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Adaptive Decentralized Event-triggered Tracking Control for Large-scale
Strongly Interconnected Nonlinear System with Global Performance
Wenjing Yang, Jianwei Xia* � , Xiaoxiao Guo, Miao Yu, and Na Zhang

Abstract: In this paper, an adaptive decentralized event-triggered global performance control of a class of large-
scale strongly interconnected nonlinear systems with external disturbances is investigated. Firstly, the original per-
formance constrained large-scale nonlinear system is transformed into an equivalent unconstrained nonlinear large-
scale system by barrier function transformation. Secondly, the additional assumptions of interconnect terms such as
upper bound function and matching conditions are eliminated by using the inherent properties of Gaussian function.
In addition, an event-triggered mechanism is designed to reduce unnecessary transfers between the controller and
the actuator for better resource efficiency. It is shown that the proposed control schemes guarantee that all signals
of the closed-loop system are bounded, and the output tracking error is always kept within the given boundary.
Finally, a numerical system and a mass-spring damping system are taken as examples to verify the effectiveness of
the proposed control method.
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1. INTRODUCTION

In the past few decades, the decentralized control of
large-scale nonlinear systems has attracted handsome at-
tention. Compared with centralized control, decentralized
control is a control mechanism that only needs local sig-
nals to construct controller, which can simplify the con-
trol process and reduce the amount of calculation. Many
important results have been achieved in the decentralized
control of large-scale nonlinear systems, such as [1-5].
However, the above control methods have certain limita-
tions in that the uncertain nonlinearities in the system are
either certain linear functions with unknown parameters or
scoped by known nonlinear functions. To remove the con-
straint, adaptive decentralized control methods using neu-
ral networks [6-8] or fuzzy logic systems [9-11] to identify
unknown nonlinear functions have been widely studied.
In [6], the decentralized output feedback control mecha-
nism of adaptive neural network was proposed for uncer-
tain large-scale interconnected nonlinear system with non-
constant control gain. In [10], an improved fault-tolerant
controller was constructed by using fuzzy control for a
class of nonstrict-feedback nonlinear systems with actua-
tor faults, which ensured that all signals in the closed-loop
system are semi-globally finite-time stable.

On the other hand, adaptive event-triggered control

for nonlinear system has attracted extensive attention.
Different from traditional time-triggered control, event-
triggered control is a control mechanism that applies the
controller output to the system only when the system
needs it. It can effectively save communication resources
and reduce communication burden. Lately, some adap-
tive event-triggered control schemes have been proposed
by combining fuzzy and neural network approximation
methods with backstepping techniques for nonlinear sys-
tems with different triggering mechanisms, see [12-19].
A fuzzy adaptive finite-time event-triggered control strat-
egy on the basis of variable threshold scheme was came
up with in [12] for a class of stochastic nonlinear systems
with unmodeled dynamics. In [16], a new adaptive event-
triggered mechanism was contrived for a class of uncer-
tain strict-feedback nonlinear systems such that the con-
troller and parameter estimators were triggered simultane-
ously. However, the above control scheme cannot be em-
ployed to control the transient behavior and steady-state
performance of the system. In many practical applications,
in addition to tracking stability, we often need the track-
ing performance of the system to meet our predetermined
constraints, and require the system to achieve the desired
steady-state tracking accuracy.

Recently, predefined performance control (PPC) tech-
nology has attracted wide attention once it was proposed

Manuscript received February 12, 2022; revised May 13, 2022; accepted June 15, 2022. Recommended by Associate Editor Wenhai Qi under
the direction of Senior Editor Jessie (Ju H.) Park. This work was supported by Natural Science Foundation of China(No. 61973148).

Wenjing Yang, Jianwei Xia, Xiaoxiao Guo, Miao Yu, and Na Zhang are with the School of Mathematics Science, Liaocheng Univer-
sity, Liaocheng 252000, China (e-mails: yangwenjing1024@163.com, njustxjw@126.com, 1710500590@qq.com, {yumiao13475726513,
zhangna20210323}@163.com).
* Corresponding author.

©ICROS, KIEE and Springer 2023

http://www.springer.com/12555
https://orcid.org/0000-0002-5330-9349


1548 Wenjing Yang, Jianwei Xia, Xiaoxiao Guo, Miao Yu, and Na Zhang

in [20]. This method deals with predefined performance
constraint by drawing on prescribed performance func-
tions (PPF) and constructing error variations, see [21-28].
In [23], an adaptive predetermined performance control
manner was proposed for a sort of uncertain nonlinear
systems with unknown actuator faults and gap nonlinear-
ity simultaneously by using command filtering theory. In
[26], an adaptive prescribed performance controller was
designed by utilizing backstepping technique for a cat-
egory of strict-feedback nonlinear system with zero dy-
namics, which can ensure that the tracking error always
evolves within the performance constraints and converges
asymptotically to zero. However, the control methods de-
scribed above depend on initial conditions and are semi-
global results. To remove the constraints on the initial
condition, Zhao et al. [29] proposed an improved prede-
fined performance tracking control method, which make
the tracking error not only evolve in a predefined fun-
nel, but also achieve global asymptotic stability. However,
as far as the authors know, there are few research results
on event-triggered tracking control for nonlinear intercon-
nected systems with global performance constraints. This
is what drives our research.

Based on the above discussion, this paper will study
the problem of adaptive event-triggered control for a cate-
gory of large-scale nonlinear strongly interconnected sys-
tems with global performance and external disturbance.
The main contributions of this article are as follows:

1) Compared with the based-PPF predefined perfor-
mance control in [24-28], where the requirements on
initial conditions are relaxed in this paper such that
the initial value of the proposed prescribed function
is infinite instead of a bounded constant

2) Compared with existing control of large-scale in-
terconnected systems [6-11] in which the intercon-
nection term is constrained by a known or partially
known function, the proposed decentralized control
scheme in this paper removes such conditions, and
thus successfully handles the completely unknown
strongly interconnection term.

3) Compared with the results of [20-23], an event-
triggered controller is designed by using neural net-
work system, event-triggered mechanism and back-
stepping technique, and the proposed controller can
effectively reduce the transmission burden between
the controller and the actuator, and greatly save com-
munication resources.

The rest of the work is arranged as below: In Section
2, the preliminary knowledge and system statement are
shown. The dynamic event-triggered scheme is designed
in Sections 3-5. The effectiveness of the proposed method
is demonstrated by the simulation results in Section 6. Fi-
nally, concludes this study in Section 7.

2. PROBLEM FORMULATION

In this paper, we consider a class of large-scale nonlin-
ear systems with nonstrict-feedback structure, which con-
sists of N interconnected subsystems, the ith subsystem
(i = 1, . . ., N) can be modeled as follows:

ẋi j = xi j+1 + fi j(xi)+gi j(x1, · · · ,xN)+di j(t),
ẋini = ui + fini(xi)+gini(x1, · · · ,xN)+dini(t),
yi = xi1,

(1)

where j = 1, · · · , ni− 1, xi = [xi1, . . ., xini ]
T ∈ Rni , ui ∈ R,

yi ∈ R, i = 1, . . ., N represent the system state vector, input
and output respectively. fi j(xi) : Rni −→ R is an unknown
smooth function. gi j(x1, · · · ,xN) is an unknown smooth
function representing the interconnection between the ith
subsystem and other subsystems. di j(t) is an external dis-
turbance.

Below we will give some theorems and assumptions to
facilitate the subsequent research:

Assumption 1: The desired trajectory ydi (i = 1, · · · ,
N), and its ni-th derivatives are known, bounded, and
piecewise continuous.

Assumption 2: External disturbances di j(t) satisfying

|di j(t)| ≤ di j. (2)

Assumption 3: There exist ideal constant weights θ ∗,
such that |σ | ≤σ with unknown constant σ for all X ∈ΛX .

