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Finite-time Incremental Stability Analysis for Nonlinear Switched Sys-
tems With Unstable Subsystems
Lijuan Wang, Yuanhong Ren* � , Yushi Yang, and Lin Guan

Abstract: In this paper, finite-time incremental stability (FTIS) and finite-time incremental boundedness (FTIB)
are investigated for nonlinear switched systems (NSS) with unstable systems. Firstly, based on the reverse mode-
dependent average dwell time (MDADT) method, we propose some sufficient conditions for FTIS of NSS. Sec-
ondly, the sufficient conditions for NSS to be FTIB with an incremental performance index are given by the multiple
incremental Lyapunov functions. Finally, a distinctive advantage of reverse MDADT method is that each subsys-
tems satisfies FTIB in the activation interval. A example has been provided to show the effectiveness of the theoretic
results developed.

Keywords: Finite-time incremental boundedness, finite-time incremental stability, mode-dependent average dwell
time.

1. INTRODUCTION

Nowadays, finite-time stability (FTS) and H∞ control
problem have been extensively explored for NSS. Several
aspects of FTS have been researched in [1-3], Lyapunov
and converse Lyapunov results, regularity properties of
the settling-time function have been considered. However,
many literatures [4-6] focus on the case where all subsys-
tems are FTS. Moreover, in actual control systems, there
are many NSS with non-FTS subsystems, thus the works
of this paper have strong theoretical and practical signifi-
cance to study the FTS and non-FTS systems coexistence.
Over the years, many modeling frameworks of FTS sub-
systems have been developed that describe and quantify
the behavior of physical systems. A large variety of FTS
and H∞ control analysis tools are available for NSS, such
as Lyapunov’s stability theory and passivity theory. More-
over, techniques such as dwell time, average dwell time
(ADT) or MDADT [7] have been developed to stabilize
the behavior and to achieve performance index for NSS.
There are good properties of robustness and disturbance
rejections in [8] and from the fact that such control laws
exhibit [9].

A large body of research in control literature concerns
itself with the topic of FTS and H∞ control in NSS. The
finite-time H∞ control problem of discrete-time NSS has
been explored in [10,11] by using ADT method. The

finite-time H∞ control problem of continuous-time NSS
with time-varying delays is discussed in [12] by using
ADT method and delta operator approach. In applications,
several generalized problems have been considered, such
as H∞ control problem [13], adaptive feedback control
[14], FTS [15-17]. By using the back-stepping technique,
FTS for triangular control systems described by retarded
functional differential equations has been researched in
[18]. However, there is unified ADT τa for each sub-
system, hence, this leads to conservatism, and a system-
atic performance characterization for each subsystem is
largely missing. From the perspective of energy attenua-
tion, if the energy shows the attenuation trend, the whole
system inclines to stay at the current subsystem, which
may be described as the slow switching. Otherwise, the
system will fleetly keep switching to other subsystems un-
til the current subsystem exhibits the stable tendency in a
finite-time interval, which may be described as the fast
switching. Also, Wang et al. [19] investigated the non-
fragile H∞ synchronization issue for a class of discrete-
time T-S fuzzy Markov jumps systems by persistent dwell-
time (PDT) switching rule. As the PDT switching has been
verified to be more flexible than DT and ADT switching
mechanism, exploring an appropriate disposing method to
deal with nonlinear singularly perturbed systems [20,21]
subject to PDT switching in the discrete-time system is of
great significance.
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The MDADT approach has been developed to extend
the ADT method of NSS. MDADT approach showed that
each subsystem has its own DT and does not need to sat-
isfy a common DT. In addition, each subsystem operates
independently on each other and will not be affected each
other. For example, finite-time H∞ control problem of NSS
can be analyzed using MDADT approach [22-24]. The use
of reverse MDADT approach from the NSS with unsta-
ble subsystems is introduced in [25], which showed sig-
nificant improvements on the incremental stability and in-
cremental H∞ performance characterization. In addition,
the reverse MDADT switching rule, as a kind of time-
dependent switching rules, is used to manage the switch-
ing among nonlinear switched subsystems, and this rule is
more general than DT and ADT switching rules. It could
be concluded that the (reverse) MDADT switching has the
flexibility advantage for FTIS systems, where the switch-
ing can or must be designed. To the best of the authors’
knowledge, there exists few available literatures on NSS
with reverse MDADT switched, which can be considered
as the essential motivation of this work. Hence, inspired
by on reverse MDADT approach, we analyze FTIS and in-
cremental H∞ performance index for NSS with finite-time
unstable subsystems.

