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Towards Optimal Dynamic Localization for Autonomous Mobile Robot
via Integrating Sensors Fusion
Jing Li* � , Keyan Guo, Junzheng Wang, and Jiehao Li* �

Abstract: When it comes to optimal dynamic localization, high accuracy and robustness localization is the main
challenge for the autonomous mobile robot. In this paper, an optimal dynamic localization framework with inte-
grating sensors fusion is considered. The global point map is utilized to provide absolute pose observation infor-
mation, and the multi-sensor information is applied to realize robust localization in complex outdoor environments.
The multi-sensor technique, including 3D-Lidar, global positioning system (GPS), and inertial measurement unit
(IMU), is adopted to construct the global point map by pose optimization so that the absolute position and attitude
observation information can still be provided when the outdoor GPS signal fails. Meanwhile, in the case of optimal
localization, the system kinematics equation is constructed by the IMU error model, and the map pose is matched
by map scanning. Moreover, the GPS position information participates in multi-source fusion when the GPS signal
is reliable. Finally, the experimental results show that the average localization error is within 0.05 meters, reflecting
the flexibility of dynamic localization.
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1. INTRODUCTION

When it comes to optimal dynamic localization, high
accuracy, and robustness localization is the main challeng-
ing for the autonomous mobile robot [1-6]. Many local-
ization methods have been applied to the dynamic op-
timal localization of autonomous mobile robots such as
GPS-IMU, SLAM, a priori map-based localization [7-13].
However, these methods often result in unstable localiza-
tion or even divergence in some scenes, such as satellite
signal loss, sparse scene features and dynamic targets in
the field of view. Therefore, we propose a multi-sensor fu-
sion localization method to realize the optimal dynamic
localization for autonomous mobile robots.

There are many kinds of localization methods applied
to the autonomous mobile robot. Global positioning sys-
tem (GPS) [14] is the most commonly used localization
system in autonomous mobile robots. Still, the accuracy
of GPS can not be guaranteed in areas with signal oc-
clusion (such as under trees, urban canyons or tunnels)
and is affected by the multipath effect [15]. Inertial mea-
surement unit (IMU) uses dead reckoning to estimate the
position and attitude. This method does not rely on ex-

ternal signals, and the localization is more accurate in a
short time, but it is easy to produce large cumulative error
in a long time, resulting in localization failure [16]. Si-
multaneous localization and mapping (SLAM) has been
used in autonomous mobile robot dynamic optimal lo-
calization in recent years: it is mainly divided into lidar
slam and visual slam. Oriented FAST and rotated BRIEF-
SLAM (ORB-SLAM) [17] is a visual slam technology
with high performance in pose estimation, but this method
will lead to localization failure when affected by illumi-
nation changes. Lidar odometry and mapping (LOAM)
[18] is a lidar slam localization method. This method is
not affected by illumination change and showed high per-
formance in KITTI [19] but has the cumulative error. In
some large environments, the test track drift is serious,
and the amount of calculation is large. The core idea of
map matching localization based on a priori is matching
[20-23]. The real-time scanned information of lidar and
camera is matched with the pre-constructed map through
lidar or camera for pose estimation. The calculation speed
is better than slam [20], but it is easy to cause localiza-
tion failure in some scenes with sparse features or an in-
sufficient number of features [24,25]. Therefore, comple-
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menting the advantages of multiple sensor information to
realize the optimal dynamic localization of autonomous
mobile robots is particularly important.

Kalman filter [26,27] is usually used to fuse multi-
sensor information for dynamic optimal estimation. This
method [16] is used to fuse GPS and IMU information for
localization. The main principle is to correct the cumu-
lative interval error of dead reckoning by using absolute
position reading [16]. Still, this method can only last for
about one minute when the GPS signal is bad. Neverthe-
less, the result of fusing two sensors far exceeds the per-
formance of independent GPS or IMU. Lightweight and
ground-optimized lidar odometry and mapping (LEGO-
LOAM) [28] first uses IMU motion information to cor-
rect point cloud distortion, thereby calculating the dis-
tance between the current frame and historical keyframes
for closed-loop detection, and then performing pose esti-
mation. However, it is easy to cause localization failure
in some scenes with sparse features. Tightly-coupled li-
dar inertial odometry via smoothing and mapping (LIO-
SAM) [29] proposed to add GPS, IMU and other sensor
information as factor constraints to optimize localization.
However, in some large-scale scenarios, the amount of cal-
culation is complex, and the real-time positioning is poor.
A lidar-inertial state estimator for robust and efficient nav-
igation (LINS) [30] used error state Kalman filter (ESKF)
[31] to estimate the pose of the robot, and used the error
state as the state variable to avoid the risk of over param-
eterization. At the same time, the error state quantity was
small, far away from parameter singularity and universal
lock problems, and maintained the effective linearization
state. For the optimal dynamic localization of autonomous
mobile robots, it is a challenging problem to fuse suffi-
cient multi-sensor information while considering the cal-
culation speed and accuracy.

For the optimal dynamic localization of autonomous

mobile robots, the main contributions of this paper are
summarized as follows:

1) An optimal dynamic localization is proposed, which
uses the global point map to provide absolute pose ob-
servation information, integrating multi-sensor infor-
mation to realize robust localization in complex out-
door environments.

