. RESULTS AND DISCUSSIONS

In this section, the results of simulation experiments
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carried out in the V-Rep simulation environment to
demonstrate the proposed algorithm are presented. A dif-
ferential wheeled DR12 robot model having an explo-
ration sensor is used in the simulation. It is assumed that
localization is available to the robot. For achieving lo-
calization there are several techniques available such as
the use of blue-tooth, gyroscopes, odometry, and algorith-
mic techniques such as SLAM. In this paper, an office-
like environment is considered and the simulation is car-
ried out using five robots. Figs. 7(a)-7(e) show different
stages of exploration and robot coverage path along with
the updated Voronoi cell boundaries as the robots detect
obstacles. Fig. 8 shows the final explored and covered
workspace. It is observed that the entire workspace is ex-
plored and covered with a uniform workspace area (num-
ber of major cells) allocated to robots, without any cover-
age gaps or overlaps. The algorithm being distributed in
nature, its performance is independent of the number of
robots in the system.
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Fig. 7.

Snapshots of various stages of MRSimExCoverage with five DR2 robots in V-rep simulation environment. Obsta-

cles are shown with black rectangles, black thick lines represent the partition boundaries. (a) Initial partitioning.
(b) Re-partitioned region after the first exploration. (c) The robots start covering after re-partitioning is complete.
The robot paths are shown with colored (thin) lines. (d) Second re-partitioning. (e) coverage continues after the

second re-partitioning. (f) Third re-partitioning.
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Fig. 8. Final coverage path by five robots showing com-
plete, non-overlapping coverage with uniform area
partitioning.

6.1. Comparison with other multi-robotic coverage
strategies

This section gives a brief comparison of the proposed al-
gorithm with uniform online workspace allocation with
that of the standard MRSimExCoverage STC [27] and
other CPP algorithms reported in the literature. All the al-
gorithms provide a complete and non-overlapping cover-
age path. As with the standard MRSimExCoverage STC
algorithm, as the range of the exploratory sensors in-
creases, the number of exploration instances will decrease.
Being STC-based algorithms, the proposed algorithm, the
standard MRSimExCoverage STC [27], multi-robot span-
ning tree coverage (MSTC) [9] and multi-robot forest cov-
erage (MFC) [10] achieve complete and non-overlapping
coverage. But this is not the case with algorithms such as
the spreading out technique [11], where the maximum re-
ported coverage is 97.3% with overlap depending on the
number and position of the robots.

Comparing the time taken for task completion, it was
observed that the spreading out technique [11] as well as
MSTC is on the higher side. The MFC algorithm takes
less completion time than MSTC but more than that of
MRSimExCoverage STC as well as the proposed one in
this paper. Since the proposed algorithm needs to do re-
partitioning and re-allocation of cells, the time of comple-
tion is more than that of MRSimExCoverage-STC since
this is not included in it. To compare the expected bat-
tery usage we need to consider the same area of cover-
age and with the same number of robots for all the algo-
rithms. In the case of online MSTC, and MFC, a similar
amount of battery usage can be expected. In offline MSTC
and MFC, lower battery consumption is expected as robots
have to only move along the planned path unlike the on-
line implementation, where robots need to turn physically
and detect obstacles at every major cell. In the case of

MRSimExCoverage-STC, as the number of exploration
instances is much lower compared to the online MSTC or
MEC algorithms, the battery consumption will be much
lower, though the exact amount depends on the obstacle
scenario. With the proposed methodology, in addition to
having the advantage of lower exploration instances due to
MRSimExCoverage, the battery consumption is expected
to further reduce owing to reduced time of coverage due
to uniform task (area) partitioning.

Some versions of MSTC have the property of robust-
ness to failure of a few robots, while MFC as well
as spreading out techniques do not have this property.
Though MRSimExCoverage STC and the proposed algo-
rithms do not have the robustness property, it can be incor-
porated with minor modifications of the algorithm.

As a final parameter, uniformity in task allocation, in
terms of the area allotted to each robot is compared. For
comparison, an area of 30 x 30 (900 major cells) is con-
sidered, out of which 182 cells are occupied by obsta-
cles. Thus, the free space is 718 major cells. For a 5-robot
system, the ideal area allocation will be 20%. The MFC
and MSTC algorithms inherently achieve a more uniform
task/area partitioning. In the case of MRSimExCoverage
STC, robot 1 is allotted with 18.94% (i.e., 1.06% less from
ideal), robot 2 is allotted with 17.27% (i.e., 2.73% less
from ideal), robot 3 is allotted with 23% (i.e., 3% higher
from ideal), robot 4 is allotted with 17.68% (i.e., 2.32%
less from ideal) and robot 5 is allotted 15.45% (i.e., 4.5%
less than ideal). But when the same conditions are imple-
mented using the the proposed algorithm, the area allo-
cation for robots 1 to 5 is 19.35%, 19.8%,19.6%, 19.1%,
and 19.43% which are close to the optimal value of 20 as
compared to MRSimExCoverage STC method. The result
is shown graphically in Fig. 9. The 1 values for the same
are

n = 0.965,

1, =0.99,
n3=0.98,
n4=0.955, and
ns =0.9715.

A summary of the comparison of different algorithms is
Tabulated in Table 1. It demonstrates the advantages of
the proposed methodology with the existing algorithms.
The major characteristics of the proposed algorithm are
enumerated below.

* Uniform workspace allocation to the robots in the
MRS.

» Provides complete coverage without any overlap.
* Less time to complete the coverage task.
* Less battery usage.

* Robustness to robot failures can be easily included
without much changes in the algorithm.
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Table 1. Comparison between the proposed algorithm and other similar ones.
MRSimEXx [27] MSTC [9] MFC [10] Spreading out [11] Proposed
Complete non-overlap coverage Yes Yes Yes No Yes
Time taken Low High Low High Low
Battery usage Low High High High Low
Robust Yes Yes No No Yes
Uniform task sharing High Low Low Low Very high
Memory usage Low High High High Low
20 partitioning efficiency the same as that of the initial par-
19.5 titioning without considering obstacles. The robots suc-
cessfully cover and explore the area without any coverage
o gap or overlap.
18.5
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7.5 . . .
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