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Fixed-time Fuzzy Adaptive Decentralized Control for High-order Nonlin-

ear Large-scale Systems

Bo Kang, Zhiyao Ma*( , Wei Zhang, and Yongming Li

Abstract: This paper studies a fuzzy adaptive fixed-time tracking control issue for nonlinear high-order large-
scale systems. Fuzzy logic systems (FLSs) are utilized to identify unknown nonlinearities. Through using adaptive
backstepping and adding a power integrator technique, the fixed-time decentralized control method is presented.
It is proved that the tracking errors converge to a small neighborhood of a fixed time. A simulation example is
presented to confirm the validity of the developed control method.

Keywords: Adaptive decentralized control, adding a power integrator technique, fixed-time control, fuzzy logic

systems, high-order large-scale systems.

1. INTRODUCTION

Backstepping control decomposes the high-order non-
linear system into multiple subsystems to reduce the com-
plexity of designing the system controller. The backstep-
ping method starts from the first subsystem to design the
virtual controller, and then step by step recursively un-
til the actual controller of the whole system is designed.
Therefore, the researchers frequently make use of back-
stepping method to handle the control issues for nonlinear
systems. Ma er al. [1] presented a novel adaptive control
strategy for nonlinear strict-feedback systems. Wang et al.
[2] studied the control issue of n-order semi-strict nonlin-
ear systems with uncertainty and constraint. Cai et al. [3]
presented a robust adaptive control scheme of nonlinear
systems. The authors in [4,5] studied robust output feed-
back control issues for a class of nonlinear systems. Hua
et al. [6] devised a state-feedback controller of nonlinear
time-delay systems, which indicated that this system is
asymptotically stable. Cui and Xie [7] considered adaptive
state-feedback stabilization control problem of stochas-
tic high-order nonlinear systems with state-constrained.
To solve synchronization problem of the systems, Peng
et al. [8] developed a Nussbaum-type adaptive distributed
controller for nonlinear high-order systems with uncer-
tainties. Davila [9] designed an exponential exact tracking
controller by using the backstepping method for nonlinear
high-order systems with disturbances.

As we know, the research results mentioned above are
only limited that the nonlinearities are known accurately

or can be linearly parameterized for control systems. The
design process has certain complexities and limitations. In
order to solve this issue, based on the universal approxi-
mation property of FLSs or neural network (NN), the re-
searchers have put forward many adaptive fuzzy and NN
backstepping control technologies of nonlinear systems
with completely unknown nonlinearities (see [10-14]).
Among them, in [10,11], the authors proposed backstep-
ping NN control schemes for nonlinear systems. Li et al.
[12] proposed the adaptive fuzzy output tracking control
scheme for nonlinear switched systems. Combining with
backstepping technology, Tong et al. [13,14] designed a
fuzzy adaptive output feedback controller of multi-input
and multi-output (MIMO) nonlinear systems.

It is worth noting that the literatures [1-14] studied
single-input and single-output (SISO) or MIMO nonlinear
systems. Different from these types of systems, the nonlin-
ear large-scale systems have the nature of multi-layered,
high-dimensional, time-distributed and space-distributed,
which lead to complex system construction, diverse ob-
jectives and limited information structure in the system.
Moreover, many practical control systems can be regarded
as the large-scale nonlinear systems, such as transporta-
tion systems, ecological systems, and digital communi-
cation networks, etc. Therefore, the decentralized control
theory has been proposed, as an important branch of large-
scale systems control theory (see [15-23]). Among them,
the authors in [15-18] proposed state-feedback and output-
feedback decentralized control algorithms for a class of
large-scale systems. Li et al. [19] discussed the issue of
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adaptive fuzzy tracking fault-tolerant control for stochas-
tic large-scale systems with output-constrained. Li et al.
[20] designed an fixed-time fuzzy decentralized control
algorithm for stochastic large-scale nonlinear systems. In
[21-23], the authors studied adaptive NN and fuzzy decen-
tralized state-feedback control issues for nonlinear large-
scale systems. However, the existing literatures only stud-
ied the asymptotic stability for nonlinear large-scale sys-
tems. For systems like this one, it is still a challenge to
study fixed-time fuzzy decentralized control issue.

