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Output Regulation with Prescribed Performance Control of Switched
Strict-feedback Systems
Haichao Zhu �

Abstract: In this work, we establish a complete procedure for the output regulation problem with prescribed perfor-
mance for a class of switched strict-feedback systems by employing barrier Lyapunov function and speed function
method. Under the framework of output regulation control for general switched nonlinear systems, a switched regu-
lator equation is constructed. Compared to the existing works which require the solvability of output regulation for
each subsystem, the designed switched regulator equation based method need not each subsystem has a solution to
the problem, which releases the conservatism. Moreover, the state feedback control scheme based on speed function
technique and a new state dependent switching rule are constructed to achieve that the error output keeps in a pre-
scribed performance bound in a given finite time and tracks a desired trajectory asymptotically. The effectiveness
of the results is demonstrated by a simulation example.

Keywords: Finite time, output regulation, prescribed performance, switched nonlinear systems, switched regulator
equation.

1. INTRODUCTION

Switched systems, composed of a family of subsystems
and a switching law that determine the sequence of ac-
tivated subsystem [1]. Because of its significant theoreti-
cal value in hybrid systems and control theory, as well as
its widely applied in practical systems, switched systems
have attracted much attention in the last several decades,
and some elementary control issues about switched sys-
tems have been comprehensively researched, such as sta-
bility and stabilization, tracking control, filter design and
dissipativity analysis, see [2,3] and the references therein.
It should be noticed is that constructing specific switching
rule for a class of dynamic systems can add accessional
design freedom, for instance, when a certain performance
of a switched system cannot be obtained by a single sub-
system, one may achieve this goal by switching between a
collection of subsystems or controllers.

Output regulation problem is a significant and essential
control issue in control theory. The classical output regu-
lation problem aims to achieve steady state performance
including asymptotic tracking for desired reference inputs
and/or asymptotic rejecting undesired disturbances gener-
ated by a system named as the exosystem which is usu-
ally assumed to be precisely known. A large majority of
results on the classical output regulation problem for non-
linear system can be founded in [4-6]. More recently, the
output regulation problem is extended to hybrid systems

[7,8] and multi-agent systems [9-12]. As a basic problem
in control theory, the output regulation problem is also ad-
dressed for switched systems. Besides the output regula-
tion problem for switched linear system that constructed
state feedback controllers and error feedback controllers
via common Lyapunov function and average dwell time
method [13-15], the output regulation problem for nonlin-
ear switched systems has attracted much more attention
since the work of [16]. The output regulation problem of
positive switched systems and switched non-linear sys-
tems produce switched internal model and a state-input
dependent switching rule in [17,18] respectively. More-
over, the output regulation problem for switched system
is researched by incremental passivity [19,20]. It is nec-
essary to note that virtually aforementioned results study
the output regulation problem for switched systems under
the condition that each subsystem is required to be solv-
able. It is still a challenging problem when consider the
case in which the problem for subsystems is unsolvable.
One major difficulty in dealing with this problem is that
the switched regulator make the switching rule and con-
trol design further complicate.

Also, it is worth noting that the majority of the work on
output regulation problem focus on the steady state per-
formance of the switched system, i.e., the solvability con-
ditions of the output regulation problem for switched sys-
tems. Noting that constraints are commonly occurring in
practical applications, the transient performance is also an
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important issue to be considered in the output regulation
problem. For example, when robot manipulators perform
complicated tasks, perform complicated tasks, they are re-
quired to keep tracking error convergeing to a designed
compact zone in a given finite time [21-23]. In [24], un-
certain Euler-Lagrange systems with state constraints is
designed to achieving tracking error converges to the de-
signed compact zone in a given finite time by constructing
a speed function and adopting error transformation tech-
nique. A result has been made in [25], which is designing
a distributed controller and adaptive laws for the multi-
agent systems to achieve prescribed performance control.
Thus, the methods that guarantee prescribed transient per-
formance are more preferred in many applications.