Motivated by the above observations, we study the
finite-time incremental stability and incremental H∞ con-
trol problems for NSS with unstable subsystems which is
absent in the previous literature. The main contributions
to our work may be expressed as follows: First, inspired
by the idea of [24], the concept of finite-time incremental
stability is proposed to NSS. Second, by introducing in-
cremental Lyapunov function, some sufficient conditions
are obtained for FTIS systems with finite-time unstable
subsystems. The unstable subsystem involved, makes the
finite-time incremental stability analysis much more diffi-
cult. Finally, based on reverse MDADT, it is concluded
that the resulting nonlinear system is FTIB with a pre-
scribed incremental H∞ performance in the presence of
actuator gain variations.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the NSS of the following form

ẋ(t) = fσ(t) (x(t)) , x(0) = x0, (1)

where x(t) ∈ Rn is the system states, σ (t) : [0, ∞)→ Γ =
{1, 2, . . ., m} is the switching signal. For every i ∈ Γ, fi(·)
is continuous and locally Lipschitz. Throughout this pa-
per, it is also assumed that, the system trajectory x(t) does
not jump at the switching instants. For the switching signal
σ(t), the switching sequence can be designed as follows:
{xi; (i0, t0), · · · , (ik, tk), · · · | ik ∈ Γ, k = 1, 2, · · ·}, which
implies that the subsystems ik is activated on t ∈ [tk, tk+1).

Definition 1: Given a switching signal σ(t) ∈ Γ, con-
stants c1 ≥ 0, c2 ≥ 0 satisfying c1 < c2, a positive defi-
nite matrix R and T > 0, for any two initial conditions x0

and x̂0 corresponding to two solutions x(t) and x̂(t) of sys-
tem (1), the NSS in (1) is said to be FTIS with respect to
(c1,c2,T,R,σ) if

(x0− x̂0)
T R(x0− x̂0)≤ c1

=⇒ (x(t)− x̂(t))T R(x(t)− x̂(t))≤ c2, ∀t ∈ (0, T ].

Next, we review a definition [12] that will be used in
the following.

Definition 2: For any t ∈ (0, Tf ), the switching number
Nσ (0, t) satisfied

Ti(0, t)
τai

−N0i ≤ Ni(0, t)≤ N0i +
Ti(0, t)

τai
, σ(t) = i,

where τai > 0 and an integer N0i ≥ 1, then τai is called
reverse MDADT.

3. FINITE-TIME INCREMENTAL STABILITY
ANALYSIS

Initially, we investigate the FTIS of system (1) with
non-FTIS subsystems and give the following result.

Let i ∈ Γu denote the i-th unstable subsystem. If i ∈ Γs,
then the i-th subsystem is FTIS. Let T+[0, t) and T−[0, t)
denote separatively the total activation time of non-FTIS
subsystems and FTIS subsystems in [0, t). If there exist
Lyapunov functions Vi(x, x̂), γi1 ≥ 0, γi2 ≥ 0, such that

γi1‖x− x̂‖2 ≤Vi(x, x̂)≤ γi2‖x− x̂‖2, (2)

V̇i(x, x̂) =
∂Vi(x, x̂)

∂x
fi(x)+

∂Vi(x, x̂)
∂ x̂

fi(x̂)

≤ αiVi(x, x̂), αi > 1, i ∈ Γu, (3)

V̇i(x, x̂)≤ βiVi(x, x̂), 0 < βi < 1, i ∈ Γs. (4)

The following theorem presents the sufficient condition of
FTIS of system (1) with non-FTIS subsystems.

Theorem 1: Consider system (1), if exist multiple in-
cremental Lyapunov functions Vi(x, x̂) and scalar µi > 0
such that

Vi(x, x̂)≤ µiVj(x, x̂), i 6= j, (5)

T+[0, t)≤ a0, a0 > 0, (6)

and (2)-(4) hold, then system (1) is FTIS with MDADT τai

If µi ≥ 1, then

τai ≥ T ln µi/{ln[γ1c2λmin(R)]− ln[γ2c1λmax(R)]

−βT − (α−β )a0−N0i ln µi}, (7)

if 0 < µi < 1, then

0 < τai < T ln µi/{ln[γ1c2λmin(R)]− ln[γ2c1λmax(R)]
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−βT − (α−β )a0−N0i ln µi}, (8)

where α = max
∀i∈Γ

(αi), β = max
∀i∈Γ

(βi), γ1 = min
∀i∈Γ

(γi1), γ2 =

min
∀i∈Γ

(γi2).

Proof: Choose the multiple incremental Lyapunov
functions

Vi(x, x̂) =Vσ(t)(x(tk), x̂(tk)), σ(t) = i.