Next, we introduce the basic work of NNs. Radial basis
NNs is a linear parameterized neural networks, which can
be expressed as

fnn(θ ,X) = θ
TW (X), (3)

where X = [X1, · · · , Xni ] ⊂ Rni is the input vector, ni is
the input dimension of the NNs; θ = [θ1, · · · , θl ]

T ⊂ Rl

is the weight vector of NNs, l > 1 is the number of
nodes of NNs; W (X) = [W1(X), · · · , Wl(X)]T is the ra-
dial basis function vector, Wi(X) is the basis function,
which usually selected as a Gaussian function Wi(X) =

exp
[
− (X−Φi)

T (X−Φi)
%2

i

]
, where i = 1, · · · , l, Φi = [Φi1, · · · ,

Φini ] is the center of the basis function and %i is the height
of the Gaussian function.

Lemma 1 [6]: f (X) be a uncertain continuous and
smooth function defined on a compact set ΛX , for any
given constant σ , there exists a neural network system
such that

f (X) = θ
∗TW (X)+σ(X), (4)

where θ ∗ = arg min
θ⊂Rl

{
sup

X⊂ΛX

| f (X)−θ TW (X)|
}

is the opti-

mal weight. σ represent the minimum approximation er-
ror.
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Lemma 2 [30]: For xq = [x1, · · · , xq]
T , the basis func-

tion vector of a radial basis function neural network is de-
fined as W (xq) = [W1(xq), · · · , Wl(xq)]

T . When any posi-
tive integer k ≤ q, the following inequality holds

W T (xq)W (xq)≤W T (xk)W (xk). (5)

Based on the above assumptions, the control objective in
this paper is to design a event-triggered controller ui for
system (1) such that

1) All signals of the closed-loop system are bounded.
2) The tracking error always evolves in a predetermined

performance region.

3. PRESCRIBED PERFORMANCE FUNCTION

To achieve the control objective, we construct the fol-
lowing performance function

Ii(γi(t)) =
√

λiγi(t)√
1− γ2

i (t)
, i = 1, · · · ,N, (6)

where λi is a designed constant, γi(t) = 1
ϕi(t)

. ϕi(t) is
a monotonically increasing function, and its derivative
ϕ
(k)
i (t), k = 0,1, · · · ,ni is bounded and piecewise con-

tinue. The initial of ϕi(t) is defined as ϕi(0) = 1 and
lim
t→∞

ϕi(t) = 1
ϕ i

, 0 < ϕ i < 1 is a constant. Thus, γi(t) is a

strictly monotonically decreasing function, γi(0) = 1 and
lim
t→∞

γi(t) = ϕ i. According to (6), Ii(γi(t)) is a monotoni-
cally decreasing function with respect to time, i.e.,Ii(γi(0)) = Ii(1) = ∞,

lim
t→∞

Ii(γi(t)) = Ii(ϕ i) =
√

λiϕ i√
1−ϕ

2
i

.

If λi is chosen as λi = 1−ϕ
2
i , then lim

t→∞
Ii(γi(t)) = ϕ i.

Remark 1: Compared with PPF in [28], the initial
value of the prescribed performance function Ii(γi(t)) pro-
posed in this paper is infinite instead of a bounded con-
stant, which loosens the requirements on initial condi-
tions.

The prescribed region is defined as the set

Fγi := {(t,ei)∈R+×RN | Ii(−γi(t))< ei < Ii(γi(t))},
(7)

where i = 1, · · · , N, ei = yi− ydi is the tracking error. The
trajectory of tracking errors under predetermined perfor-
mance boundary is shown in Fig. 1. From Fig. 1 we can
see that the performance function Ii(γi(t)) converges from
infinity to a bounded constant. The second control objec-
tive can be achieved if we can design an controller so that
the tracking error evolves within the performance region,
i.e., (t,ei) ∈ Fγi , ∀t > 0.

 I(  (t))e (0)

(0, 0)

Fig. 1. A diagram of the prescribed tracking behavior.

To achieve the control objective, we define the follow-
ing error transformation

ϖi(ei) =
ei√

λi + e2
i

. (8)

Remark 2: We know from (8) that ϖi(ei) is a strictly
monotonically increasing function, and ϖi(ei) ∈ (−1,1),
for ei ∈ R. Thus, if ϖi(ei) is bounded, then ei =

ϖi
√

λi√
1−ϖ2

i

is

bounded.

4. EVENT-TRIGGERED CONTROLLER

In this section, an event-triggered controller is designed
for system. Using the definitions of ϕi(t) and ϖi(ei) given
in Section 3, we define the following function

ϑi(t) = ϕi(t)ϖi(ei). (9)

To eliminate the effect of performance constraints, the
following barrier function is adopted

zi1(t) =
ϑi

1−ϑ 2
i
. (10)

From the expression of zi1(t), we can see that as long
as initial condition |ϑi(0)|< 1, the properties zi1(t)→+∞

⇔ ϑi→+1, zi1(t)→−∞⇔ ϑi→−1 are obtained. Thus,
in the initial condition |ϑi(0)|< 1, zi1(t) must be bounded
as long as ϑi is bounded.

Remark 3: If there is a constant ε̄i such that |ϑi(t)| ≤
ε̄i < 1, according to (9) and the function ϖi(ei), it can be
inferred that

−γi(t) = −
1

ϕi(t)
<− ε̄i

ϕi(t)
≤ ϖi ≤

ε̄i

ϕi(t)

≤ 1
ϕi(t)

= γi(t).
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Thus, from (8) and the properties of the function I(γi), we
have

I(−γi(t))< I(ϖi) = ei < I(γi(t)).

Based on the above analysis and Remark 3, we use the
barrier function to transform the system with performance
constraint into an equivalent unconstraint system. Hence,
as long as we can assure that ϑi(t) is bounded, the track-
ing error will evolve within a predetermined performance
range under the initial condition |ϑi(0)|< 1.

Now, we give the recursive design by the following
steps.

Step iii, 1: Define error transformation as follows:{
zi1 =

ϑi
1−ϑ 2

i
,

zi j = xi j−αi j−1, j = 2, · · · , ni,
(11)

where αi j−1 is the virtual controller. To develop a
backstepping-based design procedure, we define a con-
stant as follows:

ζ
∗
i = max{‖ θ

∗
i1 ‖

2, · · · ,‖ θ
∗
ini
‖2}. (12)

From (6), (9) and the definition of zi1, we obtain the deriva-
tive of zi1

żi1(t) = ηi1(ϕ̇iϖi +ϕiϖ̇i)

= ηi1ϕ̇iϖi + γiηi1ηi2ėi

= µi1 +µi2(αi1 + zi2− ẏdi + fi1(xi)

+di1(t)+gi1(x1, · · · ,xN)), (13)

where

ηi1 =
1+ϑ 2

i

(1−ϑ 2
i )

2 ,

ηi2 =
λi√

λi + e2
i (λi + e2

i )
,

µi1 = ηi1ϕ̇iϖi,

µi2 = ϕiηi1ηi2.

Select the following Lyapunov function candidates

Vi1 =
1
2

z2
i1 +

1
2ri

ζ̃
2
i , (14)

where ζ̃i = ζ ∗i − ζ̂i, ζ̂i is the estimate of ζ ∗i , and ri is a
positive constant.