The stability analysis has always been a hot issue in
control field for nonlinear systems. According to the con-
vergence time, the system stability is usually divided into
infinite-time stability, finite-time stability and fixed-time
stability. For a class of discrete-time systems, the au-
thors discussed the issues of H” dynamic output feed-
back control and peak-to-peak filtering in [24,25]. Wang
and Zhu [26] designed a finite-time state-feedback con-
troller for high-order nonlinear system. Fan and Li pre-
sented an adaptive finite-time optimal control scheme of
switched nonlinear systems in [27]. The authors stud-
ied the issues of adaptive finite-time decentralized control
for large-scale nonlinear systems in [28-30]. In [31], the
authors studied a decentralised adaptive finite-time pre-
scribed performance control issue for large-scale nonlin-
ear interconnected systems. However, for finite-time con-
trol, the system convergence speed and performance de-
pend on the initial conditions, and the convergence time
will vary as the initial value of the state change. In order
to deal with this problem, Polyakov [32] first presented the
concept and basic theory of fixed-time control. Hong et al.
[33] considered distributed fixed-time consensus protocol
problem for multi-agent nonlinear systems. The authors in
[34,35] studied the adaptive fixed-time tracking control is-
sues for strict-feedback and nonstrict-feedback nonlinear
systems, and certified that the convergence time is uncon-
nected with the initial conditions. Zhou et al. focused on
the decentralized adaptive fuzzy fixed-time control issue
for a class of interconnected nonlinear systems in [36].
Zhang et al. [37] developed a fixed-time adaptive atti-
tude tracking controller for spacecraft. It is worth pointing
out that fixed-time control has not only faster convergence
rate, stronger robustness and higher control accuracy than
asymptotic stability, but also the convergence time is in-
dependent of the initial conditions, related to some design
parameters. These advantages make the fixed-time con-
trol have a broad application prospect in spacecraft track-
ing control [38,39], multi-robot formation tracking control
[40,41] and other fields.

Based on the above analysis, the literature [24-41] all
studied the finite time or fixed time control for a class of
nonlinear systems, there is no specific research for high-
order nonlinear large-scale systems, and the fixed-time
adaptive control for nonlinear systems still remains an
open issue. Therefore, this paper takes this as an innova-

tion point to discuss a fixed-time fuzzy adaptive tracking
control problem for high-order nonlinear large-scale sys-
tems. In the control design, the unknown nonlinearities are
recognized by utilizing FLSs. Under the fixed-time Lya-
punov stability theory, a fixed-time fuzzy adaptive decen-
tralized control scheme is proposed to guarantee the track-
ing performance is well within a fixed time.

2. SYSTEM DESCRIPTION AND PRELIMINARY
KNOWLEDGE

2.1.  System description and assumption

Consider the following strict-feedback high-order non-
linear systems as

X1 =x05 4 fir(xi1) + At (9),
Xip = x5 + fia(%in) + Aia(3),

(1)
Kimg =" S (Bim) + Aim, (9,

Yi = Xi1,

where f,"jl. = [X,"l, Xi2y e vy x,»,j,.]T, (l = l, Ceey N; j,‘ = 1, ey
m;) are the system state vectors, u; € R are the i-th sub-
system control input, y; € R are control output. f; ; (% ;)
are the unknown nonlinear functions, A; ;,(¥) G = [y, -,
yn]T) are interconnected functions and exist in every sub-
system, p; ;, > 1 are the ratio of a positive even integer to
odd integer.

Remark 1: Compared with the current researches for
large-scale systems, the system (1) is an extension of this
class of nonlinear large-scale systems. The fixed-time con-
trol has been studied for nonlinear system, with the in-
dex of virtual controller input p; ;, = 1 in [26-31]. How-
ever, this paper considered fixed-time tracking control is-
sue for high-order nonlinear systems. In that case, the con-
trol methods developed by the previous researches are no
longer feasible.