When t ∈ [tk, tt+1), from (3) and (4), one has

Vσ(t)(x(t), x̂(t))

< eασ(tk )
(t−tk)Vσ(tk) (x(tk), x̂(tk))σ(tk) ∈ Γu, (9)

Vσ(t)(x(t), x̂(t))

< eβσ(tk )
(t−tk)Vσ(tk) (x(tk), x̂(tk))σ(tk) ∈ Γs. (10)

At the switching instant tk, we have σ(tk) = i, σ(t−k ) = j,
i 6= j.

Case 1: When µi ≥ 1, t ∈ [tk, tk+1), one has

Vσ(t)(x(t), x̂(t))≤ µiVσ(t−k )(x(t
−
k ), x̂(t

−
k )). (11)

It follows from (9) and (11) that

Vσ(t)(x(t), x̂(t))

≤ eα(t−t0)µσ(tk)µσ(tk−1) · · ·µσ(t0)Vσ(t0)(x(t0), x̂(t0))

≤ eα(t−t0)
m

∏
i=1

µ
N0i+

T+(0,t)
τai

i Vσ(t0)(x(t0), x̂(t0)), (12)

where σ(tk) ∈ Γu.
From (10) and (11), we obtain

Vσ(t)(x(t), x̂(t))

≤ eβ (t−t0)
m

∏
i=1

µ
N0i+

T−(0,t)
τai

i Vσ(t0)(x(t0), x̂(t0)), (13)

where σ(tk) ∈ Γs.
For any t ∈ (0,T ), T (0, t) = T+(0, t)+T−(0, t), using the
iterative method and Definition 2, it is easy to see based
on (12) and (13) that

Vi(x, x̂)

≤ eαT+(0,t)+β (T−T+(0,t))
m

∏
i=1

µ
N0i+

T (0,t)
τai

i

×Vσ(t0) (x(t0), x̂(t0))

≤ eαT+(0,t)+β (T−T+(0,t))e
m
∑

i=1

(
N0i+

T (0,t)
τai

)
ln µi

×Vσ(t0) (x(t0), x̂(t0)) . (14)

From (2), we have

Vi(x, x̂)
γi2

≤‖ x− x̂ ‖2≤ Vi(x, x̂)
γi1

. (15)

In terms of the inequalities (6), (7) and (12)-(15), one has

(x− x̂)T R(x− x̂)

≤ λmax(R) ‖ x− x̂ ‖2

≤ λmax(R)
γ2

γ1
eαT+(0,t)+β (T−T+(0,t))e

m
∑

i=1

(
N0i+

T (0,t)
τai

)
ln µi

× ‖ x0− x̂0 ‖2

≤ λmax(R)γ2

λmin(R)γ1
eαT+(0,t)+β (T−T+(0,t))e

m
∑

i=1

(
N0i+

T (0,t)
τai

)
ln µi

× (x0− x̂0)
T R(x0− x̂0). (16)

Given positive constant c1, we have

(x0− x̂0)
T R(x0− x̂0)≤

c1

m
≤ c1. (17)

From (16), we have

(x− x̂)T R(x− x̂)

≤ λmax(R)γ2

λmin(R)γ1
e(α−β )a0+βT e

m
∑

i=1

(
N0i+

T (0,t)
τai

)
ln µi c1

m
.

Due to α > 0, 0 < β < 1, one has

e(m−1)(−1)[(α−β )a0+βT ] < 1, (18)

which implies

(x− x̂)T R(x− x̂)≤ mc2

c1
e(m−1)(−1)[(α−β )a0+βT ] c1

m
≤ c2.

Case 2: When 0 < µi < 1, we have

T ln µi

τai
< ln[γ1c2λmin(R)]− ln[γ2c1λmax(R)]

−βT − (α−β )a0−N0i ln µi.

Furthermore, we can get

(x− x̂)T R(x− x̂)≤ mc2

c1
e(m−1)(−1)[(α−β )a0+βT ] c1

m
≤ c2.

Then, system (1) is FTIS. �

Remark 1: In the proof of Theorem 1, condition (6) is
mainly used to obtain the FTIS of the whole system. Com-
pared with literature [4], our theorems can more truly re-
flect the characteristics of the system itself by using to re-
verse MDADT. Each subsystem has its own DT and does
not need to satisfy a common dwell time. In addition,each
subsystem operates independently on each other and will
not be affected each other. The reverse MDADT method
is used to obtain FTIS of the whole system. This is in-
troduced mainly to make sure that the whole system stays
longer in the stable subsystem than in the unstable subsys-
tem.
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4. FINITE-TIME INCREMENTAL H∞ CONTROL
ANALYSIS

In this subsection, we study the following class of NSS:{
ẋ(t) = fσ(t)(x(t))+gσ(t)(x(t))ω(t), x(0) = x0,

y(t) = hσ(t)(x(t)),
(19)

where ω(t) ∈ Rm is the external disturbance input, fi(·),
gi(·) and hi(·) are continuous and locally Lipschitz. It is
also assumed that, for any bounded ω(t) satisfied∫ T

0
ω

T (t)ω(t)dt ≤ d, d ≥ 0, T ≥ 0.