The derivative of Vi1 is

V̇i1 = zi1[µi1 +µi2(zi2 +αi1 + fi1 +di1(t)

+gi1(x1,x2, · · ·xN)− ẏdi)]−
1
ri

ζ̃i
˙̂
ζi. (15)

Using Young’s inequality and Assumption 2, we have

zi1µi2di1(t)≤
1
2

µ
2
i2z2

i1 +
1
2

d
2
i1. (16)

where di1 is a positive constant. Substituting (16) into (15)
yields

V̇i1 ≤ zi1[µi1 +µi2(zi2 +
1
2

µi2zi1 +αi1 +hi1(Si1))]

− 1
ri

ζ̃i
˙̂
ζi +

1
2

d̄2
i1, (17)

where hi1(Si1) = fi1(xi)+gi1(x1,x2, · · ·xN)− ẏdi , Si1 = [xT
1 ,

xT
2 , · · · , xT

N , ydi , ẏdi ]
T . Since hi1(Si1) is an unknown func-

tion, we use a neural network to model the unknown func-
tion hi1(Si1), and for σi1 > 0, we can obtain the following

hi1(Si1) = θ
∗
i1

TWi1(Si1)+σi1(Si1), (18)

where |σi1| ≤ σ i1 and σ i1 > 0 is positive constant. By uti-
lizing Lemma 2 and Young’s inequality, one can obtain
that

zi1µi2hi1(Si1) = zi1µi2[θ
∗T

i1Wi1(Si1)+σi1(Si1)]

≤ 1
2c2

i1
µ

2
i2z2

i1ζ
∗
i W T

i1 Wi1 +
1
2

c2
i1

+
1
2

µ
2
i2z2

i1 +
1
2

σ
2
i1, (19)

where Wi1 =Wi1(Zi1), Zi1 = [xi1, ydi , ẏdi ]
T , and ci1 is a pos-

itive constant. From (19), (17) can be rewritten

V̇i1 ≤ zi1[µi1 +µi2(zi2 +αi1 +
1

2c2
i1

µi2zi1ζ̂iW T
i1 Wi1

+µi2zi1)]+
ζ̃i

ri
(

ri

2c2
i1

µ
2
i2z2

i1W
T
i1 Wi1− ˙̂

ζi)

+
1
2

σ
2
i1 +

1
2

c2
i1 +

1
2

d̄2
i1. (20)

Define the virtual controller αi1 as follows:

αi1 =−
1

2c2
i1

µi2zi1ζ̂iW T
i1 Wi1− li1µ

−1
i2 zi1

−µi2zi1−µ
−1
i2 µi1, (21)

where li1 is designed positive constant.
Substituting (21) into (20), one has

V̇i1 ≤−li1z2
i1 +µi2zi1zi2 +

ζ̃i

ri
(

ri

2c2
i1

µ
2
i2z2

i1W
T
i1 Wi1

− ˙̂
ζi)+

1
2

σ
2
i1 +

1
2

c2
i1 +

1
2

d̄2
i1. (22)

Step iii, 2: Taking the derivative of zi2, we have

żi2 = zi3 +αi2 +di2(t)+ fi2(xi)− α̇i1

+gi2(x1,x2, · · ·xN), (23)

where

α̇i1 =
∂αi1

∂xi1
ẋi1 +

1

∑
k=0

∂αi1

∂y(k)di

y(k+1)
di

+
∂αi1

∂ ζ̂i

˙̂
ζi
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+
1

∑
k=0

∂αi1

∂ϕ
(k)
i

ϕ
(k+1)
i .

The following Lyapunov function candidate Vi2 is de-
fined

Vi2 =Vi1 +
1
2

z2
i2. (24)

Derivative of Vi2, one has

V̇i2 = V̇i1 + zi2(αi2 +di2(t)+gi2(x1,x2, · · ·xN)

+ zi3− α̇i1 + fi2(xi)). (25)

As the same of (16), we have

zi2di2(t)≤
1
2

z2
i2 +

1
2

d
2
i2. (26)

Substituting (26) into (25), it can be obtained

V̇i2 ≤ V̇i1 + zi2(αi2 +
1
2

zi2 + zi3 +hi2(Si2))+
1
2

d
2
i2, (27)

where hi2(Si2)= fi2(xi)+gi2(x1,x2, · · ·xN)−α̇i1, Si2 = [xT
1 ,

xT
2 , · · · , xT

N , ydi , ẏdi ]
T . Since hi2(Si2) is an unknown func-

tion, we use a neural network to model the unknown func-
tion hi2(Si2), and for σi2 > 0, we can obtain

hi2(Si2) = θ
∗
i2

TWi2(Si2)+σi2(Si2), (28)

where |σi2| ≤ σ i2 and σ i2 > 0 is positive constant. By uti-
lizing Lemma 2 and Young’s inequality, one can obtain
that

zi2hi2(Si2)≤
1

2c2
i2

z2
i2ζ
∗
i W T

i2 Wi2 +
1
2

c2
i2 +

1
2

z2
i2 +

1
2

σ
2
i2,

(29)

where Wi2 =Wi2(Zi2), Zi2 = [xi1, xi2, ydi , ẏdi ]
T , and ci2 is a

positive constant. From (29), (27) can be rewritten

V̇i2 ≤−li1z2
i1 +

2

∑
m=1

1
2

c2
im +

ζ̃i

ri
(

ri

2c2
i1

µ
2
i2z2

i1W
T
i1 Wi1

+
ri

2c2
i2

z2
i2W

T
i2 Wi2− ˙̂

ζi)+ zi2(µi2zi1 + zi3

+αi2 +
1

2c2
i2

zi2ζ̂iW T
i2 Wi2 + zi2)

+
2

∑
m=1

1
2

σ
2
im +

2

∑
m=1

1
2

d
2
im. (30)

Define the virtual controller αi2 as follows:

αi2 =−µi2zi1− li2zi2−
1

2c2
i2

zi2ζ̂iW T
i2 Wi2− zi2, (31)

where li2 is designed positive constant.
Substituting (31) into (30), one has

V̇i2 ≤−
2

∑
m=1

limz2
im +

ζ̃i

ri
(

ri

2c2
i1

µ
2
i2z2

i1W
T
i1 Wi1

+
ri

2c2
i2

z2
i2W

T
i2 Wi2− ˙̂

ζi)+
2

∑
m=1

1
2

σ
2
im

+
2

∑
m=1

1
2

c2
im +

2

∑
m=1

1
2

d
2
im. (32)

Step iii, jjj ( j = 3, . . ., ni−1): Taking the derivative of zi j,
we have

żi j = zi j+1 +αi j +di j(t)+ fi j(xi)− α̇i j

+gi j(x1, · · · ,xN), (33)

where

α̇i j−1 =
j−1

∑
k=1

∂αi j−1

∂xik
ẋik +

j−1

∑
k=0

∂αi j−1

∂yd(k)
i

y(k+1)
di

+
j−1

∑
k=0

∂αi j−1

∂ϕ
(k)
i

ϕ
(k+1)
i +

∂αi1

∂ ζ̂i

˙̂
ζi.

We choose the following Lyapunov function candidate
as follows:

Vi j =Vi j−1 +
1
2

z2
i j. (34)

Derivative of Vi j, one has

V̇i j = V̇i j−1 + zi j(zi j+1 + fi j(xi)+gi j(x1, · · · ,xN)

+αi j +di j(t)− α̇i j). (35)

As the same of (26), we have

zi jdi j(t)≤
1
2

z2
i j +

1
2

d
2
i j. (36)

Substituting (36) into (35), we get

V̇i j ≤ V̇i j−1 + zi j(zi j+1 +αi j +hi j(Si j)+
1
2

zi j)+
1
2

d
2
i j,

(37)

where hi j(Si j) = fi j(xi)− α̇i j + gi j(x1, · · · ,xN), Si j = [xT
1 ,

xT
2 , · · · , xT

N , ydi , ẏdi ]
T . Since hi j(Si j) is an unknown func-

tion, we use a neural network to model the unknown func-
tion hi j(Si j), and for σi j > 0, we can obtain

hi j(Si j) = θ
∗
i j

TWi j(Si j)+σi j(Si j), (38)

where |σi j| ≤ σ i j and σ i j > 0 is positive constant. By uti-
lizing Lemma 2 and Young’s inequality, one can obtain
that

zi jhi j(Si j)≤
1

2c2
i j

z2
i jζ
∗
i W T

i j Wi j +
1
2

c2
i j +

1
2

z2
i j +

1
2

σ
2
i j,

(39)

where Wi j =Wi j(Zi j), Zi j = [xi1, xi2, · · · , xi j, ydi , ẏdi ]
T , and

ci j is a positive constant. From (39), (37) can be rewritten

V̇i j ≤−
j−1

∑
m=1

limz2
im +

j

∑
m=1

1
2

σ
2
im + zi j(zi j+1 +αi j
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+
1