2) The multi-sensor technique, including 3D-Lidar, GPS
and IMU, is utilized to construct the global point map
by pose optimization so that the absolute position and
attitude observation information can still be provided
when the outdoor GPS signal fails.

3) In order to achieve optimal localization, the sys-
tem kinematics equation is constructed by IMU error
model, and the map pose is matched by map scan-
ning. At the same time, the GPS position information
is reliable when the signal is reliable are fused.

The remaining structure of this paper is as follows: Sec-
tion 2 introduces the dynamic optimal positioning method
of mobile robot based on multi-sensor fusion. Section 3
presents the hardware platform used in this experiment
and analyzes the result under KITTI and actual test sce-
narios. Finally, Section 4 summarizes the results of this
paper and summarizes the future work.

2. OPTIMAL DYNAMIC LOCALIZATION
FRAMEWORK

The optimal dynamic localization flow chart for au-
tonomous mobile robot via integrating sensors fusion pro-
posed in this paper is shown in Fig. 1. Firstly, the global
map is constructed through lidar slam, and then the obser-
vation pose is obtained based on the scanning matching
between lidar and global map. Finally, the output trajec-
tory is optimized by integrating the IMU error model, map

Fig. 1. Localization framework for autonomous mobile robot via integrating sensors fusion.
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Fig. 2. Optimal dynamic localization process.

Fig. 3. Mapping optimization flow chart.

matching posture and position information under the reli-
ability of some GPS signals.

2.1. Global map development

Mapping construction: This section introduces the
construction process of the global point cloud map based
on the optimization of the pose map. It mainly includes
four modules: sensor data preprocessing, lidar odome-
try, loop detection, and back-end optimization. Sensor
data preprocessing mainly synchronizes the information
of each sensor in time and space. Lidar odometry is used
primarily to splice the point clouds of each frame into the
same coordinate system according to the position and at-
titude obtained by real-time scanning and matching of li-
dar. Loop detection mainly judges the similarity between

point cloud frames and then constructs loop constraints
to reduce the cumulative error. Finally, the back-end opti-
mization constructs the pose map according to each con-
straint and optimizes the global map. The overall process
is shown in Fig. 2.

Mapping optimization: In order to eliminate accumu-
lated errors and map ghosting, loop detection [32] con-
straints are added, and GPS information is added as the
observation information of the pose map for optimization
when the GPS information is reliable. A general frame-
work for graph optimization (G2O) [33] is used as the ba-
sic framework for graph optimization of the pose graph.
The graph comprises nodes and edges, and the structure is
shown in Fig. 3. When the lidar odometry is scanned and
matched, we select a keyframe every five frames, splice
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Fig. 4. Global point cloud map construction results. (a) Google Earth. (b) Global point cloud map.

the keyframes into the same coordinate system, and com-
bine the scanned keyframes with local lidar sub-keyframes
to reduce the amount of calculation during map construc-
tion. In loop detection, in order to consider speed and ac-
curacy, loop detection is carried out every 50 m. The cur-
rent keyframe is matched with the local map spliced by
local lidar sub-keyframes, and the splicing range of sub-
keyframes is set to 5 frames. A residual function is con-
structed during optimization by combining each observa-
tion information and state for optimization. The residual
function is shown in

Z(x) =
N

∑
x=0

ek (xk,Gk)
T

Ωkek (xk,Gk) . (1)

The goal of this figure is to minimize the error of all
measurements. Then, the optimization problem can be ex-
pressed as

x∗ = argmin
x

Z(x), (2)

where xk represents the state node. Gk and Ωk respectively
are the mean value of the constraint of node xk and the
information matrix of the current constraint of xk, and
ek (xk,Gk) denotes the error function of xk and the ob-
servation information Gk.The Gauss-Newton (G-N) opti-
mization method is used for optimization to minimize the
sum of residual functions,which mainly divided into bi-
nary edge optimization and unary edge optimization. The
global point cloud map construction results are shown in
Fig. 4.

2.1.1 Binary edge optimization
The binary edge means that the loop closure detects

the relative pose between two frames as the difference be-
tween the observation information and the laser odometry
matching pose between two consecutive frames to con-
struct a residual function for optimization.

Assuming that there is a loop between the i-th frame
and the j-th frame, the relative pose can be expressed as

Ti j = T−1
i Tj, (3)

where Ti and Tj represent the absolute pose observations
of the i-th frame and the j-th frame, respectively, and Ti j

represents the relative pose observations of the i-th frame
and the j-th frame. In Lie algebra, it is expressed as

ξi j = ln(T−1
i Tj)

∨

= ln(exp((−ξi)
∧)exp(ζ∧j ))

∨, (4)

ξ =

[
ρ

φ

]
∈ R6,

ξ
∧ =

[
φ∧ ρ

0T 0

]
∈ R4×4,

φ
∧ =

 0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

 ∈ R3×3,

(5)

where ξ denotes an element in each lie algebra, which
indicates a six-dimensional vector, the first three dimen-
sions are translation, denoted by ρ , and the latter three
dimensions are rotation, denoted by φ .ξ∧ ∈ R4×4 repre-
sents the four-dimensional matrix corresponding to the
six-dimensional vector.φ represebts the vector of lie al-
gebra corresponding to lie group SO(3) defined on R3,
φ∧ ∈ R3×3 denotes the vector corresponds to the antisym-
metric matrix.