In this paper, we propose a prescribed performance con-
trol for a class of nonlinear switched systems in strict
feedback form by constructing the state dependent switch-
ing rule and state feedback controllers. A general frame-
work to tackle the output regulation with finite time pre-
scribed performance for a class of nonlinear switched
system is established by combining the coordinate trans-
formation technique and barrier Lyapunov function tech-
nique. By constructing switched regulator equation and
performing a state transformation, the output regulation
problem with output error constraint is converted to a
constrained stabilization problem of a transformed sys-
tem still in strict feedback form. Then, barrier Lyapunov
functions and speed function are introduced to handle the
state constraints, based on which, a state feedback con-
troller and a state dependent switching signal are designed
to solve the constrained stabilization problem, which also
solves the output regulation problem with prescribed per-
formance. Compared to the existing results, the features
of this paper are as follows:

1) Different from the traditional output regulation prob-
lem in which the steady state of the system is ad-
dressed [4-9], the proposed output regulation with
prescribed performance control considers both the
steady state performance and transient performance.
The error output of the output regulation system not
only is confined in the prescribed performance bound
in a given finite time, but also tends to zero asymptoti-
cally. Moreover, compared with the existing transient
performance control for nonlinear systems [26-28],
the initial value of error output need not to be re-
stricted in prescribed performance bound by our pro-
posed method, which enlarge the degree of freedom
in the design. To deal with this issue, a novel state
feedback controller based on the barrier Lyapunov
function and speed function is constructed.

2) The existing methods which require that every sub-
system has its own regulator equation [16,17]. To
come up with a less conservatism for this more
complicated output regulation with prescribed per-

formance problem, this paper constructs a switched
regulator equation based a state dependent switching
rule, by which the output regulation problem of each
subsystem need not to be solved.

This paper is organized as follows: In Section 2, an out-
put regulation problem with prescribed performance con-
trol is formulated for a class of strict-feedback systems
with state constraints. Section 3 establishes the main re-
sult on the solvability of the proposed output regulation
problem. In Section 4, a numerical example is presented
to illustrate the validity of our proposed method. Section
5 ends the paper with some concluding remarks.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider a class of switched strict-feedback nonlinear
systems described as follows:

ẋ1 = f σ(t)
1 (x1,v)+gσ(t)

1 (x1,v)x2,

ẋi = f σ(t)
i (x1, ...,xi,v)+gσ(t)

i (x1, ...,xi,v)xi+1,

ẋn = f σ(t)
n (x1, ...,xn,v)+gσ(t)

n (x1, ...,xn,v)u, (1)

where 2 ≤ i ≤ n−1, xi ∈ R, i = 1, 2, ..., n,are the system
states. σ(t) is a switching signal denoting the mth subsys-
tem with σ(t) = m, which takes its values in a finite set
M= {1, ..., M} and M > 1 is the number of subsystems.
Moreover, for a switching sequence 0 < t1 < .. . < ti < .. .,
symbol ti denotes the moment of the ith switching. u ∈ R
is the control input, v ∈ Rq is the exogenous signal repre-
senting the disturbance and tracking signal, which is given
by

v̇ = Sv (2)

with v(0) ∈ V0 where V0 is a compact set. It is assumed
that, for ∀i = 1, ..., n, the functions f σ(t)

i (x1, ...,xi,v) and
gσ(t)

i (x1, ...,xi,v) are smooth with f σ(t)
i (0, ...,0,0)= 0. The

control objective is to design a switching feedback control
law

u = kσ(t)(x,v), (3)

and a state dependent switching rule σ(t) such that the
output of the closed-loop system y = x1 will asymptoti-
cally track a reference trajectory yd(v).

Defining the error output of the system as

e = y(t)− yd(v) = x1− yd(v), (4)

the above described control problem can be formulated as
an output regulation problem with prescribed performance
control as follows.

Output regulation problem with prescribed perfor-
mance control: Consider switched strict-feedback non-
linear systems (1), the exosystem (2), and the error output
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(4), design a state feedback control law in the form of (3)
and a switching rule σ(t) such that the closed-loop sys-
tem consisting of (1), (2) and (3) has the following three
properties:

Property 1: all the signals in the closed-loop system
are bounded for all t ≥ 0;

Property 2: the system output y = x1 tracks a reference
trajectory yd(v) asymptotically, i.e.,

lim
t→∞

e(t) = lim
t→∞

(y(t)− yd(v)) = 0;

Property 3: within a given finite time T , the tracking
error e(t) satisfies a prescribed performance bound,

−cK < e(t)< cK, ∀t ≥ T,

where K is positive constant and 0 < c� 1 is a design
parameter.