2c2
i j

zi jζ̂iW T
i j Wi j + zi j + zi j−1)+

j

∑
m=1

1
2

c2
im

+
j

∑
m=1

1
2

d
2
im +

ζ̃i

ri
(

ri

2c2
i1

µ
2
i2z2

i1W
T
i1 Wi1

+
j

∑
m=2

ri

2c2
im

z2
imW T

imWim− ˙̂
ζi). (40)

Define the virtual controller αi j as follows:

αi j =−zi j−1− li jzi j−
1

2c2
i j

zi jζ̂iW T
i j Wi j− zi j, (41)

where li j is designed positive constant.
Substituting (41) into (40), one has

V̇i j ≤−
j

∑
m=1

limz2
im +

j

∑
m=1

1
2

c2
im + zi jzi j+1 +

j

∑
m=1

1
2

σ
2
im

+
j

∑
m=1

1
2

d
2
im +

ζ̃i

ri
(

ri

2c2
i1

µ
2
i2z2

i1W
T
i1 Wi1

+
j

∑
m=2

ri

2c2
im

z2
imW T

imWim− ˙̂
ζi). (42)

Step iii, nnni: The event triggering controller is designed as

ωi(t) =−(1+ ki)(αini tanh
zini αini

εi
+κ i tanh

zini κ i

εi
),

(43)

ui(t) = ωi(tk),∀t ∈ [tk, tk+1), (44)

which the event triggering mechanism is defined as

tk+1 = inf{t > tk | |ηi| ≥ ki|ui|+qi}, (45)

where ηi(t)=ωi(t)−ui(t), qi > 0, 0< ki < 1 and κ̄i >
qi

1−ki

are positive parameters that need to be designed. From
(45), we can obtain

ωi(t) = (1+ kiλi1(t))ui(t)+λi2(t)qi, (46)

where tk ≤ t < tk+1, |λi1(t)| ≤ 1 and |λi2(t)| ≤ 1. Thus, (46)
can be rewritten as

ui(t) =
ωi(t)

1+ kiλi1(t)
− λi2(t)qi

1+ kiλi1(t)
. (47)

Taking the derivative of zini , we have

żini = fini(xi)+ui− α̇ini−1

+gini(x1,x2, · · ·xN)+dini(t), (48)

where

α̇ini−1 =
ni−1

∑
k=1

∂αini−1

∂xik
ẋik +

ni−1

∑
k=0

∂αini−1

∂y(k)di

y(k+1)
di

+
ni−1

∑
k=0

∂αini−1

∂ϕ
(k)
i

ϕ
(k+1)
i +

∂αi1

∂ ζ̂i

˙̂
ζi.

Choose the following Lyapunov function candidate:

Vini =Vini−1 +
1
2

z2
ini
. (49)

The derivative of Vini is

V̇ini = V̇ini−1 + zini(
ωi(t)

1+ kiλi1(t)
− λi2(t)qi

1+ kiλi1(t)
+dini(t)

+ fini(xi)+gini(x1,x2, · · ·xN)− α̇ini−1). (50)

Due to |λi1(t)| ≤ 1, |λi2(t)| ≤ 1, one gets

zini

ωi(t)
1+ kiλi1(t)

≤ zi,ni

ωi(t)
1+ ki

, (51)

|zini

λi2(t)qi

1+ kiλi1(t)
| ≤ |zini

qi

1− ki
|. (52)

According to [12], it yields

0≤ |xi|− xi tanh
(xi

εi

)
≤ 0.2785εi, (53)

where εi and xi ∈ R. Thus, according to the definition of
event triggering controller (43)-(44), and inequality (51)-
(52), (50) can be written

V̇ini ≤ V̇ini−1 + zini(
ωi(t)
1+ ki

− α̇ini−1 + fini(xi)

+gini(x1,x2, · · ·xN)+dini(t))+ |
zini qi

1− ki
|

≤ V̇ini−1 + zini

(
fini(xi)+gini(x1,x2, · · ·xN)

+dini(t)− α̇ini−1
)
+ zini αini + |zini αini |

− zini αini tanh
zini αini

εi
− zini κ i tanh

zini κ i

εi

−|zini αini |−zini αini+|zini κ i|−|zini κ i|+|
zini qi

1− ki
|

≤ V̇ini−1 + zini

(
αini + fini(xi)+gini(x1,x2, · · ·xN)

+dini(t)− α̇ini−1
)
+0.557εi. (54)

Using Young’s inequality and Assumption 2, we have

zini dini(t)≤
1
2

z2
ini
+

1
2

d
2
ini
. (55)

Substituting (55) into (54), we have

V̇ini ≤ V̇ini−1 + zini(αini +hini(Sini)+
1
2

zini)

+0.557εi +
1
2

d
2
ini
, (56)

where hini(Sini) = fini(xi) + gini(x1,x2, · · ·xN) − α̇ini−1,
Sini = [xT

1 , xT
2 , · · · , xT

N , ydi , ẏdi ]
T . Since hini(Sini) is an

unknown function, we use a neural network to model
the unknown function hini(Sini), and for σini > 0, we can
obtain

hini(Sini) = θ
∗T
ini

Wini(Sini)+σini(Sini), (57)
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where |σini | ≤ σ ini . By utilizing Lemma 2 and Young’s
inequality, one can obtain that

zini hini(Sini)≤
1

2c2
ini

z2
ini

ζ
∗
i W T

ini
Wini +

1
2

c2
ini

+
1
2

z2
ini
+

1
2

σ
2
ini
, (58)

where Wini = Wini(Zini), Zini = [xi1, · · · , xini , ydi , ẏdi ]
T , and

cini is a positive constant. From (58), (56) can be rewritten

V̇ini ≤−
ni−1

∑
m=1

limz2
im + zini(αini +

1
2c2

ini

zini ζ̂iW T
ini

Wini

+ zini−1 + zini)+
ni

∑
m=1

1
2

σ
2
im +

ni

∑
m=1

1
2

c2
im

+
ζ̃i

ri
(

ri

2c2
i1

µ
2
i2z2

i1W
T
i1 Wi1 +

ni

∑
m=2

ri

2c2
im

z2
imW T

imWim

− ˙̂
ζi)+0.557εi +

ni

∑
m=1

1
2

d
2
im. (59)

The virtual controller αini is designed as

αini =−zini−1− lini zini −
1

2c2
ini

zini ζ̂iW T
ini

Wini − zini , (60)

where lini is designed positive constant.
Substituting (60) into (59), we have

V̇ini ≤−
ni

∑
m=1

limz2
im +

ni

∑
m=1

1
2

σ
2
im +0.557εi

+
ζ̃i

ri
(

ri

2c2
i1

µ
2
i2z2

i1W
T
i1 Wi1 +

ni

∑
m=2

ri

2c2
im

z2
imW T

imWim

− ˙̂
ζi)+

ni

∑
m=1

1
2

d
2
im +

ni

∑
m=1

1
2

c2
im. (61)

The adaptive law is designed as

˙̂
ζi =

ri

2c2
i1

µ
2
i2z2

i1W
T
i1 Wi1 +

ni

∑
m=2

ri

2c2
im

z2
imW T

imWim− τiζ̂i. (62)

Thus, (61) can be written as

V̇ini ≤−
ni

∑
m=1

limz2
im +

ni

∑
m=1

1
2

σ
2
im +

ni

∑
m=1

1
2

c2
im

+
τi

ri
ζ̃iζ̂i +

ni

∑
m=1

1
2

d
2
im +0.557εi. (63)

5. STABILITY ANALYSIS

Theorem 1: Based on Assumptions 1-3, consider the
closed-loop system containing of the uncertain system
(1), the event-triggered based adaptive predefined perfor-
mance controller design in (43)-(44), (60), and adaptive
laws (62). Then, the following statements hold

1) All signals in closed-loop system are semi-globally
uniformly bounded (SGUB).