Ideally, (3)= (4), but when there is an error in the pose,
use the left and right ends of the equation to calculate the
residual term

ei j = ln(T−1
i j T−1

i Tj)
∨

= ln(exp((−ξi j)
∧)exp((−ξi)

∧)exp(ξ∧j ))
∨. (6)

Add perturbations δξi and δξ j to the poses of the i-th
frame and the j-th frame respectively to solve the Jacobian
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matrix, and use the adjoint property and the BCH formula
to simplify. The difference is expressed as

∧
ei j = ln(T−1

i j T−1
i exp((−δξi)

∧)exp(δξ
∧
j )Tj)

∨

= ln(T−1
i j T−1

i exp((−δξi)
∧)Tj

× exp((Ad(T−1
j )δξ j)

∧))∨

= ln(exp(ei j)exp((−Ad(T−1
j )δξi)

∧

+(Ad(T−1
j )δξ j)

∧)∨

≈ ei j− J−1
r (ei j)Ad(T−1

j )δξi

+ J−1
r (ei j)Ad(T−1

j )δξ j. (7)

The Jacobian matrix of the residuals about Ti Tj are as
follows:

Ai j =
∂ei j

∂δξi
=−J−1

r (ei j)Ad(T−1
j ), (8)

Bi j =
∂ei j

∂δξ j
= J−1

r (ei j)Ad
(
T−1

j

)
,

J−1
r (ei j)≈ I +

1
2

[
φ∧e ρ∧e
0 φ∧e

]
.

(9)

Performing first-order taylor expansion on the residual
to get (10) as follows:

ei j(xi +∆x,x j +∆x) = ei j(x+∆x)

≈ ei j + Ji j∆x, (10)

where Ji j represents the Jacobian matrix of the residual
with respect to the pose

Ji j = (0 · · ·0 Ai j︸︷︷︸
node i

0 · · ·0 Bi j︸︷︷︸
node j

0 · · ·0). (11)

For each residual term there is the following relation-
ship

Fi j(x+∆x) = ei j(x+∆x)T
Ωi jei j(x+∆x)

≈ (ei j + Ji j∆x)T
Ωi j(ei j + Ji j∆x)

= eT
i jΩi jei j︸ ︷︷ ︸

ci j

+2eT
i jΩi jJi j︸ ︷︷ ︸

bT
i j

∆x

+∆xT JT
i jΩi jJi j︸ ︷︷ ︸

Hi j

∆x

= ci j +2bT
i j∆x+∆xT Hi j∆x. (12)

The total residual can be expressed as

F(x+∆x) = ∑
<i, j>∈c

Fi j(x+∆x)

= ∑
<i, j>∈c

(
ci j +2bT

i j∆x+∆xT Hi j∆x
)

= c+2bT
∆x+∆xT H∆x. (13)

The above optimization problem is transformed into
finding ∆x so that ∆F(x) achieves a minimum value. Let
its derivative be zero

d∆F(x)
d∆x

= 2b+2H∆x = 0, (14)

Hi∆x =−b. (15)

Therefore, it only needs to get Ji j and can get ∆x, as in
(10). Then, according to the correction amount, the value
of x is corrected. That is, one iteration is completed, and
the iteration is terminated for multiple iterations until the
residual meets the convergence condition, and the opti-
mization is completed.

2.1.2 Unary edge optimization
Unary edge refers to GPS prior position observation in-

formation, which do not connect two pose states like pose
nodes between keyframes, but only connect an observa-
tion of a pose state quantity. Therefore, its corresponding
residual is the difference between the observed value and
the state quantity, namely

ei = ln(Z−1
i Ti)

∨

= ln(exp((−ξzi)
∧)exp(ξ∧i ))

∨, (16)

where Zi represents the prior observations, and ei repre-
sents the residuals corresponding to the prior observations.
Add perturbation δξi to the residual, and use the adjoint
property and the BCH formula to simplify

∧
ei = ln(Z−1

i exp(δξ
∧
i )Ti)

∨

= ln(Z−1
i Ti exp((Ad(T−1

i )δξi)
∧))∨

= ln(exp(ei)exp((Ad(T−1
i )δξi)

∧))∨

≈ ei + J−1
r (ei)Ad(T−1

i )δξi. (17)

The Jacobian matrix of the residuals about Ti is
∂ei j

∂δξi
= J−1

r (ei j)Ad
(
T−1

j

)
,

J−1
r (ei j)≈ I +

1
2

[
φ∧e ρ∧e
0 φ∧e

]
.

(18)

The subsequent derivation can be analogous to the bi-
nary edge optimization correction derivation process.

2.2. Matching development
This section mainly introduces the pose obtained by

matching the real-time scanning information of lidar with
the global point cloud map. First, we make a sparsity of
global map files to improve the speed of loading maps.
Then the initial pose is obtained by GPS or the feature de-
scriptor of the key frame saved during mapping. In order
to improve the speed of map matching, the global map
is split into the local map by crop box filter according



Towards Optimal Dynamic Localization for Autonomous Mobile Robot via Integrating Sensors Fusion 2653

Fig. 5. Map matching flow chart.

to the real-time pose. Finally, the point cloud information
scanned by lidar in real-time is matched with the local map
to output the map matching pose. The scanning match-
ing algorithm adopts normal distribution transform (NDT)
[34,35], which can save complete information better than
LOAM [18,28].The map matching flow chart is shown in
Fig. 5.