Remark 1: The output regulation problem with pre-
scribed performance is an extension of the traditional out-
put regulation problem by addressing the transient perfor-
mance of the closed-loop error output e(t). In fact, with-
out Property 3, it is exactly a traditional output regula-
tion problem which is extensively investigated in the lit-
erature. Property 3 defines a performance boundary for
the transient performance of the closed-loop error output
e(t). The error output e(t) are confined to a given region
which is predefined by the performance bound function
cK in a designed finite time. Comparing with traditional
output regulation problem, we not only guarantee that the
steady states converge to constructed invariant manifold,
but also achieve that the transient states without viola-
tion of the preferred boundary. Moreover, switching be-
tween each subsystems raise the difficulty of constructing
switched invariant manifold.

The following assumptions and definition are necessary
to derive the main results in this paper.

Assumption 1: The exosystem (2) is neutrally stable,
i.e., all the eigenvalues of S are simple and have zero real
parts.

Assumption 2: gm
i (x1, ...,xi,v), i = 1, ...,n, are known,

and there exists some unknowns constants bi such that
|gm

i (x1, ...,xi,v)| ≥ bi > 0. Without loss of generality, we
assumed that gm

i (x1, ...,xi,v)≥ bi > 0.

Remark 2: Assumption 1 is quite common in the lit-
erature on nonlinear output regulation problems. To sim-
plify the stability analysis of the closed-system, Assump-
tion 2 is made to guarantee that the control direction is not
changed during the system is running, i.e., gm

i ≥ bi > 0 or
gm

i ≤ −bi < 0 with bi > 0. However, if gm
i ≤ −bi < 0, let

g̃m
i = −gm

i , we have g̃m
i ≥ bi > 0. Thus, without loss of

generality, we assumed that gm
i ≥ bi > 0.

Let xi+1 = a1xi+1,1+a2xi+1,2+ ...+aMxi+1,M , with i= 0,

..., n, a j =

{
1, δ (t)− j = 0,
0, else,

j ∈M = {1, ..., M} and

x1(v) = yd(v), we can define

x(i+1)(v) =
∂xi(v)

∂v Sv− f σ(t)
i (x1(v), ...,xi(v),v)

gσ(t)
i (x1(v), ...,xi(v),v)

,

i = 1, ..., n. (5)

It is clear that x(v) = [x1(v) · · · xn(v)]T and u(v) =
xn+1(v) satisfy the regulator equations of the output regu-
lation problem for the system (1), (2) and (4).

Remark 3: Equation (5) constructs a switched regula-
tor equation based a state dependent σ(t), which is made
to guarantee that the solvable of the output regulation
problem of switched system. The existing results require
that each subsystem states converge to invariant manifold,
which is xim = xi(v). Comparing with existing results, the
output regulation problem of each subsystem is not re-
quired to be solvable, which release the conservatism.

Definition 1 [24]: A rate function is given as follows:

χ̄(t) =

{
( T

T−t )
4χ(t), 0≤ t < T ,

∞, t ≥ T ,
(6)

where 0 < T < ∞ is a designed finite time, and χ(t)
represents nondecreasing and smooth function meeting
χ(0) = 1 and χ̇ ≥ 0, which should be noticed is that when
t ≥ T , χ̄(t) = ∞.

Assumption 3: The finite time T is designed to satisfy
T > Tc. Tc is a small time interval which is necessary for
signal computing and transmission.

According to the introduced speed function and As-
sumption 2, the speed function β (t) is given as follows:

β (t) =
1

(1− c)χ̄(t)−1 + c
, (7)

where c is a given parameter meeting 0 < c� 1. Based on
the expression of χ̄(t) in (6), we obtain

β (t) =

{
T 4χ(t)

(1−c)(T−t)4+cT 4χ(t) , 0≤ t < T ,
1
c , t ≥ T .

(8)

The properties of the speed function β (t) are listed in [24].