2) The trajectory of the tracking error is always within a
defined performance constraint.

Proof: We can get the result of the theorem by proving
it in the following steps:

The following Lyapunov function candidate is con-
structed for the whole system

V =
N

∑
i=1

Vini . (64)

Using Young’s inequality, one obtains

τi

ri
ζ̃iζ̂i ≤−

τi

2ri
ζ̃

2
i +

τi

2ri
ζ
∗
i

2. (65)

Substituting (65) into (64), one gets

V̇ ≤−
N

∑
i=1

ni

∑
m=1

limz2
im +

N

∑
i=1

ni

∑
m=1

1
2

d
2
im−

N

∑
i=1

τi

2ri
ζ̃

2
i

+
N

∑
i=1

τi

2ri
ζ
∗
i

2 +
N

∑
i=1

ni

∑
m=1

1
2

σ
2
i,m

+
N

∑
i=1

0.557εi +
N

∑
i=1

ni

∑
m=1

1
2

c2
im

≤−a0V +b0, (66)

where a0 = min{2limi , τi, m = 1, · · · , ni, i = 1, · · · ,
N}, b0 = ∑

N
i=1 ∑

ni
m=1

1
2 d

2
im + ∑

N
i=1

τi
2ri

ζ ∗i
2 + ∑

N
i=1 0.557εi +

∑
N
i=1 ∑

ni
m=1(

1
2 c2

im + 1
2 σ̄ 2

im).
From (66), and integrating it, we have

V (t)≤ (V (0)− b0

a0
)e−a0t +

b0

a0
. (67)

This means that all signals of the closed loop system are
bounded, and the bounds can be expressed as t→ ∞

‖zim‖ ≤

√
2

b0

a0
,

‖ζ̃i‖ ≤

√
2

b0

a0
.

Due to ζ̃i = ζ ∗i − ζ̂i, then the boundedness of ζ̂i is en-
sured. From the definition of zi1 and discussion in Section
3, it can be seen that there exists a constant εi < 1, which
makes |ϑi = riϖi| ≤ εi < 1 valid, and |ϖi| ≤ εi

|ri| < 1 can
be derived. Then, it follows from the previous discussion
that the tracking error ei is bounded and always evolves
within predefined performance functions. So µi1 and µi2

are bounded. Due to ei = xi1−ydi , ydi ∈ L∞, ei ∈ L∞, so xi1

is bounded. Since αi1 is a function of xi1, ydi , µi1, µi2, then
it insured that αi1 is bounded. It is clear that xi2 is bounded
from zi2 = xi2−αi1. Similarly, it can be proved that xi j and
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αi j are bounded. From the definition in (44), ui is a func-
tion of xi1, · · · , xini , ydi , ẏdi , · · · , ydi

(k), ζi, and since xi1,
· · · , xini , ydi , ẏdi , · · · , ydi

k, ζi are bounded, the controller ui

is bounded. Therefore, all signals of a closed-loop system
are bounded and the tracking error is preserved within the
performance region.

Next, let us justify that the Zeno phenomenon does not
occur, i.e., There exists a t∗ such that k ∈ z+, tk+1− tk ≥ t∗.
Therefore, from the ηi(t) = ωi(t)− ui(t), ∀t ∈ [tk, tk+1),
we have

d
dt
|ηi|= sgn(ηi)η̇i ≤ |ω̇i|. (68)

By means of (43), we get that ωi is differentiable. In-
equality |ω̇i| ≤ ιi holds where ιi is positive normal. Due
to ηi(tk) = 0 and lim

t→tk+1
ηi(t) = ki|ui|+ qi, therefore t∗ >

ki|ui|+qi
ιi

, the Zeno phenomenon was successfully elimi-
nated. �

6. ILLUSTRATIVE EXAMPLE

In this section, we use two examples to prove the effec-
tiveness of the proposed control method.

Example 1: The effectiveness of the raised control
method is explained with an numerical example. We con-
sider the large nonlinear system as below

ẋ11 = x12 + f11 +g11(x1,x2)+d11(t),
ẋ12 = u1 + f12 +g12(x1,x2)+d12(t),
y1 = x11,

ẋ21 = x22 + f21 +g21(x1,x2)+d21(t),
ẋ22 = u2 + f22 +g22(x1,x2)+d22(t),
y2 = x21,

(69)

where f11 = 0.2x11 sin(x11) + x12, f12 = x12 sin(x1,1),
f21 = x21 cos(x21), f22 = 0.2x22 sin(x21), g11(x1,x2) =
0.1x11 sin(x21)+ x22, g12(x1,x2) = 0.5x12x21, g21(x1,x2) =
0.2x11x22, g22(x1,x2) = 0.5(x2

11 + x2
21) + x12, d11(t) =

d12(t) = 0.001sin(t), d21(t) = d22(t) = 0.001sin(2t).
And select the reference signals as yd1 = sin(2t), yd2 =
sin(1.5t).

In the simulation experiment, the virtual controller αi,1

is designed as

αi1 = −
1

2c2
i1

µi2zi1ζ̂iW T
i1 Wi1− li1µ

−1
i2 zi1−µi2zi1

−µ
−1
i2 µi1, (70)

and the event-triggered controller ui is

ωi(t) =−(1+ ki)(αi2 tanh
zi2αi,2

εi
+κ i tanh

zi2κ i

εi
),

(71)

ui(t) = ωi(tk),∀t ∈ [tk, tk+1), (72)

where

αi2 =−µi2zi1− li2zi2−
1

2c2
i2

zi2ζ̂iW T
i2 Wi2− zi2, (73)

and the adaptive laws ζ̂i is designed as

˙̂
ζi =

ri

2c2
i1

µ
2
i2z2

i1W
T
i1 Wi1 +

ri

2c2
i2

z2
i2W

T
i2 Wi2− τiζ̂i. (74)

Initial values and other parameters that need to be de-
signed are selected as ζ̂1(0) = ζ̂2(0) = 1, [x11(0), x12(0),
x21(0), x22(0)]T = [0.2, 0.3, 0.3, 0.5]T , [0.5, 0.3, 0.7, 0.5]T ,
[−0.5, 0.3, −0.7, 0.5]T , l11 = l12 = l21 = l22 = 10, c11 =
c12 = c21 = c22 = 10, r1 = r2 = 1, τ1 = τ2 = 8, b f1 = 0.09,
b f2 = 0.08, λ1 = λ2 = 0.3, k1 = k2 = 0.4, κ1 = κ2 = 60,
ε1 = ε2 = 20, the time-varying scaling function ϕ1 =

1
(1−b f1 )exp(−0.5t)+b f1

, ϕ2 =
1

(1−b f2 )exp(−0.4t)+b f2
. The simula-

tion results of Example 1 are shown in Figs. 2-7. Fig. 2
shows that the outputs of the system are in good agreement
with the reference signals. As can be seen from Figs. 3 and
4, the transient property of tracking error always evolves
in a given region under different initial conditions, and the
proposed control mechanism loosens the requirements on
initial conditions. Fig. 5 shows the trajectories of the adap-
tive laws ζi (i = 1, 2). Fig. 6 describes the trajectory of the
event triggering controller ui (i = 1, 2), and Fig. 7 shows
the triggering interval tk+1− tk. As you can see from Figs.
5 and 7, both computation and communication resources
are significantly reduced.

Example 2: We consider a mass-spring-damping
(MSD) system as shown in Fig. 8. The dynamic model
of the above system is
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Fig. 2. The trajectories of xi1 and ydi(t) (i = 1, 2), for Ex-
ample 1.
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Fig. 3. The trajectories of e1 under different initial condi-
tions for Example 1.
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Fig. 4. The trajectories of e2 under different initial condi-
tions for Example 1.
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Fig. 5. The trajectories of ζ̂i (i = 1, 2), for Example 1.