In addition, we further write x(t) and x̂(t) to denote the
two system trajectories under the external disturbance in-
put ω(t) and ω̂(t), respectively, where 4ω(t) = ω(t)−
ω̂(t),4x(t) = x(t)− x̂(t),4y(t) = y(t)− ŷ(t).

Definition 3: Given a switching signal σ(t) ∈ Γ, con-
stants c1 ≥ 0, c2 ≥ 0 satisfying c1 < c2, a positive defi-
nite matrix R and T > 0, for any two initial conditions x0

and x̂0 corresponding to two solutions x(t) and x̂(t) of sys-
tem (1), the NSS in (1) is said to be FTIB with respect to
(c1,c2,T,R,σ ,d) if

(x0− x̂0)
T R(x0− x̂0)≤ c1

=⇒ (x(t)− x̂(t))T R(x(t)− x̂(t))≤ c2, ∀t ∈ (0, T ],

∀4ω(t) :
∫ T

0
4ω

T (t)4ω(t)dt ≤ d.

In what follows, finite-time incremental H∞ control
problem can be described as follows:

Given a constant γ0 > 0, if the following conditions can
be satisfied

1) System (19) is FTIB;
2) When x0 6= x̂0, incremental input 4ω(t) and incre-

mental output4y(t) can be satisfied∫ T

0
(e−sξ − e−T ξ )4 yT (s)4 y(s)ds

≤ γ
2
0

∫ T

0
4ω

T (s)4ω(s)ds+ c0‖x0− x̂0‖2,

where ξ and c0 constants.

If the functions Vi(x, x̂) satisfied the following condi-
tions

γi1‖x− x̂‖2 ≤Vi(x, x̂)≤ γi2‖x− x̂‖2, (20)

V̇i(x, x̂)≤ αiVi(x, x̂)−φ(s),αi > 1, i ∈ Γu, (21)

V̇i(x, x̂)≤ βiVi(x, x̂)−φ(s),0 < βi < 1, i ∈ Γs, (22)

where

φ(s) =4yT (s)4 y(s)− γ
24ω

T (s)4ω(s), γ > 0.

Remark 2: Condition (20) implies that Vi(x, x̂) are
nonnegative continuous radially unbounded functions.
When both FTIS and non-FTIS coexist, inequalities (21)
and (22) can be used to deal with the FTIS of the whole
system. By resorting to the inequalities (21) and (22), the
weight incremental disturbance attenuation property can
be ensured for system (19).

Next, we will give the sufficient condition of FTIB and
the performance index of incremental gain for system (1).

Theorem 2: Consider system (19), if exist multiple in-
cremental Lyapunov functions Vi(x, x̂) and µi > 0 such that

Vi(x, x̂)≤ µiVj(x, x̂), i 6= j, (23)

T+[0, t)≤ a0,a0 > 0,ρ > 0, (24)

(20)-(22) hold, and MDADT τai satisfies
1) When µi ≥ 1,

τai ≥ T ln µi/{{ln[γ1c2λmin(R)]

− ln[γ2c1λmax(R)e(α−β )a0+βT

+λmax(R)λmin(R)γ2deαT
γ1]}/m−N0i ln µi}.

(25)

2) When 0 < µi < 1,

0 < τai

< T ln µi/{{ln[γ1c2λmin(R)

−λmax(R)λmin(R)γ2deαT ]

− ln[γ2c1λmax(R)e(α−β )a0+βT ]}/m−N0i ln µi},
(26)

where α = max
∀i∈Γ

(αi), β = max
∀i∈Γ

(βi), γ1 = min
∀i∈Γ

(γi1), γ2 =

min
∀i∈Γ

(γi2), then system (19) is FTIB and has an incremental

H∞ performance index γ0 > 0.

Proof: When t ∈ [tk, tk+1), from (21) and (22), we can
get

V̇i(x, x̂)≤ αiVi(x, x̂)+ γ
24ω

T (t)4ω(t),

αi > 1, i ∈ Γu,

V̇i(x, x̂)≤ βiVi(x, x̂)+ γ
24ω

T (t)4ω(t),

0 < βi < 1, i ∈ Γs.