The matching localization algorithm:
1) First, voxel the point cloud map. The point cloud

space is divided into a set of voxels with a specified size,
and then the mean and covariance of each voxel point
cloud in the point cloud map are calculated to construct
a Gaussian distribution.

µ =
1

Nx

Nx

∑
i=1

xi, (19)

Σ =
1

Nx

Nx

∑
i=1

(xi−µ)(xi−µ)T , (20)

where X = {x1, x2, · · ·, xNx} is the point set of the point
cloud map. xi (i = 1, · · ·, Nx) denotes the coordinates of
the points in the point cloud map, and Nx represents the
number of points in the point cloud map.

2) According to the initial pose between the current
frame point cloud and the map, the current frame point
cloud is transformed into the map coordinate system, and
the joint probability of all points is calculated.

y′i = T (p,yi) = Ryi + t, (21)

f (X ,y′i) =
1√

2π
√
|Σ|

× exp

(
− (y′i−µ)T

Σ−1 (y′i−µ)

2

)
, (22)

Ψ =
Ny

∏
i=1

f (X ,T (p,yi))

=
Ny

∏
i=1

1√
2π
√
|Σ|

exp

(
−(y

′
i−µ)T

Σ−1 (y′i−µ)

2

)
,

(23)

where Y = {y1, y2, · · ·, yNy} represents the point cloud
point set of the current frame. yi (i = 1, · · ·, Ny) denotes the
coordinates of the points in the point cloud of the current
frame, and Ny is the number of points in the point cloud of

the current frame. y′i represents the coordinate conversion
function of the current frame point cloud to the point cloud
map,and T (p,yi) is the coordinate of the point converted
from the current frame point cloud to the map coordinate
system, p = [tx, ty, tz, φx, φy, φz]

T and tx, ty, tz, φx, φy, φz are
the translation and rotation in the three directions of xyz,
respectively, R and t represent the rotation matrix and the
translation vector respectively. f (X ,y

′

i) is the joint proba-

bility of a single point, and Ψ=
Ny

∏
i=1

f (X ,T (p,yi)) indicates

the joint probability of all points.
3) When the joint probability of all points is the largest,

it can be considered that the map matching is quasi-
successful, and the optimal pose information is obtained at
this time. Take the logarithm of the joint probability func-
tion to transform the original problem into an optimization
problem

lnΨ =
Ny

∏
i=1

(
ln

(
1√

2π
√
|Σ|

)

+

(
− (y′i−µ)T

Σ−1 (y′i−µ)

2

))
, (24)

maxΨ∼maxlnΨ∼minΨ1

= min
Ny

∑
i=1

(y′i−µ)
T

Σ
−1 (y′i−µ) . (25)

Let ei(p) = y
′

i−u, Fi(p) = eT
i (p)Σ−1ei(p) , and the ob-

jective function is

min
Ny

∑
i=1

(y′i−µ)
T

Σ
−1 (y′i−µ) = min

Ny

∑
i=1

Fi(p). (26)

Through Gauss-Newton method iterative optimization,
find ∆p to minimize the value of (26), Taylor expand
ei(p+∆p) and Fi(p+∆p) to get (27) and (28)

ei(p+∆p)≈ ei(p)+
dei

d p
∆p = ei(p)+ Ji(p)∆p, (27)

Fi(p+∆p) = ei(p+∆p)T
Σ
−1ei(p+∆p)

≈ (ei(p)+Ji(p)∆p)T
Σ
−1(ei(p)+Ji(p)∆p)

= eT
i Σ
−1ei +2eT

i Σ
−1Ji(p)∆p

+∆pT JT
i (p)Σ−1Ji(p)∆p
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= Fi(p)+2bT
i ∆p+∆pT Hi∆p, (28){

bT
i = eT

i Σ
−1Ji(p),

Hi = JT
i (p)Σ−1Ji(p),

(29)

∆Fi(p) = Fi(p+∆p)−Fi(p)

= 2bT
i ∆p+∆pT Hi∆p. (30)

The above optimization problem is transformed into
finding ∆p to make ∆Fi(p) obtain the minimum value, let
∆Fi(p) derivative be zero

d∆Fi(p)
d∆p

= 2bi +2Hi∆p = 0, (31)

Hi∆p =−bi. (32)

So just get Ji(p) to get ∆p, and the matching pose infor-
mation is finally output.

Ji(p) =
dei

d p
, (33)

y
′

i = T (p,yi)

= RxRyRzyi + t

=

 cycz −cysz sy

cxsz + sxsycz cxcz− sxsysz −sxcy

sxsz− cxsycz sxcz + cxsysz cxcy

yi +

tx
ty
tz

 ,
(34)

Ji(p) =

1 0 0 0 c f
0 1 0 a d g
0 0 1 b e h

 , (35)



a = yi1 (−sxsz + cxsycz)+ yi2 (−sxcz− cxsysz)

+ yi3 (−cxcy) ,

b = yi1 (cxsz + sxsycz)+ yi2 (−sxsysz + cxcz)

+ yi3 (−sxcy) ,

c = yi1 (−sycz)+ yi2 (sysz)+ yi3 (cy) ,

d = yi1 (sxcycz)+ yi2 (−sxcysz)+ yi3 (sxsy) ,

e = yi1 (−cxsycz)+ yi2 (cxcysz)+ yi3 (−cxsy) ,

f = yi1 (−cysz)+ yi2 (−cysz) ,

g = yi1 (cxcz− sxsysz)+ yi2 (−cxsz− sxsycz) ,

h = yi1 (sxcz + cxsysz)+ yi2 (cxsycz− sxsz) ,

(36)



cx = cosφx,

sx = sinφx,

cy = cosφy,

sy = sinφy,

cz = cosφz,

sz = sinφz.