3. MAIN RESULTS

In this section, we will give sufficient conditions for
the solvability of the output regulation problem with pre-
scribed performance of the system (1), (2), and (4). To this
end, we first define

x̄i = a1xi,1 +a2xi,2 + ...+aMxi,M−xi(v),

ū = a1u1 +a2u2 + ...+aMuM−u(v), (9)
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where a j =

{
1, δ (t)− j = 0,
0, else,

j ∈ M = {1, ..., M}.

Then, the system (1), (2) and (4) can be rewritten as

˙̄x1 = f σ(t)
1 (x̄1 +x1(v),v)+gσ(t)

1 (x̄1 +x1(v),v)(x̄2 +x2)

− ∂x1

∂v
Sv = hσ(t)

1 (x̄1, x̄2,v),

˙̄xi = f σ(t)
i (x̄1 +x1(v), ..., x̄i +xi(v),v)

+gσ(t)
i (x̄1 +x1(v), ..., x̄i +xi(v),v)(x̄i+1 +xi+1)

− ∂xi

∂v
Sv

= hσ(t)
i (x̄1, ..., x̄i,v), i = 1, ..., n−1

˙̄xn = f σ(t)
n (x̄1 +x1(v), ..., x̄n +xn(v),v)

+gσ(t)
n (x̄1 +x1(v), ..., x̄n +xn(v),v)(ū+u)

− ∂xn

∂v
Sv)

= hσ(t)
n (x̄1, ..., x̄n, ū,v),

v̇ = Sv,

e = x1− yd(v) = x̄1. (10)

According to (5), x(v) and u(v) satisfy the regulator
equations, which implies that

hσ(t)
i (0, ...,0,v) = 0,

for all v ∈Rq. Thus, it is not difficult to show that the out-
put regulation problem with prescribed performance for
the system (1), (2), and (4) is equivalent to a constraint
stabilization problem of (10). In fact, if there exists a con-
troller

ū = k̄σ(t)(x̄1, ...x̄n,v) (11)

solves the stabilization problem of (10), then limt→∞ x̄i(t)=
0, i.e., lim

t→∞
xi(t)= xi(v) and lim

t→∞
e(t)= lim

t→∞
x̄1(t)= 0, which

guarantees Properties 1 and 2.
Moreover, Property 3 can be satisfied if x̄1 is controlled

in

x̄1 ∈ Ei := {−cK < x̄1(t)< cK, ∀t > T}. (12)

Next, we will construct a control law by the following
steps to solve the stabilization problem of (10) with con-
straint (12), which equivalently solves the output regula-
tion problem with prescribed performance for the system
(1), (2) and (4).

Step 1: Define x̄1 = z1, error transformation η = β z1,
and z2 = x̄2−α1(η). Consider the following common Lya-
punov function candidate

V1,σ(t)(η) =
1
2

ln(
K2

K2−η2
σ(t)

), ∀σ(t) ∈M. (13)

The derivative of V1,σ(t)(z1) along the transformed system
(10) is given by

V̇1,σ(t)(ησ(t))

=
η

K2−η2
σ(t)

[
f σ(t)
1

(
η

β
+x1(v)

)
+gσ(t)

1

(
η

β
+x1(v)

)
(z2+x2(v)+α1(η))−ẋ1(v)

]
.

(14)

Design the state dependent switching law

σ(t) = arg min
m∈M
{|x1m−x1(v)|}, (15)

when σ(t) = m, the mth subsystem is active, one obtains

V̇1,m(ηm) =
ηm

K2−η2
m
[ f m

1 (
η

β
+x1(v))+gm

1 (
η

β
+

x1(v))(z2 +x2(v)+α1(η))− ẋ1(v)+
β̇

β
η ]. (16)

Design the stabilizing function α1(z1) as

α1(η) =
1

gm
1

(
− f m

1 −k1,m(K2−η
2)η+ẋ1(v)−

β̇

β
η

)
−x2(v), (17)

where k1,m > 0 are positive constants. Combining (14) and
(17), we can obtain

V̇1,m(z1) =−k1,mη
2 +

1
K2−η2 gm

1 ηz2, (18)

where the coupling term 1
K2−η2 gm

1 ηz2 is canceled in the
subsequent step.