This leads to

Vσ(t) (x(t), x̂(t))

≤ eπσ(tk )(t− tk)Vσ(tk) (x(tk), x̂(tk))

+
∫ t

ts
eπσ(tk )

(t−s)
γ

24ω
T (s)4ω(s)ds, (27)

where if σ(t) ∈ Γu, we have πσ(t) = αi; if σ(t) ∈ Γs, we
obtain πσ(t) = βi.
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Case 1: When µi ≥ 1, t ∈ [tk, tk+1), from (23), one has

Vσ(t) (x(t), x̂(t))≤ µiVσ(t−k )

(
x(t−k ), x̂(t

−
k )
)
. (28)

This gives us

Vσ(t) (x(t), x̂(t))

≤ eπσ(tk )
(t−tk)µiVσ(t−k )

(
x(t−k ), x̂(t

−
k )
)

+
∫ t

tk
eπσ(tk )(t− s)γ24ω

T (s)4ω(s)ds. (29)

When t ∈ (0, T ), it can be shown that

Vσ(t) (x(t), x̂(t))

≤ eπσ(tk )
(t−tk)µσ(tk)(e

πσ(tk−1)
(tk−tk−1)

×Vσ(tk−1) (x(tk−1), x̂(tk−1))

+
∫ tk

tk−1

eπσ(tk−1)(tk−s)γ
24ω

T (s)4ω(s)ds)

+
∫ t

tk
eπσ(tk )(t−s)γ

24ω
T (s)4ω(s)ds

≤ µσ(tk)µσ(tk−1)µσ(tk−2) · · ·µσ(t1)µσ(t0)e
πσ(tk )

(t−tk)

× eπσ(tk−1)
(tk−tk−1) · · ·eπσ(t0)(t1−t0)Vσ(t0) (x(t0), x̂(t0))

+µσ(tk)µσ(tk−1)µσ(tk−2) · · ·µσ(t1)µσ(t0)

× eπσ(tk )
(t−tk)eπσ(tk−1)

(tk−tk−1) · · ·eπσ(t1)(t2−t1)

×
∫ t1

t0
eπσ(t0)(t1−s)

γ
24ω

T (s)4ω(s)ds

+ · · ·+µσ(tk)e
πσ(tk )

(t−tk)

×
∫ tk

tk−1

eπσ(tk−1)
(tk−s)

γ
24ω

T (s)4ω(s)ds

+
∫ t

tk
eπσ(tk )

(t−s)
γ

24ω
T (s)4ω(s)ds

< e
m
∑

i=1
Ni(0,t) ln µi

eαT+[0,t)+βT−[0,t)Vσ(t0) (x(t0), x̂(t0))

+
∫ T

t0
eπσ(tk )

(t−s)e
m
∑

i=1
Ni(s,t) ln µi

γ
24ω

T (s)4ω(s)ds.

(30)

From ∀4ω(t) :
∫ T

0 4ωT (s)4ω(s)ds ≤ d, αi > 1, 1 >
βi > 0, we have∫ T

t0
eπσ(tk )

(t−s)
γ

24ω
T (s)4ω(s)ds

=− 1
πσ(tk)

[
eπσ(tk )

(t−T )− eπσ(tk )
(t−t0)

]
dγ

2

≤ 1
πσ(tk)

eπσ(tk )
T dγ

2

≤ 1
α

eαT dγ
2 ≤ eαT dγ

2.

From (30), one has

Vσ(t) (x(t), x̂(t))

< e
m
∑

i=1
Ni(0,t) ln µi

eαT+[0,t)+βT−[0,t)Vσ(t0) (x(t0), x̂(t0))

+
∫ T

t0
eπσ(tk )

(t−s)e
m
∑

i=1
Ni(s,t) ln µi

γ
24ω

T (s)4ω(s)ds

≤ e(α−β )a0+βT e
m
∑

i=1

(
N0i+

T (0,t)
τai

)
ln µi

Vσ(t0) (x(t0), x̂(t0))

+ e
m
∑

i=1

(
N0i+

T (0,t)
τai

)
ln µi

eαT dγ
2. (31)

From (20), we can get

Vi(x, x̂)
γi2

≤‖ x− x̂ ‖2≤ Vi(x, x̂)
γi1

. (32)

Given constant c1, we have (x0− x̂0)
T R(x0− x̂0)≤ c1.

Lastly, it follows from (28)-(32) that

(x− x̂)T R(x− x̂)

≤ λmax(R) ‖ x− x̂ ‖2

≤ λmax(R)[e(α−β )a0+βT e
m
∑

i=1

(
N0i+

T (0,t)
τai

)
ln µi

×Vσ(t0) (x(t0), x̂(t0))+ e
m
∑

i=1

(
N0i+

T (0,t)
τai

)
ln µi

eαT dγ
2]/γ1

≤ λmax(R)γ2

λmin(R)γ1
e

m
∑

i=1

(
N0i+

T (0,t)
τai

)
ln µi

e(α−β )a0+βT c1

+λmax(R)e
m
∑

i=1

(
N0i+

T (0,t)
τai

)
ln µi

eαT dγ
2]/γ1. (33)

Substituting (25) into (33) yields (x− x̂)T R(x− x̂)≤ c2.
Case 2: When 0 < µi < 1, we can get

Vσ(t) (x(t), x̂(t))

< e
m
∑

i=1
Ni(0,t) ln µi

eαT+[0,t)+βT−[0,t)Vσ(t0) (x(t0), x̂(t0))

+
∫ T

t0
eπσ(tk )

(t−s)e
m
∑

i=1
Ni(s,t) ln µi

γ
24ω

T (s)4ω(s)ds

≤ e(α−β )a0+βT e
m
∑

i=1

(
T (0,t)

τai
−N0i

)
ln µi

Vσ(t0) (x(t0), x̂(t0))

+ eαT dγ
2.