{
M1ÿ1 = u1− ft1 − fg1 + ft2 + fg2 − fa1 + fa2 ,

M2ÿ2 = u2− ft2 − fg1 − fa2 + fa2 ,
(75)

where ui, yi, (i = 1, 2) are the control inputs and out-
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Fig. 6. The trajectories of ui (i = 1, 2), for Example 1.
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Fig. 7. The trigger time interval of ui (i = 1, 2), for Exam-
ple 1.

M1 M2

damper

y1

u2
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spring spring

damper

Fig. 8. Mass spring damping system.

puts, ft1 = y1 + 0.1y3
1 and ft2 = 2(y2 − y1) + 0.12(y2 −

y1)
3 denote the force of the spring, fg1 = 2ẏ1 + 0.2ẏ2

1
and fg2 = 2.2(ẏ2− ẏ1)+ 0.15(ẏ2− ẏ1)

2 stand for friction,
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fa1 = 0.02sign(ẏ1) and fa2 = 0.02sign(ẏ2− ẏ1) stand for
coulomb friction, M1 = 1 kg, M2 = 1 kg are mass of the
MSD. Therefore, the expression of the state space can be
written as

ẋ11 = x12,

ẋ12 = u1 + f12 +g12(x1,x2)+d12(t),
y1 = x11,

ẋ21 = x22,

ẋ22 = u2 + f22 +g22(x1,x2)+d22(t),
y2 = x21,

(76)

where f12 = −(x11 + 0.1x3
11) − (2x12 + 0.2x2

12),
g12(x1,x2) = 2(x21 − x11) + 0.12(x21 − x11)

3 + 2.2(x22 −
x12) + 0.15(x22 − x12)

2 − 0.2sign(x12) + 0.02sign(x22 −
x12), f22 = −2x21, g22 = 2x11− 0.12(x21− x11)

3− 2x12−
0.2x2

12 − 0.02sign(x21 − x12), d12 = 0.001sin(2t), d22 =
0.001sin(t). Initial values and other parameters that need
to be designed are selected as ζ̂1(0) = ζ̂2(0) = 1, [x11(0),
x12(0), x21(0), x22(0)]T = [1.8,0.3, 1.5, 0.3]T , [0.8, 0.3,
0.5, 0.3]T , [−0.8, 0.3, −0.5, 0.3]T , l11 = l12 = l21 = l22 =
13, c11 = c12 = c21 = c22 = 8, r1 = r2 = 0.1, τ1 = τ2 = 10,
b f1 = 0.18, b f2 = 0.16, λ1 = λ2 = 1, k1 = k2 = 0.5,
κ1 = κ2 = 50, ε1 = ε2 = 20, the time-varying function
ϕ1 = 1

(1−b f1 )exp(−0.5t)+b f1
, ϕ2 = 1

(1−b f2 )exp(−0.65t)+b f2
. The

simulation results of Example 2 are shown in Figs. 9-14.
Fig. 9 shows that the outputs of the system are in good
agreement with the reference signals. As can be seen from
Figs. 10 and 11, the transient property of tracking error
always evolves in a given region under different initial
conditions, and the proposed control mechanism loosens
the requirements on initial conditions. Fig. 12 shows the
trajectories of the adaptive laws ζi (i = 1, 2). Fig. 13 de-
scribes the trajectory of the event triggering controller
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Fig. 9. The trajectories of xi1 and ydi(t) (i = 1, 2), for Ex-
ample 2.
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Fig. 10. The trajectories of e1 under different initial con-
ditions for Example 2.
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Fig. 11. The trajectories of e2 under different initial con-
ditions for Example 2.
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Fig. 12. The trajectories of ζ̂i (i = 1, 2), for Example 2.
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Fig. 13. The trajectories of ui (i = 1, 2), for Example 2.
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Fig. 14. The trigger time interval of ui (i = 1, 2), for Ex-
ample 2.

ui (i = 1, 2), and Fig. 14 shows the triggering interval
tk+1− tk. As you can see from Figs. 13 and 14, both com-
putation and communication resources are significantly
reduced.

7. CONCLUSIONS

In this paper, an adaptive event-triggered tracking con-
trol scheme is proposed for a class of strongly intercon-
nected large-scale nonlinear systems with global perfor-
mance and external disturbance. Predefined performance
problems are solved by introducing barrier functions. Be-
sides, all the extra assumptions about interconnect terms
are eliminated by using the inherent properties of Gaus-
sian function. The decentralized controller of each sub-

system is constructed by combining backstepping technol-
ogy, neural network system and event triggering mecha-
nism. The designed controller could make sure that all sig-
nals of the closed-loop system are bounded and the output
tracking error is kept within a given boundary. Finally, a
numerical system and a mass spring damping system are
taken as examples to verify the effectiveness of the pro-
posed control method. In addition, the other topics include
predefined performance time adaptive tracking control of
nonlinear large-scale systems will be further studied in our
future research.

CONFLICT OF INTEREST

The authors declare that they have no conflict of inter-
est.

REFERENCES

[1] S. Jain and F. Khorrami, “Decentralized adaptive output
feedback design for large-scale nonlinear systems,” IEEE
Transactions on Automatic Control, vol. 42, no. 5, pp. 729-
735, 1997.

[2] Z. P. Jiang, “Decentralized and adaptive nonlinear tracking
of large-scale systems via output feedback,” IEEE Transac-
tions on Automatic Control, vol. 45, no. 11, pp. 2122-2128,
2000.

[3] J. Zhou, “Decentralized adaptive control for large-scale
time-delay systems with dead-zone input,” Automatica,
vol. 44, no. 7, pp. 1790-1799, 2008.

[4] S. L. Xie and L. H. Xie, “Decentralized stabilization of
a class of interconnected stochastic nonlinear systems,”
IEEE Transactions on Automatic Control, vol. 45, no. 1,
pp. 132-137, 2000.

[5] S. J. Liu, J. F. Zhang, and Z. P. Jiang, “Decentralized adap-
tive output-feedback stabilization for large-scale stochastic
nonlinear systems,” Automatica, vol. 43, no. 2, pp. 238-
251, 2007.

[6] Y. M. Li and S. C. Tong, “Adaptive neural networks decen-
tralized FTC design for nonstrict-feedback nonlinear in-
terconnected large-scale systems against actuator faults,”
IEEE Transactions on Neural Networks and Learning Sys-
tems, vol. 28, no. 11, pp. 2541-2554, 2017.

[7] J. Y. Gong, B. Jiang, and Q. K. Shen, “Adaptive fault-
tolerant neural control for large-scale systems with actuator
faults,” International Journal of Control, Automation, and
Systems, vol. 17, pp. 1421-1431, 2019.

[8] Y. M. Li and S. C. Tong, “Adaptive neural networks pre-
scribed performance control design for switched intercon-
nected uncertain nonlinear systems,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 29, no. 7, pp.
3059-3068, 2018.