Assumption 1 [19]: The nonlinear interconnected
terms A; () (i=1,...,N; ji=1,..., m;) satisfy

Miji N
180, 0) < X X dijalvil’s @
r=11=1
where ¢; ; , are unknown constants.

2.2. Preliminaries

The following several lemmas and definitions on fixed-
time control are given for high-order nonlinear large-scale
systems.

Definition 1 [42]: For the i-th subsystem x = f(x,1),
the large-scale nonlinear systems are semiglobal practical
fixed-time stable (SGPFS). If for any x;(#y) = xo, there is a
positive constant € and a settling time 7' (€,x9) < oo, such
that ||x;(r)|| < € and x(¢) =0 forall t > to+T.
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Lemma 1 [35]: There is a function V(X) > 0, the con-
stants fB;, B, > 0,0 < k1 <1, K > 1, and A > 0, such
that

V(X) < -BiV*(X)

the system (1) is practically fixed-time stable and the set-
tling time 7 is bounded as

—BVR(X)+ A, 3)

1 1
Bio(i—x)  Bad(ka—1)’

where the constant 0 < 0 < 1.

Remark 2: Finite-time control strategies of nonlinear
systems have been presented in [43-45], which only can
ensure the system states converge to a region of equilib-
rium point. Thus, this paper provides a fuzzy adaptive
fixed-time control scheme of high-order nonlinear large-
scale systems (1). By applying Lemma 1, we can design
a fuzzy adaptive fixed-time controller, which reaches the
expected tracking precision in fixed time without relying
on initial states.

Lemma 2 [35]: For any constants d;, d,, ¢ > 0,and 0 <
d; < 1, real variables A and B, the following inequalities
hold

T < Tmax = (4)

: d

A a1 < D piaph e g g,
)

|Ad3—Bd3‘ SzlfdslA_Bld.%. (6)

Lemma 3 [18]: The unknown nonlinearity f(X) is con-
tinuous on a compact set Q, for any constant € > 0 , there
exists a FLS 0*7 ¢(X) such as

sup | f(X) — 0" p(X)| <e, 7

XeQ

where ¢ is the fuzzy minimum approximation error, 8*7 =
(65, 65, ..., 67]" is the weight vector, the number of fuzzy
rules [ > 1. @(x) = [@1(x), @2(x), ..., ¢;(x)]7, @i(x) is the
fuzzy basis function. The fuzzy basis functions and fuzzy
membership functions are designed Gaussian functions.

Remark 3: It should be mentioned that since neural
networks and Takagi-Sugeno fuzzy systems also have the
property of Lemma 3, the FLSs used in this paper can
be replaced by neural networks [10,11] or Takagi-Sugeno
fuzzy systems [46-48].

3. FUZZY ADAPTIVE FIXED-TIME
CONTROLLER DESIGN AND STABILITY
ANALYSIS

In this section, combining adaptive backstepping design
technique and adding a power integrator method, a fuzzy
adaptive fixed-time stabilization controller will be devel-
oped. Further, the stability of the controlled system (1)
will be proved by constructing the form of Lemma 1.

Before the adaptive backstepping design, for i = 1,

N; i =1, I, @y,

>k —
.., m;, we define ®i, = H s =

o — @,; j» and ©; j, is the estimation of @} ;- Then, in-
troduce coordinate transformation as follows:
€i1 =Xi1 —Yid,
_ Gij; Oij; ®)
€ij; = Xij — O

where ¢; ;, is the virtual error, y; 4 is the reference signal,
0 j, is a virtual controller, it is designed later. For conve-
nience, we can define 1+ 2= ’i - = ﬁ + Vv, the design pa-
rameter 0;; = 1 and o; ;, > 1’(], =2, . .
v satisfies v € (0, 1).