(37)

2.3. Localization optimization
This section introduces how to fuse multi-sensor infor-

mation to optimize dynamic localization, which is mainly
divided into solving IMU information, constructing IMU

error model, and generating dynamic optimal localization
information through error state Kalman filter. The task of
the 3D-LiDAR , GPS and IMU fusion is to fuse and opti-
mize the localization information of IMU, 3D-LiDAR and
point cloud map matching, and GPS to generate new posi-
tioning information and enhance the robustness of the lo-
calization information. First, the IMU measurement infor-
mation is solved to construct an error model, and the sys-
tem error state equation is constructed based on the IMU
error model. Second, the position and attitude observation
information obtained by matching the 3D-LiDAR with the
global point cloud map and the position observation infor-
mation of GPS in the reliable signal area are used to con-
struct the observation equation. In order to reduce the non-
linearization error of the extended Kalman filter, the error
state quantity is introduced to build the error state Kalman
filter to optimize the fusion of the 3D-LiDAR, GPS and
IMU information and output the positioning information,
so as to realize the robust and efficient positioning of the
unmanned vehicle in the outdoor complex environment.
The overall flow chart is shown in Fig. 6.

IMU solution: Three-dimensional rigid body motion
includes translation and rotation. Rotation mainly includes
rotation matrix, rotation vector and quaternion. By solving
the differential equation of three-dimensional rigid body
motion, we can obtain the solution of the differential equa-
tion to solve the IMU measurement information, mainly
including the rotation matrix differential equation, quater-
nion differential equation and rotation vector differential
equation. The attitude, velocity and position of IMU are
solved by solving differential equations.

The definition of quaternion operator ⊗ and pose trans-
formation operator � are as follows:

1) If we have two complex numbers A = a+bi and B =
c+di, then constructing q = A+B j yields a number in the
space of quaternions H.

q = qw +qv

= qw +qwiii+qw jjj+qwkkk, (38)

where kkk = i j, qw represents the real part of the quaternion
and qv is the imaginary part of the quaternion. Quaternion
multiplication operator ⊗ is defined as follows:

ppp⊗qqq =

[
pwqw− pppT

v qqqv

pwqqqv +qwpppv + pppv×qqqv

]
. (39)

2) Suppose there is a vector a in the three-dimensional
space, and its coordinates in the two coordinate systems
before and after rotation (the coordinate system before ro-
tation is the world coordinate system w, and the coordi-
nate system after rotation is the carrier system b) are [a1,
a2, a3]

T and [a′1, a′2, a′3]
T , then there are

[eee1, eee2, eee3]

a1

a2

a3

= [eee′1, eee′2, eee′3]

a′1
a′2
a′3

 , (40)
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Fig. 6. Map matching flow chart.

where [e1, e2, e3]
T and [e′1, e′2, e′3]

T are the unit orthonor-
mal basis (coordinate system) before and after the rota-
tion, which can be obtained

a =

a1

a2

a3

=

eeeT
1 e′1 eeeT

1 eee′2 eeeT
1 eee′3

eeeT
2 eee′1 eeeT

2 eee′2 eeeT
2 eee′3

eeeT
3 e′1 eeeT

1 eee′2 eeeT
3 eee′3

=

a′1
a′2
a′3

= Rwba′,

(41)

where Rwb denotes the rotation matrix, the determinant
is 1. The pose transformation operator � is explained as
above.

Let there be a fixed vector rw in the world coordinate
system (W coordinate system) and B in the robot coordi-
nate system (b coordinate system), then

rw = Rwb · rb, (42)

rw = qwb⊗ rb⊗q∗wb, (43)

where Rwb and qwb are the rotation matrix and quaternion
of the robot coordinate system relative to the world co-
ordinate system. q∗wb denotes the conjugate quaternion of
qwb , and⊗ is the quaternion multiplication. Equation (42)
can be differentiated on both sides

·
rw = Rwb

·
rb+

·
Rwb rb. (44)

Because of
·

rw = 0 ,
·

rb = −wb
wb× rb , where wb

wb is the
angular velocity of the robot rotation. Deduced the differ-
ential equation of the rotation matrix

·
Rwb = Rwb

[
wb

wb

]
×, (45)

where
[
wb

wb

]
× represents the antisymmetric matrix cor-

responding to the vector rotation angular velocity of the

robot. After multiplying both sides of (43) by qwb, it can
be obtained through differentiation

·
rw⊗qwb + rw⊗ ·

qwb =
·

qwb⊗rb +
·

qwb⊗
·

rb . (46)

Because of
·

rw = 0 and
·

rb =−wb
wb×rb =−wb

wb⊗rb, the
quaternion differential equation can be obtained by sorting
and deriving, as in (47)

·
qwb = qwb⊗

1
2

[
0

wb
wb

]
, (47)

Rwb = I +
sinφ

φ
(φ∧)+

1− cosφ

φ 2 (φ∧)
2
. (48)

According to Rodriguez formula as (48), substituting
(13) and simplification can obtain the rotation vector dif-
ferential equation as

φ = wb
wb +

1
2

φ ×wb
wb, (49)

where wb
wb and ab

wb are the three-axis angular velocity and
three-axis acceleration measured in the robot coordinate
system of the IMU relative to the world coordinate system
W . The attitude is solved by solving the quaternion differ-
ential equation and the rotation vector differential equa-
tion.