Step 2: Define z3 = x̄3−α2(η ,z2), and consider the fol-
lowing common Lyapunov function candidate

V2,σ(t)(η ,z2) =V1,σ(t)(η)+
1
2

z2
2, ∀σ(t) ∈M. (19)

The derivative of V2,σ(t)(η ,z2) is given by

V̇2,σ(t)(η ,z2)

=−k1,σ(t)η
2 +

1
K2−η2 gσ(t)

2 ηz2

+ z2[ f
σ(t)
2 +gσ(t)

1 (z3 +x3(v)+α2(η ,z2))

− ẋ2(v)− α̇1]. (20)

Design the state dependent switching law

σ(t) = arg min
m∈M
{|x2m−x2(v)|}, (21)

when σ(t) = m, the mth subsystem is active, one obtains

V̇2,m(η ,z2) = − k1,mη
2 +

1
K2−η2 gm

1 ηz2

+ z2[ f m
2 +gm

2 (z3 +x3(v)+α2(η ,z2))

− ẋ2(v)− α̇1]. (22)
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Design the stabilizing function α2(η ,z2) as

α2(η ,z2) =
1

gm
2
(− f m

2 − k2,mz2−
1

K2−η2 gm
1 η + ẋ2(v)

+ α̇1)−x3(v), (23)

where k2,m > 0 are positive constants. Substituting (23)
into (20), we have

V̇2,m(η ,z2) =−k1,mη
2− k2,mz2

2 +gm
2 z2z3, (24)

where the coupling term gm
2 z2z3 is canceled in the subse-

quent step.
Step i: Define zi = x̄i−αi−1(η , ...,zi−1), and consider

the following common Lyapunov function candidate

Vi,σ(t)(η , ...,zi) =Vi−1,σ(t)(zi−1)+
1
2

z2
i , ∀σ(t) ∈M.

(25)

The derivative of Vi,σ(t)(zi) is given by

V̇i,σ(t)(η , ...,zi) = − k1,σ(t)η
2−

i−1

∑
j=2

k j,σ(t)z2
j

+gσ

i−1(t)zi−1zi

+ zi[ f
σ(t)
i +gσ(t)

i (zi+1 +αi(zi)

+xσ(t)
i+1 (v))− ẋσ(t)

i (v)− α̇i−1]. (26)

Design the state dependent switching law

σ(t) = arg min
m∈M
{|xim−xi(v)|}, (27)

when σ(t) = m, the mth subsystem is active, one obtains

V̇i,m(η , ...,zi) = − k1,mη
2−

i−1

∑
j=2

k j,mz2
j

+gm
i−1zi−1zi

+ zi[ f m
i +gm

i (zi+1 +αi(zi)+xm
i+1(v))

− ẋm
i (v)− α̇i−1]. (28)

Design the stabilizing function αi(zi) as

αi(η , ...,zi) =
1

gm
i
(− f m

i − ki,mzi−gm
i−1zi−1 + ẋm

i (v)

+ α̇i−1)−xm
i+1(v), (29)

where ki,m > 0 are positive constants. Substituting (29)
into (26), we have

V̇i,m(z1, ...,zi) =−k1,mη
2−

i−1

∑
j=2

k j,mz2
j +gm

i zizi+1, (30)

where the coupling term gm
i zizi+1 is canceled in the subse-

quent step.

Step n: By repeating the above steps, let zn = x̄n −
αn−1(z1, ...,zn−1) and Vn,σ(t)(η , ...,zn) = Vn−1,σ(t)(zn−1)+
1
2 z2

n. It is straightforward to obtain

V̇n,σ(t)(η , ...,zn)

=−k1,σ(t)η
2−

n−1

∑
j=2

k j,σ(t)z2
j

+gσ

n−1(t)zn−1zn + zn[ f σ(t)
n +gσ(t)

n (zn+1 +αn(zn)

+xσ(t)
n+1(v))− ẋσ(t)

n (v)− α̇n−1]. (31)

Design the state dependent switching law

σ(t) = arg min
m∈M
{|xnm−xn(v)|}, (32)

when σ(t) = m, the mth subsystem is active, one obtains

V̇n,m(η , ...,zn)