[9] Y. M. Li, K. K. Sun, and S. C. Tong, “Adaptive fuzzy robust
fault-tolerant optimal control for nonlinear large-scale sys-
tems,” IEEE Transactions on Fuzzy Systems, vol. 26, no. 5,
pp. 2899-2914, 2018.

https://doi.org/10.1109/9.580893
https://doi.org/10.1109/9.580893
https://doi.org/10.1109/9.580893
https://doi.org/10.1109/9.580893
https://doi.org/10.1109/9.887638
https://doi.org/10.1109/9.887638
https://doi.org/10.1109/9.887638
https://doi.org/10.1109/9.887638
https://doi.org/10.1016/j.automatica.2007.10.037
https://doi.org/10.1016/j.automatica.2007.10.037
https://doi.org/10.1016/j.automatica.2007.10.037
https://doi.org/10.1109/9.827370
https://doi.org/10.1109/9.827370
https://doi.org/10.1109/9.827370
https://doi.org/10.1109/9.827370
https://doi.org/10.1016/j.automatica.2006.08.028
https://doi.org/10.1016/j.automatica.2006.08.028
https://doi.org/10.1016/j.automatica.2006.08.028
https://doi.org/10.1016/j.automatica.2006.08.028
https://doi.org/10.1109/TNNLS.2016.2598580
https://doi.org/10.1109/TNNLS.2016.2598580
https://doi.org/10.1109/TNNLS.2016.2598580
https://doi.org/10.1109/TNNLS.2016.2598580
https://doi.org/10.1109/TNNLS.2016.2598580
https://doi.org/10.1007/s12555-018-0729-y
https://doi.org/10.1007/s12555-018-0729-y
https://doi.org/10.1007/s12555-018-0729-y
https://doi.org/10.1007/s12555-018-0729-y
https://doi.org/10.1109/TNNLS.2017.2712698
https://doi.org/10.1109/TNNLS.2017.2712698
https://doi.org/10.1109/TNNLS.2017.2712698
https://doi.org/10.1109/TNNLS.2017.2712698
https://doi.org/10.1109/TNNLS.2017.2712698
https://doi.org/10.1109/TFUZZ.2017.2787128
https://doi.org/10.1109/TFUZZ.2017.2787128
https://doi.org/10.1109/TFUZZ.2017.2787128
https://doi.org/10.1109/TFUZZ.2017.2787128


1558 Wenjing Yang, Jianwei Xia, Xiaoxiao Guo, Miao Yu, and Na Zhang

[10] L. W. An and G. H. Yang, “Decentralized adaptive fuzzy
secure control for nonlinear uncertain interconnected sys-
tems against intermittent DoS attacks,” IEEE Transactions
on Cybernetics, vol. 49, no. 3, pp. 827-838, 2019.

[11] Y. M. Li and S. C. Tong, “Fuzzy adaptive control design
strategy of nonlinear switched large-scale systems,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
vol. 48, no. 12, pp. 2209-2218, 2018.

[12] S. Sui, C. L. P. Chen, and S. C. Tong, “Event-trigger-based
finite-time fuzzy adaptive control for stochastic nonlinear
system with unmodeled dynamics,” IEEE Transactions on
Fuzzy Systems, vol. 29, no. 7, pp. 1914-1926, 2021.

[13] R. T. Wu, K. T. Yu, Y. M. Li, and W. Liu, “Adaptive fuzzy
event-triggered control for a class of switched nonlinear
systems with dead zone nonlinearity,” International Jour-
nal of Control, Automation, and Systems, vol. 19, no. 12,
pp. 4056-4066, 2021.

[14] Y. Yan, L. B. Wu, N. N. Zhao, and R. Y. Zhang, “Adaptive
asymptotic tracking fault-tolerant control of uncertain non-
linear systems with actuator failures and event-triggered in-
puts,” International Journal of Control, Automation, and
Systems, vol. 19, no. 3, pp. 1241-1251, 2021.

[15] H. J. Liang, G. L. Liu, H. G. Zhang, and T. W. Huang,
“Neural-network-based event-triggered adaptive control of
nonaffine nonlinear multiagent systems with dynamic un-
certainties,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 32, no. 5, pp. 2239-2250, 2021.

[16] J. S. Huang, W. Wang, C. Y. Wen, and G. Q. Li, “Adap-
tive event-triggered control of nonlinear systems with con-
troller and parameter estimator triggering,” IEEE Transac-
tions on Automatic Control, vol. 65, no. 1, pp. 318-324,
2020.

[17] Y. H. Ji, H. L. Zhou, and Q. Zong, “Decentralized adap-
tive event-triggered control for nonlinear interconnected
systems in strict-feedback form,” International Journal of
Control, Automation, and Systems, vol. 18, no. 4, pp. 980-
990, 2020.

[18] H. Ma, H. Y. Li, H. J. Liang, and G. W. Dong, “Adaptive
fuzzy event-triggered control for stochastic nonlinear sys-
tems with full state constraints and actuator faults,” IEEE
Transactions on Fuzzy Systems , vol. 27, no. 11, pp. 2242-
2254, 2019.

[19] L. J. Wang and C. L. P. Chen, “Reduced-order observer-
based dynamic event-triggered adaptive NN control for
stochastic nonlinear systems subject to unknown input
saturation,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 32, no. 4, pp. 1678-1690, 2020.

[20] Q. Zhou, H. Y. Li, C. W. Wu, L. J. Wang, and C. K. Ahn,
“Adaptive fuzzy control of nonlinear systems with unmod-
eled dynamics and input saturation using small-gain ap-
proach,” IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, vol. 47, no. 8, pp. 1979-1989, 2017.

[21] C. P. Bechlioulis and G. A. Rovithakis, “Adaptive control
with guaranteed transient and steady state tracking error
bounds for strict feedback systems,” Automatica, vol. 45,
no. 2, pp. 532-538, 2009.

[22] W. Zeng, Z. G. Li, C. Gao, and L. B. Wu, “Observer-based
adaptive fuzzy control for strict-feedback nonlinear sys-
tems with prescribed performance and dead zone,” Inter-
national Journal of Control, Automation, and Systems, vol.
19, no. 5, pp. 1962-1975, 2021.

[23] L. L. Zhang and G. H. Yang, “Adaptive fuzzy prescribed
performance control of nonlinear systems with hysteretic
actuator nonlinearity and faults,” IEEE Transactions on
Systems, Man, and Cybernetics: Systems, vol. 48, no. 12,
pp. 2349-2358, 2018.

[24] Y. M. Li, S. C. Tong, L. Liu, and G. Feng, “Adaptive
output-feedback control design with prescribed perfor-
mance for switched nonlinear systems,” Automatica, vol.
80, pp. 225-231, 2017.

[25] C. C. Wang and G. H. Yang, “Observer-based adaptive pre-
scribed performance tracking control for nonlinear systems
with unknown control direction and input saturation,” Neu-
rocomputing, vol. 284, no. 5, pp. 17-26, 2018.

[26] C. G. Liu, H. Q. Wang, X. P. Liu, Y. C. Zhou, and S. Y.
Lu, “Adaptive prescribed performance tracking control for
strict-feedback nonlinear systems with zero dynamics,” In-
ternational Journal of Robust and Nonlinear Control, vol.
29, no. 18, pp. 6507-6521, 2019.

[27] C. Y. Wang, M. Q. Zhang, H. Li, and N. Wang, “Event-
based adaptive output feedback prescribed performance
control for a class of switched nonlinear systems with un-
known control directions,” International Journal of Con-
trol, Automation, and Systems, vol. 18, no. 10, pp. 2482-
2491, 2020.

[28] T. R. Sun and Y. P. Pan, “Robust adaptive control for pre-
scribed performance tracking of constrained uncertain non-
linear systems,” Journal of the Franklin Institute, vol. 356,
no. 1, pp. 18-30, 2019.

[29] K. Zhao, Y. D. Song, C. L. P. Chen, and L. Chen, “Adaptive
asymptotic tracking with global performance for nonlinear
systems with unknown control directions,” IEEE Transac-
tions on Automatic Control, vol. 67, no. 3, pp. 1566-1578,
2022.

[30] Y. M. Sun, B. Chen, C. Lin, H. H. Wang, and S. W. Zhou,
“Adaptive neural control for a class of stochastic nonlinear
systems by backstepping approach,” Information Sciences,
vol. 369, no. 10, pp. 748-764, 2016.