According to (45), we can obtain (35) for the rotation
matrix at tk−1 and tk

Rwbk = Rwbk−1 e
∫ tk

tk−1
[w]×dσ

= Rwbk−1 eφ× . (50)

According to (50), when the time interval is very small,
the two vector directions can be considered to be coin-
cident, so the cross product part is 0, that is,

·
φ = wb

wb,
φ =

∫ tk
tk−1

w(σ)dσ , The increment of the rotation vector
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tk−1 and tk can be obtained by the median method, as
shown in (36)

φ =
ωk−1 +ωk

2
(tk− tk−1) , (51)

where ωk−1 and ωk are the measured angular velocities of
the IMU at tk−1 and tk respectively. By solving the rotation
vector, the quaternion update equation, rotation matrix up-
date equation, speed update equation, and position update
equation at tk−1 and tk can be obtained, as shown in (52)-
(55)

qwbk = qwbk−1 ⊗

[
cos φ

2
φ

|φ | sin φ

2

]
, (52)

Rwbk = Rwbk−1

(
I +

sinφ

φ
(φ∧)+

1− cosφ

φ 2 (φ∧)
2
)
,

(53)

vk = vk−1 +

(
Rwbk ak +Rwbk−1 ak−1

2
−g
)
(tk− tk−1) ,

(54)

pk = pk−1 + vk−1 (tk− tk−1)

+
1
2

(
Rwbk ak +Rwbk−1ak−1

2
−g
)
(tk− tk−1)

2 ,

(55)

where qwbk−1 and qwbk , Rwbk−1 and Rwbk , vk−1 and vk, pk−1

and pk are the quaternion, rotation matrix, velocity and po-
sition of the robot at tk−1 and tk, respectively. |φ | denotes
the module of the rotation vector. φ∧ represents the anti-
symmetric matrix corresponding to the rotation vector. g
represents the gravitational acceleration.

IMU error model construction: In practical applica-
tion, IMU inevitably has errors, and these errors will be
updated and propagated through the IMU solution equa-
tion, resulting in the continuous accumulation of errors.
By studying the error propagation law of IMU, the error
model of IMU is constructed, including the attitude error
equation, velocity error equation, position error equation
and bias error equation.

In the case of considering the error, the system variables
are divided into error value δx, true value xt and nominal
value x. They meet xt = x+δx.

Let the attitude update equation of nominal value be

q = q⊗ 1
2

[
0

w−wb

]
, (56)

where w, wb and q denote the nominal value of the an-
gular velocity of the robot, the bias of the gyroscope, and
quaternion, respectively.

The attitude update equation under real value is

·
qt = qt ⊗

1
2

[
0

wt −wbt

]
, (57)

where wt , wbt and qt are the true values of the angular
velocity of robot, the bias of the gyroscope and quaternion,
respectively.

The relationship between the true value and the nominal
value are

qt = q⊗δq, (58)

wt = w+wn, (59)

wbt = wb +δwb, (60)

δq =

[
cos |δθ |

2
δθ

|δθ | sin |δθ |
2

]
≈
[

1
δθ

2

]
, (61)

where wn, δwb, δq and δθ represent the white noise of the
gyroscope, the error of the gyroscope’s bias, the quater-
nion error, and the misalignment angle respectively.

Equations (58)-(61) are combined, and finally the atti-
tude error equation is derived as (58)

δ
·

θ =−[ωt −wbt ]×δθ +wn−δwbt . (62)

Let the velocity update equation under nominal value
be

·
v = R(a−ab) , (63)

where a, ab, v, and R denote the nominal value of accelera-
tion, accelerometer bias, robot velocity, and robot rotation
matrix respectively.

The velocity update equation at the true value is

·
vt = Rt (at −abt) , (64)

where at , abt , vt , and Rt are the true value of acceleration,
accelerometer bias, carrier velocity, and robot rotation ma-
trix respectively.

The relationship between the actual value and the nom-
inal value of the speed are

vt = v+δv, (65)

Rt = R · e([δθ ]×)≈ R(I +[δθ ]×) , (66)

at = a+an, (67)

abt = ab +δab, (68)

where δv, an, and δab denote the speed error, the white
noise of the accelerometer, and the accelerometer bias er-
ror respectively. Equations (66)-(68) are combined, and fi-
nally the speed error equation, position error equation and
bias error equation are derived as (69)-(71)

δ
·
v =−Rt [at −abt ]×δθ +Rt (an−δab) , (69)
·

δ p = δv, (70)

δ
·

wb = bnw ,

δ
·

ab = bna , (71)
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where bna and bnw are the white noise of accelerometer
bias and gyroscope bias respectively.

Optimal localization: The optimal dynamic localiza-
tion uses IMU error model to describe the kinematic state
of the system. The ESKF [31] is used as the information
fusion method to ensure that the system always maintains
the effective linearization state and reduces the amount of
calculation. Within the Kalman filtering paradigm, these
are the most remarkable assets of the ESKF: (a) The error
state degrees of freedom is equal to the actual pose de-
grees of freedom, which can avoid issues related to over-
parametrization. (b) The error-state system always oper-
ates close to the origin, and therefore guarantees that the
linearization validity holds at all times. (c) The error state
is small, so the second-order term can be ignored directly,
making the Jacobian calculation simpler and faster.