=−k1,mη
2−

n−1

∑
j=2

k j,mz2
j

+gm
n−1zn−1zn + zn[ f m

n +gm
n (zn+1 +αn(zn)

+xm
n+1(v))− ẋm

n (v)− α̇n−1]. (33)

Then, the control law is designed as

ū = αn(η , ...,zn)

=
1

gm
n
(− f m

n − kn,mzi−gm
n−1zn−1 + ẋm

n (v)+ α̇n−1)

−xm
n+1(v), (34)

where kn,m > 0 are positive constants. Substituting (34)
into (31), we have

V̇n,m(η , ...,zn) =−k1,mη
2−

n

∑
j=2

k j,mz2
j . (35)

Consequently, we can conclude the main result which
is declared by the following theorem.

Theorem 1: For the switched system described by (1)
and (2) that satisfies (5) with the state feedback controller
in the form of (34) and state dependent switching rule σ(t)
satisfies the condition (15), (27), and (32), the output reg-
ulation problem with prescribed performance is achieved.

Proof: To show Theorem 1, we just need to verify that
Properties 1-3 are satisfied:

(i) We first show that the trajectories of the closed-loop
system are bounded for all t ≥ 0. According to (35), we
get

V̇n,m < 0⇒Vn,m(t)≤Vn,m(0), t ≥ 0. (36)

This implies that

ln
(

1
1−η2(t)

)
+

n

∑
i=2

z2
i (t)

≤ ln
(

1
1−η2(t0)

)
+

n

∑
i=2

z2
i (t0). (37)
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Boundedness of the left-hand side of (37) implies that
η , zi, i = 2, ..., n, are bounded. Apparently, αi are bounded
by constructed. After coordinate transformation zi = x̄i−
αi−1(η , ...,zi−1), we can obtain x̄i, i= 1, ..., n are bounded.
Furthermore, based on x̄i = xi−xi(v), i = 1, ..., n, it is easy
to get all xi are bounded, i.e., Property 1 is satisfied.

(ii) (35) implies that η convergence to zero, as t → ∞,
thus

lim
t→∞

e(t) = lim
t→∞

η(t)
β

= 0,

which is Property 2.
(iii) According to (35), we can know that V1m(t) ≤

V1m(0), ∀t > 0. Based on the expression of V1m(t), we ob-
tain

log
K2

K2−η2
m(t)
≤V1(0), (38)

which implies that K2 ≤ η
V1(0)
m (K2−η2

m(t)). Therefore

‖η‖ ≤ K
√

1−η−V1(0) ≤ K, ∀t > 0. (39)

Note that η = β−1x̄1, thus, we can obtain

‖x̄1‖ ≤ β
−1K. (40)

Then, according to (8), we obtain

‖ x̄1‖ ≤ (1− c)
T − t

T

4

χ
−1K + cK, 0≤ t < T, (41)

‖x̄1‖ ≤ cK, t ≥ T. (42)

Owing to e = x̄1, which means that the output tracking
error converges to the designed constrained set in a finite
time T . Thus, Property 3 is achieved. This completes the
proof. �

Remark 4: Under the proposed finite time prescribed
performance control scheme defined by (17), (23), (29),
and (34), the output error of the system satisfies |e(t)| ≤
cK after a given finite time T , which means that the speed
function β (t) restricts the decay rate no less than T−t

T
4
χ−1

in [0,T ) and K defines a prescribed performance bound
for the output error. As a special case, let β (t) = 1 and
K = ∞, the control scheme defined by (17), (23), (29), and
(34) will be reduced to a traditional control scheme

α1(z1) =
1

gm
1
(− f m

1 − k1,mz1 + ẋ1(v))−x2(v),

α2(z1,z2) =
1

gm
2
(− f m

2 − k2,mz2−gm
1 z1 + ẋ2(v)+ α̇1)

−x3(v),

αi(z1, ...,zi) =
1

gm
i
(− f m

i − ki,mzi−gm
i−1zi−1 + ẋm

i (v)

+ α̇i−1)−xm
i+1(v),

ū = αn(z1, ...,zn) =
1

gm
n
(− f m

n − kn,mzi−gm
n−1zn−1

+ ẋm
n (v)+ α̇n−1)−xm

n+1(v). (43)

The traditional control scheme also solves the output reg-
ulation problem which is Properties 1 and 2, but the re-
quirement on transient performance for the error output
e(t) is removed which is Property 3.