Thus, it has

(x− x̂)T R(x− x̂)

≤ λmax(R) ‖ x− x̂ ‖2

≤ λmax(R)γ2

λmin(R)γ1
e

m
∑

i=1

(
T (0,t)

τai
−N0i

)
ln µi

e(α−β )a0+βT c1

+λmax(R)eαT dγ
2/γ1. (34)

According to (26) and (34), one has (x− x̂)T R(x− x̂)≤ c2.
Next, we give incremental H∞ performance index. From

(21), (22) and (31), one has

Vσ(t) (x(t), x̂(t))

≤ e(α−β )a0+βT e
m
∑

i=1
Ni(0,t) ln µi

Vσ(t0) ((x(t0), x̂(t0))
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−
∫ T

0
eπσ(t)(t−s)e

m
∑

i=1
Ni(s,t) ln µi

φ(s)ds,

where

φ(s) =4yT (s)4y(s)− γ
24ω

T (s)4ω(s), γ > 0.

Due to Vσ(t) (x(t), x̂(t))> 0, it follows that

∫ T

0
eπσ(t)(t−s)e

m
∑

i=1
Ni(s,t) ln µi4yT (s)4y(s)ds

≤ e(α−β )a0+βT e
m
∑

i=1
Ni(0,t) ln µi

Vσ(t0) (x(t0), x̂(t0))

+
∫ T

0
eπσ(t)(t−s)e

m
∑

i=1
Ni(s,t) ln µi

γ
24ω

T (s)4ω(s)ds.

(35)

Case 3: When µi ≥ 1, we have

τai ≥ T ln µi/{{ln[γ1c2λmin(R)]− ln[γ2c1λmax(R)

× e(α−β )a0+βT +λmax(R)λmin(R)γ2deαT
γ1]}/m

−N0i ln µi}.

Using (35), it further has

(I) =
∫ T

0
eπσ(t)(t−s)e

m
∑

i=1
Ni(s,t) ln µi

γ
24ω

T (s)4ω(s)ds

≤
∫ T

0
eπσ(t)(t−s)e

m
∑

i=1

(
N0i+

T (s,t)
τai

)
ln µi

γ
24ω

T(s)4ω(s)ds

≤ e
m
∑

i=1
N0i ln µi

γ
2
∫ T

0
e

[
πσ(t)+

m
∑

i=1

ln µi
τai

]
(t−s)
4ω

T(s)4ω(s)ds.

Let m1 = e
m
∑

i=1
N0i ln µi

, m2 = πσ(t)+
m
∑

i=1

ln µi
τai

, we can obtain

m1γ
2
∫ T

0

(∫ T

s
em2(t−s)4ω

T (s)4ω(s)dt
)

ds

= m1γ
2
∫ T

0

1
m2

(
em2(T−s)−1

)
4ω

T (s)4ω(s)ds

≤ m1γ2

m2
(em2T −1)

∫ T

0
4ω

T (s)4ω(s)ds. (36)

(II) =
∫ T

0
eπσ(t)(t−s)e

m
∑

i=1
Ni(s,t) ln µi4yT (s)4y(s)ds

≥
∫ T

0
eπσ(t)(t−s)e

m
∑

i=1

(
Ti(s,t)

τai
−N0i

)
ln µi4yT (s)4y(s)ds

≥ e
−

m
∑

i=1
N0i ln µi

∫ T

0
e

[
πσ(t)+

m
∑

i=1

ln µi
τai

]
(t−s)
4yT (s)4y(s)ds.

Let m3 = e
−

m
∑

i=1
N0i ln µi

, it has

m3

∫ T

0

(∫ T

s
em2(t−s)4yT (s)4y(s)dt

)
ds

=
m3

m2

∫ T

0

(
em2(T−s)−1

)
4yT (s)4y(s)ds. (37)

Let m4 = e(α−β )a0+βT e
m
∑

i=1
Ni(0,t) ln µi

, m5 =
m
∑

i=1

ln µi
τai

, it has

m4

∫ T

0
etm5Vσ(t0) (x(t0), x̂(t0))dt

=
m4

m5

(
eT −1

)
Vσ(t0) (x(t0), x̂(t0)) . (38)

Thus, we can get∫ T

0

(
e−sm2 − e−T m2

)
4yT (s)4y(s)ds

≤ γ
2
0

∫ T

0
4ω

T (s)4ω(s)ds+ c0‖x0− x̂0 ‖2,

where

γ
2
0 =

m1γ2(eT m2 −1)
m3eT m2

,c0 =
m2m4(eT −1)

m3m5eT m2
.