1) Construct the kinematic equation of the system
The system error state equation is constructed accord-

ing to the IMU error model. The state equation is as shown
in

·
δx = Ftδx+Btw, (72)

where δx =
[
δ p δv δθ δab δwb

]T and w =[
an aw bna bnw

]T are the state variables and white noise
of the system respectively.

Ft =


0 I3 0 0 0
0 0 −Rt [at −abt ]× −Rt 0
0 0 − [wt −wbt ]× 0 −I3

0 0 0 0 0
0 0 0 0 0

 , (73)

Bt =


0 0 0 0
Rt 0 0 0
0 I3 0 0
0 0 I3 0
0 0 0 I3

 . (74)

2) Construct the observation equation of the system
According to the pose information obtained by map

matching and the position information of GPS in the re-
liable signal area, the observation equation is constructed
as the observation information. The observation equation
is as

y = Gtδx+Ctn, (75)

where y =
[
δ P̄ δ θ̄

]T represent the observation of the

system including position δP and attitude δθ ,
∨
P and P

denote the location information predicted by the IMU so-
lution and map matching or GPS location observation in-

formation when the signal is reliable respectively.
∨
Rt and

RT
t are the predicted rotation matrix calculated by IMU

and the rotation matrix obtained from map matching re-
spectively. n =

[
nδP n

δθ

]T is the observation noise.

δP =
∨
P−P, (76)

δθ =

(
RT

t

∨
Rt−I

)∨
, (77)

Gt =

[
I3 0 0 0 0
0 0 I3 0 0

]
, (78)

Ct =

[
I3 0
0 I3

]
. (79)

3) Construct Kalman filter
The Kalman filter is constructed based on the state

equation and observation equation, and the equations are
as follows:

δ
∨
xt = Ft−1δ

∧
xt−1+Bt−1wt , (80)

∨
Pt = Ft−1

∧
Pt−1 Ft−1

T +Bt−1QtBT
t−1, (81)

Kt =
∨
Pt GT

t

(
Gt
∨
Pt GT

t +CtRtCT
t

)−1

, (82)

∧
Pt = (I−KtGt)

∨
Pt , (83)

δ
∧
xt =

∨
δxt +Kt(yt −Gtδ

∨
xt), (84)

where Qt and
∨
Pt are the system process noise and the co-

variance matrix of the prediction process respectively. Kt

denotes the Kalman gain and δ
∧
xt is the estimated error

state quantity.
4) Calculate the posterior pose information
The posterior pose information is calculated according

to the estimated error state, as shown in

∧
Pt =

∨
Pt−δ

∧
Pt , (85)

∧
Rt =

∨
Rt(I−

[
δ
∧
θt

]
×
). (86)

3. EXPERIMENTAL VALIDATION

In this section, some experiments are conducted to illus-
trate the developed method in terms of accuracy, stability,
and real-time performance. Firstly, perform simulation ex-
periments based on the KITTI data set, and then perform
actual experiments based on the laboratory’s unmanned
vehicles and analyze the experimental results.

3.1. Autonomous robot system description
System description: Fig. 7 shows the unmanned vehi-

cle “Beili-Youlong” used in the actual experiment. It is
mainly divided into an environment perception system,
motion control system, control system, power system and
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Fig. 7. Experimental platform.

master [36-40]. The environment perception system com-
prises RS-LIDAR-32 lidar, XW-GI7660 integrated navi-
gation and camera. The motion control system is primar-
ily composed of wheel motors. Besides, the power sys-
tem is mainly composed of power supplements. The sys-
tems communicate through RS-232, Ethernet, or can bus.
The RS-lidar-32 adopts a hybrid solid-state lidar method
and integrates 32 laser transceiver components. The mea-
surement distance is up to 200 meters, the measurement
accuracy is within +/−5 cm, the output points are up
to 640,000 points/sec, the horizontal angle is 360◦, and
the vertical measurement is angle −25◦ ∼ 15◦. The XW-
GI7660 integrated navigation has a 3-axis fiber optic gy-
roscope, 3-axis quartz accelerometer and dual GNSS re-
ceivers. When the signal is reliable, the heading accuracy
is 0.04◦, the attitude accuracy is 0.02◦, and the position
accuracy is 1 cm+1 ppm.

System setting: To prove the effectiveness of our
method, we perform the KITTI dataset to evaluate our
method quantitatively and qualitatively. The KITTI data
set is the most extensive computer vision evaluation data
set in autonomous driving, including actual image data,
lidar data, 2D and 3D object annotation data collected
from urban, rural and highway scenes. The data acquisi-
tion platform of the KITTI dataset has two grayscale cam-
eras, two-color cameras, a Velodyne 64-line 3D lidar and a
GPS navigation system. The experimental computer sys-
tem is configured with Intel i5-4210H CPU (2.90 GHz)
and 8 GB memory, using the ROS [41] under Ubuntu
Linux as the software platform.