Remark 5: Compared with the previous output regu-
lation problem with transient performance result [26,27],
which only considers that the output be restricted in the
given bound with limited initial output value, this paper
considers that the error output is confined in the prescribed
performance bound with any initial value in a designed fi-
nite time. In addition, this article consider switched sys-
tems require constructing specific switching rule and this
result can be applied to non-switched systems.

4. SIMULATION RESULTS

In this section, a numerical example is given to illus-
trate the effectiveness of the proposed control scheme.
Consider the following switched strict-feedback nonlinear
system

ẋ1 = f σ(t)
1 (x̄1,v)+gσ(t)

1 (x̄1,v)x2,

ẋ2 = f σ(t)
2 (x̄2,v)+gσ(t)

2 (x̄2,v)u,

v̇ = Sv,

e = x1− yd(v), (44)

where σ(t) ∈ M = {1, 2}, f 1
1 (x1,v) = 0.5x1 +

v2, g1
1(x1,v) = 1, f 1

2 (x1,x2,v) = −x1 − 2e−x2 + 2,
g1

2(x1,x2,v) = 1, f 2
1 (x1,v) = x1 + 2v2, g2

1(x1,v) = 1,
f 2
2 (x1,x2,v) = x1 + e−x2 − 1, g2

2(x1,x2,v) = 1. The ex-
osystem is selected as: v̇1 = v2, v̇2 = −v1. For the output
tracking error e = x1 − v1, the required constraints is
considered in −0.2 < e(t) < 0.2. We choose the speed
function β (t) is as in (8) with c = 0.1 the rate function
χ = et and the finite time T = 2 s.

Based on the state dependent switching rule (32), the
solution of the switched regulator equations can be given
as: x1(v) = v1, x2(v) = −v2 − v1. Then, according to
the proposed finite time prescribed performance control
scheme defined by (17), (23), (29), and (34), the design
parameters of controllers are chosen as k11 = 0.3, k12 =
0.5, k21 = 0.4, k22 = 0.8. We select the initial values as
x1(0) = 0.5, x2(0) =−0.5, and the other initial conditions
are chosen as zero.

The simulation results are shown in Figs. 1-3. Fig. 1
represents the unstable exosystem. Fig. 2 is the designed
state dependent switching signal. Fig. 3 compares the tra-
jectories of the error output between the finite time pre-
scribed performance control scheme (34) with χ = et , T =
2 s and cK = 0.2 and the traditional control scheme (43).
The dashed line is the prescribed performance bound. It
is clear that, under the finite time prescribed performance
control scheme, the trajectory of the error output (the
solid line) converges to the prescribed set in a given time
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Fig. 1. The exosystem v(t).

Fig. 2. Switching signal.

T = 2 s and decays to zero asymptotically. However, under
the traditional control scheme, the prescribed performance
bound is no longer kept after a give time T = 2 s, as shown
by the dotted line in Fig. 3.

5. CONCLUSION

In this paper, a general framework is established to con-
trol switched strict-feedback nonlinear system to achieve
output regulation with finite time prescribed performance.
Firstly, we transform output regulation problem into a
stabilization problem by constructing switched regulator
equation and coordinate transformation. Then, speed func-
tion technique and barrier Lyapunov function technique
are adopted to guarantee that the output error can be con-
fined in a prescribed performance bound after a given fi-
nite time. Finally, by using the Lyapunov function and
constructing a state dependent switching rule, the stability

Fig. 3. Tracking error e(t).

analysis is provided for the closed-loop systems. It should
be noted that only the state feedback with feed-forward
control is considered in this paper, and the control law (3)
relies on the system state x and the exo-signal v. However,
the states x and/or v may not be available for feedback
control in practical applications. Thus, it is necessary but
more difficult to design a dynamic output feedback control
law. This will be one of interesting future works.
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