Case 4: When 0 < µi < 1, it has

0 < τai

< T ln µi/{{ln[γ1c2λmin(R)

−λmax(R)λmin(R)γ2deαT ]

− ln[γ2c1λmax(R)e(α−β )a0+βT ]}/m−N0i ln µi}.

From (35), we have∫ T

0
eπσ(t)(t−s)e

m
∑

i=1
Ni(s,t) ln µi

γ
24ω

T (s)4ω(s)ds

≤
∫ T

0
eπσ(t)(t−s)e

m
∑

i=1

(
Ti(s,t)

τai
−N0i

)
ln µi

γ
24ω

T (s)4ω(s)ds

≤ e
−

m
∑

i=1
N0i ln µi

× γ
2
∫ T

0
e

(
πσ(t)+

m
∑

i=1

ln µi
τai

)
(t−s)
4ω

T (s)4ω(s)ds.

Let G1 = e
−

m
∑

i=1
N0i ln µi

, G2 = πσ(t)+
m
∑

i=1

ln µi
τai

, it has

G1γ
2
∫ T

0

(∫ T

s
eG2(t−s)4ω

T (s)4ω(s)dt
)

ds

= G1γ
2
∫ T

0

1
G2

(
eG2(T−s)−1

)
4ω

T (s)4ω(s)ds

≤ G1γ2

G2

(
eG2T −1

)∫ T

0
4ω

T (s)4ω(s)ds. (39)

And we can further get∫ T

0
eπσ(t)(t−s)e

m
∑

i=1
Ni(s,t) ln µi4yT (s)4y(s)ds

≥
∫ T

0
eπσ(t)(t−s)e

m
∑

i=1

(
T (s,t)

τai
+N0i

)
ln µi4yT (s)4y(s)ds
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≥ e
m
∑

i=1
N0i ln µi

∫ T

0
e

[
πσ(t)+

m
∑

i=1

ln µi
τai

]
(t−s)
4yT (s)4y(s)ds.

(40)

Let G3 = e
m
∑

i=1
N0i ln µi

, it has

G3

∫ T

0

(∫ T

s
eG2(t−s)4yT (s)4y(s)dt

)
ds

=
G3

G2

∫ T

0

(
eG2(T−s)−1

)
4yT (s)4y(s)ds.

Let G4 = e(α−β )a0+βT e
−

m
∑

i=1
Ni(0,t) ln µi

, G5 =
m
∑

i=1

ln µi
τai

, it has

G4

∫ T

0
etG5Vσ(t0) (x(t0), x̂(t0))dt

=
G4

G5

(
eT −1

)
Vσ(t0) (x(t0), x̂(t0)) . (41)

Thus, we have∫ T

0

(
e−sG2 − e−T G2

)
4yT (s)4y(s)ds

≤ γ
′2
0

∫ T

0
4ω

T (s)4ω(s)ds+ c′0‖x0− x̂0 ‖2,

where

γ
′2
0 =

G1γ2(eT G2 −1)
G3eT G2

, c′0 =
G2G4(eT −1)

G3G5eT G2
.

Then, one has that∫ T

0

(
e−sξ − e−T ξ

)
4yT (s)4y(s)ds

≤ γ
2
0

∫ T

0
4ω

T (s)4ω(s)ds+ c0‖x0− x̂0 ‖2 . (42)

�

Remark 3: Inequality (42) describes the weighted in-
terference attenuation level of from 4ω(s) to 4y(s). By

using the reverse MDADT method, the ξ = πσ(t)+
m
∑

i=1

ln µi
τai

can be obtained and the weighted term e−sξ −e−T ξ cannot
be eliminated in (44).

5. EXAMPLE

In this section, the developed theory about FTIS will be
demonstrated using a practical example system.

Consider the tunnel-diode circuit shown in Fig. 1,
where the tunnel diode is characterized by iR = h(υR). The
energy-storing elements in this circuit are the capacitor C
and the inductor L. Assuming they are linear and time in-
variant, we can model them by

iC =C
dvC

dt
, υL = L

diL
dt

,

Fig. 1. The tunnel-diode circuit system.

where i and υ are the current through and the voltage
across an element, with the subscript specifying the ele-
ment. To write a state model for the system, let us take
x1 = υC and x2 = iL as the state variables and u = E as a
constant input. To write the state equation for x1, we need
to express iC as a function of the state variables x1, x2 and
the input u. Using Kirchhoff’s law, we have

iC + iR− iL = 0, vC−E +RiL +υL = 0.