Wenjing Yang received her B.Sc. degree
in mathematics and applied mathemat-
ics from Liaocheng University, Liaocheng,
China, in 2020. She is currently a gradu-
ate student of the School of Mathematical
Sciences, Liaocheng University. Her cur-
rent research interests include nonlinear
systems, large-scale systems, and adaptive
control and their applications.

https://doi.org/10.1109/TCYB.2017.2787740
https://doi.org/10.1109/TCYB.2017.2787740
https://doi.org/10.1109/TCYB.2017.2787740
https://doi.org/10.1109/TCYB.2017.2787740
https://doi.org/10.1109/TSMC.2017.2703127
https://doi.org/10.1109/TSMC.2017.2703127
https://doi.org/10.1109/TSMC.2017.2703127
https://doi.org/10.1109/TSMC.2017.2703127
https://doi.org/10.1109/TFUZZ.2020.2988849
https://doi.org/10.1109/TFUZZ.2020.2988849
https://doi.org/10.1109/TFUZZ.2020.2988849
https://doi.org/10.1109/TFUZZ.2020.2988849
https://doi.org/10.1007/s12555-020-0883-x
https://doi.org/10.1007/s12555-020-0883-x
https://doi.org/10.1007/s12555-020-0883-x
https://doi.org/10.1007/s12555-020-0883-x
https://doi.org/10.1007/s12555-020-0883-x
https://doi.org/10.1007/s12555-019-0946-z
https://doi.org/10.1007/s12555-019-0946-z
https://doi.org/10.1007/s12555-019-0946-z
https://doi.org/10.1007/s12555-019-0946-z
https://doi.org/10.1007/s12555-019-0946-z
https://doi.org/10.1109/TNNLS.2020.3003950
https://doi.org/10.1109/TNNLS.2020.3003950
https://doi.org/10.1109/TNNLS.2020.3003950
https://doi.org/10.1109/TNNLS.2020.3003950
https://doi.org/10.1109/TNNLS.2020.3003950
https://doi.org/10.1109/TAC.2019.2912517
https://doi.org/10.1109/TAC.2019.2912517
https://doi.org/10.1109/TAC.2019.2912517
https://doi.org/10.1109/TAC.2019.2912517
https://doi.org/10.1109/TAC.2019.2912517
https://doi.org/10.1007/s12555-019-0461-2
https://doi.org/10.1007/s12555-019-0461-2
https://doi.org/10.1007/s12555-019-0461-2
https://doi.org/10.1007/s12555-019-0461-2
https://doi.org/10.1007/s12555-019-0461-2
https://doi.org/10.1109/TFUZZ.2019.2896843
https://doi.org/10.1109/TFUZZ.2019.2896843
https://doi.org/10.1109/TFUZZ.2019.2896843
https://doi.org/10.1109/TFUZZ.2019.2896843
https://doi.org/10.1109/TFUZZ.2019.2896843
https://doi.org/10.1109/TNNLS.2020.2986281
https://doi.org/10.1109/TNNLS.2020.2986281
https://doi.org/10.1109/TNNLS.2020.2986281
https://doi.org/10.1109/TNNLS.2020.2986281
https://doi.org/10.1109/TNNLS.2020.2986281
https://doi.org/10.1109/TSMC.2016.2586108
https://doi.org/10.1109/TSMC.2016.2586108
https://doi.org/10.1109/TSMC.2016.2586108
https://doi.org/10.1109/TSMC.2016.2586108
https://doi.org/10.1109/TSMC.2016.2586108
https://doi.org/10.1016/j.automatica.2008.08.012
https://doi.org/10.1016/j.automatica.2008.08.012
https://doi.org/10.1016/j.automatica.2008.08.012
https://doi.org/10.1016/j.automatica.2008.08.012
https://doi.org/10.1007/s12555-020-0245-8
https://doi.org/10.1007/s12555-020-0245-8
https://doi.org/10.1007/s12555-020-0245-8
https://doi.org/10.1007/s12555-020-0245-8
https://doi.org/10.1007/s12555-020-0245-8
https://doi.org/10.1109/TSMC.2017.2707241
https://doi.org/10.1109/TSMC.2017.2707241
https://doi.org/10.1109/TSMC.2017.2707241
https://doi.org/10.1109/TSMC.2017.2707241
https://doi.org/10.1109/TSMC.2017.2707241
https://doi.org/10.1016/j.automatica.2017.02.005
https://doi.org/10.1016/j.automatica.2017.02.005
https://doi.org/10.1016/j.automatica.2017.02.005
https://doi.org/10.1016/j.automatica.2017.02.005
https://doi.org/10.1016/j.neucom.2018.01.023
https://doi.org/10.1016/j.neucom.2018.01.023
https://doi.org/10.1016/j.neucom.2018.01.023
https://doi.org/10.1016/j.neucom.2018.01.023
https://doi.org/10.1002/rnc.4739
https://doi.org/10.1002/rnc.4739
https://doi.org/10.1002/rnc.4739
https://doi.org/10.1002/rnc.4739
https://doi.org/10.1002/rnc.4739
https://doi.org/10.1007/s12555-019-0868-9
https://doi.org/10.1007/s12555-019-0868-9
https://doi.org/10.1007/s12555-019-0868-9
https://doi.org/10.1007/s12555-019-0868-9
https://doi.org/10.1007/s12555-019-0868-9
https://doi.org/10.1007/s12555-019-0868-9
https://doi.org/10.1016/j.jfranklin.2018.09.005
https://doi.org/10.1016/j.jfranklin.2018.09.005
https://doi.org/10.1016/j.jfranklin.2018.09.005
https://doi.org/10.1016/j.jfranklin.2018.09.005
https://doi.org/10.1109/TAC.2021.3074899
https://doi.org/10.1109/TAC.2021.3074899
https://doi.org/10.1109/TAC.2021.3074899
https://doi.org/10.1109/TAC.2021.3074899
https://doi.org/10.1109/TAC.2021.3074899
https://doi.org/10.1016/j.ins.2016.06.010
https://doi.org/10.1016/j.ins.2016.06.010
https://doi.org/10.1016/j.ins.2016.06.010
https://doi.org/10.1016/j.ins.2016.06.010


Adaptive Decentralized Event-triggered Tracking Control for Large-scale Strongly Interconnected Nonlinear ... 1559

Jianwei Xia received his B.S. degree
in mathematics and applied mathemat-
ics from Liaocheng University, Liaocheng,
China, in 2020, an M.S. degree in auto-
matic engineering from Qufu Normal Uni-
versity, Qufu, China, in 2004, and a Ph.D.
degree in automatic control from the Nan-
jing University of Science and Technol-
ogy, Nanjing, China, in 2007. From 2010

to 2012, he was a Postdoctoral Research Associate with the
School of Automation, Southeast University, Nanjing. From
2013 to 2014, he was a Postdoctoral Research Associate with
the Department of Electrical Engineering, Yeungnam University,
Gyeongsan, Korea. He is currently a Professor in the School of
Mathematics Science, Liaocheng University, Liaocheng, China.
His current research interests include nonlinear system control,
robust control, stochastic systems, and neural networks. Prof.
Xia was a recipient of the Highly Cited Researcher Award by
Clarivate Analytics (formerly, Thomson Reuters) in 2021. He is
a member of IEEE.

Xiaoxiao Guo received her B.S. degree
in mathematics and applied mathematics
from Linyi University, Linyi, China, in
2021. She is currently a graduate stu-
dent of the School of Mathematical Sci-
ences, Liaocheng University. Her current
research interests include complex net-
works and impulsive systems and their ap-
plications.

Miao Yu received his B.S. degree in
mathematics and applied mathematics
from Liaocheng University, Liaocheng,
China, in 2021. He is currently a gradu-
ate student of the School of Mathematical
Sciences, Liaocheng University. His cur-
rent research interests include semi-tensor
product, Boolean networks, finite fields,
and multi-agent systems.

Na Zhang received her B.Sc. degree in
mathematics and applied mathematics
from Liaocheng University, Liaocheng,
China, in 2021. She is currently a graduate
student of the School of Mathematical Sci-
ences, Liaocheng University. Her current
research interests include nonlinear sys-
tems, multi-agent systems, and adaptive
control and their applications.

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.