3.2. Evaluation performance on the KITTI dataset
We used KITTI00 dataset. The data set is collected from

urban communities. The road environment is asphalt road,
including a continuous bumpy road and light change scene
caused by the artificial well cover and road fluctuation.
There are many intersections, and the length of the driving
track is about 3.7 km. The GPS trajectory in the data set is
taken as the ground truth, and the experimental results are
shown in Fig. 8 and Table 1.

We calculate the translation error and rotation error at
different distances and speeds respectively [17]. The error
metrics are defined as

Erot ( f ) =
1
| f | ∑

(i, j)∈ f

∠
[( ∧

p j�
∧
pi

)
� (p j� pi)

]
, (87)

Etrans ( f ) =
1
| f | ∑

(i, j)∈ f

∥∥∥( ∧p j�
∧
pi

)
� (p j� pi)

∥∥∥
2
, (88)

where f is a set of frames (i, j),
∧
p∈ SE (3) and p∈ SE (3)

are estimated and true poses respectively. � denotes Pose

Table 1. Accuracy and runtime comparison results be-
tween the proposed method and other methods on
KITTI00.

Method RMSE (m) Runtime (s)
Proposed method 0.12 0.02
LIO-SAM [29] 0.96 0.04

LINS [30] 0.41 0.02
Point-Localization [42] 0.32 0.05
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Fig. 8. Experimental results on KITTI00.

Fig. 9. Ablation experiment. (a) Translation errors at different distances. (b) Rotation errors at different distances.

transformation between two frames, and ∠ represents the
rotation angle.

Table 1 shows the accuracy and speed results of our
method and other methods. It shows that our method
can achieve centimeter-level localization accuracy. Fig. 9
shows the translation error and rotation error of localiza-
tion at different distances. The rotation error is between
0.001 deg/m and 0.012 deg/m, and the translation error
is between 0.35% and 0.95%. We also conducted abla-
tion experiments and generated the results of lidar, lidar-
IMU, and lidar-IMU-GPS. After adding IMU, the local-
ization accuracy changes little, but the standard deviation
decreases, indicating that the volatility of localization re-
sults decreases and the positioning information is more
stable. After introducing the information of GPS in the re-
liable information area, the localization accuracy is greatly
improved.

3.3. Evaluation performance on autonomous mobile
robot

Fig. 10 shows the experimental results of evaluating the
localization algorithm on the actual test scene data. The
experimental environment is the school of automation at
Beijing University of technology. The road environment is
asphalt road, including a continuous bumpy road, bright-

Table 2. Actual experiment localization error result.

Method Error (m)
Proposed method 0.05
LIO-SAM [29] 0.62

LINS [30] 0.38
Point-Localization [42] 0.22

ness changes scene, empty scene and shaded by trees. The
localization information of GPS when the signal is reliable
is taken as the ground truth. The absolute error results of
the tested localization are shown in Table 2. The experi-
mental results show that the average localization error is
about 0.05 m. In LIO-SAM [29], a method based on factor
graph optimization is used to fuse multi-source informa-
tion, that is, all information before the current moment is
considered for fusion optimization, resulting in poor real-
time performance. In the real vehicle experiment, it re-
sulted in a large deviation in some road sections. GPS has
high positioning accuracy when the signal is valid, but in
LINS [30], the error state Kalman filter only integrates the
information of lidar odometer and IMU, and does not add
GPS information for optimization, so the performance is
poor. In Point-Localization [42], the odometer made by
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Fig. 10. Experimental results on actual test scene data.

Fig. 11. Comparative test results under three scenarios. (a) GPS signal failure. (b) Lidar field of view is blocked. (c) Sparse
scene features.

Hall sensor is fused with the point cloud map matching
and positioning, and the GPS information is also not added
for optimization, which leads to a decrease of the overall
positioning accuracy.

Fig. 11 shows the localization results of the method pro-
posed in this paper under three complex scenarios: GPS
signal failure, lidar field of view is blocked and sparse
scene features. As shown in Figs. 11(a) and 11(b), the
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scene is a tree that causes the GPS signal to be blocked
and invalid, but the unmanned vehicle can still locate sta-
bly Fig. 11(c). As shown in Figs. 11(d) and 11(e), two
vehicles block part of the field of view of the lidar, but the
unmanned vehicle can rely on IMU solution for accurate
positioning in a short time. As shown in Figs. 11(g) and
11(h), map matching can not accurately locate in sparse
scenes, but reliable GPS positioning information in open
areas can enable unmanned vehicles to locate stably. Ex-
periments show that the proposed method can achieve sta-
ble positioning in these three complex scenes.

4. CONCLUSION

This paper proposes an optimal dynamic localization
method for autonomous mobile robots via integration sen-
sors. Firstly, the global point cloud map with low drift and
small cumulative error established by 3D-Lidar is used as
a priori information. Next, the error model is established
based on the measurement information of IMU, and then
the system state equation is constructed. Furthermore, the
observation equation is constructed based on the position
and attitude information obtained by global map matching
and the position information of GPS in the signal reliable
area. Finally, the error state Kalman filter optimizes the
fusion localization. The experimental results show that the
average locating error of this method is 0.08 m, the fastest
single locating time is 0.01 s, and it can locate stably in
complex scenes.

In the future, the cameras based on deep learning net-
works will be considered to increase the diversity of map
construction information and improve the perception and
planning of autonomous robots. Furthermore, in terms of
optimal localization, more efficient multi-sensor fusion
strategies will design to enhance the accuracy and robust-
ness.
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