Hence, we can now write the state model for the circuit
as

ẋ1 =
1
C
[−h(x1)+ x2],

ẋ2 =
1
L
[−x1−Rx2 +u].

By choosing different parameters, we can get the fol-
lowing two subsystems

f1(x) =
(
−2x1− x3

1
−3x2

)
, (43)

f2(x) =
(

x1 + x2

−x1 + x2

)
. (44)

Choose the storage functions as follows:

V1(x, x̂) =
1

32
(x1− x̂1)

2 +
1

32
(x2− x̂2)

2, (45)

V2(x, x̂) = 4(x1− x̂1)
2 +4(x2− x̂2)

2. (46)

Thus, we have

V̇1(x, x̂)≤−
1
8
(x1− x̂1)

2− 3
16

(x2− x̂2)
2

− 1
16

(x1− x̂1)
2 (x2

1 + x1x̂1 + x̂2
1

)
≤ 1

2
[

1
32

(x1− x̂1)
2 +

1
32

(x2− x̂2)
2]

≤ 1
2

V1(x, x̂), (47)

V̇2(x, x̂) = 8(x1− x̂1)
2 +8(x2− x̂2)

2

≤ 2.1V2(x, x̂), (48)

where α = 2.1, β = 0.5, γ1 = γ2 = 2. Let c1 = 1, c2 =
128, T = 3, a0 = 0.01, R = 1, t = 1, N0i = 1, µ = 2,
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Fig. 2. The state response of subsystem (43).
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Fig. 3. The state response of subsystem (44).

Fig. 4. The state response of subsystem (43) and (44).

σ(t) ∈ {1,2}, we can obtain the MDADT τai ≥ 0.7868.
Choosing the initial states x1(0) = 1.2, x̂1(0) = 2, x2(0) =
2.1, x̂2(0) = 2.6. Obviously, (x0− x̂0)

T R(x0− x̂0) = ‖x0−
x̂0‖2 = 0.89 < 1.

The simulation results are depicted in Figs. 2-4. How-
ever, Fig. 2 shows the response (x− x̂)T R(x− x̂) = ‖x−
x̂‖2 < 128 of the subsystem (43), i.e., the subsystem (43) is
FTIS. Moreover, Fig. 3 implies the response (x− x̂)T R(x−
x̂) = ‖x− x̂‖2 = ‖x1− x̂1‖2 + ‖x2− x̂2‖2 ' 339 > 128 of
the subsystem (44), i.e., the subsystem (44) is FTI unsta-
ble. According to Theorem 1, Fig. 4 implies that the whole

Table 1. The change in MDADT τai when µ = 2.

α 1.1 1.1 1.2 1.5
β 0.1 0.6 0.1 0.5

τai ≥ 0.540271 0.883409 0.540412 0.785026

Table 2. The change in MDADT τai when µ = 1
2 .

α 500 500 800 1000
β 0.4 0.8 0.4 0.99

0 < τai < 3.195098 1.125956 0.569582 0.28044

switched system satisfies (x− x̂)T R(x− x̂) = ‖x− x̂‖2 <
128 in [0, 3]. In other words, the switched system (43) and
(44) is FTIS.

In fact, when µ = 2, Table 1 shows that if α and β are
increasing, then the value range of MDADT τai is reduced.
In addition, when µ = 1

2 , Table 2 shows that the inter-
val range of MDADT τai is also gradually reduced along
with α and β . Different parameters α and β lead to dif-
ferent convergence rates of the system. It is not difficult to
see that the total MDADT of FTI unstable subsystems are
very conservative to some extent by virtue of the method
proposed to this note. When the system is running, the
MDADT of the whole system in the unstable subsystem
is not always less than a0. However, this article always as-
sumes that the MDADT in the unstable subsystem is less
than a0. Hence, how to reduce the conservatism is our fu-
ture work.

6. CONCLUSION

This mote solves the FTIS problem of NSS with unsta-
ble subsystems. New FTIS results are developed. By us-
ing the reverse MDADT approach, a sufficient condition
has been obtained for NSS to be FTIB with incremental
H∞ performance index. For nonlinear switched systems
with unstable systems, the reverse MDADT is designed
to achieve finite-time incremental stability regulation.

There exists several potential future research direc-
tions arising from this paper: i) One possible research
direction is to extend these results to time-varying vec-
tor fields, in order to cover time-varying parameters and
time-varying delays. ii) Based on the proposed reverse
MDADT, stochastic finite-time incremental stability will
be future studied for stochastic switched system.
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