Step i,1: Choose the Lyapunov function as

N
V1:Z( i+ ®21+ ¥ ) 9

i=1

m;), the constant

where ‘i‘i‘yl =¥, - ‘i‘,-,l, ‘i‘,-_yl is the estimation of W7,.
We can define the positive-definite function W;; =
Xil (O 0;1\2-1/0;,

oc,-_ll (SG'] - 11) 'ds.
The time derivative of V; is

~ A

V) = —0;10;, —‘i’i,l\i’z}l]

=

Il
=

[ei,léu

I
™=

[ezl(xp +fz (le) zl(y)

1

—)"i,d)—@i,l(:)i,l _lpi,]\i‘iﬁl]- (10)

Since F;1(xi1) = fi1(xi1) — yia is completely unknown

nonlinear function, a FLS is used to recognize F; (i 1).
One can get

Fiy (1) = 6,1 @11 (Xi1) + &1 (Xi1), (1)

where |8,-,1(x,; )| < €, &) is a positive constant, x;; =

[Xi1, Yids Yia)"-
By using Young’s inequality, we can obtain

N
Zeiv‘E‘J(Xi,l)

ein (6,1 @1 (xin) + &1 (Xi1))

|
.MZ

Il
.

—_

N
PRTIERY 1
SZ, Trv Ve e e ()l

\% 1
Jr Ty all(l+v)/v l_i_vbilfve},]w

v —(14+V)/V o \(1HV))v

&

t+— 1+v i1 ( t,l)

Mz

=,

el TV (a7 O o ) I +b7Y) + o]

(12)

1
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where a;, b;; are positive design parameters, @il =
’ 9;(1 1+v and w1 = a; (1+v)/v +b:1(1+v)/v(8:l)(H'V)/V.

Furthermore, 1nvok1ng Assumption 1, Young’s inequal-
ity and Cauchy-Schwartz inequality yields

N
Z ei1Ai1(y)

1
2dz 1

+

il (eilei,l(y‘))z}
(i iq,’u‘y‘ )2}

r=11=1

IN
_MZ
—

IN
1=
—
[\e]
=

[u—y

()N, (13)

IN
M=
§
&Mz
i M» N‘ S
\\Mz

Il
-

where d; | is the design parameter. k = max{n; ;|1 <i <N,
1 < j; <m;} is known.
2
From the inequality ( Z x;)*" <2% ¥ x7’, the above for-

i=1 i=1
mula can be transformed into

‘ &

= ey (dh vl kN

™=
M=
™M=

Il
-
-
Il
-
I
-

1,1

M’* )
=

2 2r 2r 2r
11% hale + i) X2

IN
z
™=

Il
-
2
Il
R
-
Il
-

IA
™=
[\Nﬂ»

I
2
I

1( l1+yld)qllr7 (14

where g1, =2%"! x kNd, Z%]l

Recalling (13) and (14) leads to

N
Y eiihii(9) <
i=1

k
+ Y e+ v

r=1
(15)

'MZ
™=

Il
—

Il
—

i

According to (12) and (15), (10) can be rewritten as

Vl <Z ell ll lpél)
+€3,TV( 05 9 G| +biY)

1
+ei71ai],)2 +Zell ll+yld lP* Zdl
i,

+ w1 — 010, —¥; ¥, (16)
where ¥}, = max g ;.
’ 1<r<k

Design the virtual controller ¢; », the adaptive laws (5)1-71
and li’i,l as

1/a;, 2+v 1+v A
Oip=—e (cin+ciney  +a;770;)

< |l @i (hi) I + b7 + Dy ) /P, (17)

A

0, —e:TVa,ITvaPi,l(hi,1)||l+v—%,1(:1',1, (18)

‘%=Zéw%wm—m%h (19)
r=1

where D; | = ¢; IP’I/G'Z‘P Z (e} +y7y), the design pa-

rameters ¢, ;. ' 1» %1 and 3/, 1 are positive constants.
Substituting (17) (19) into (16) yields

Vi <

Mz

[—cine; 7 —cinel i e (s —afy')

i=1

+Yi,1®i,1®i,1 JF}/i,lqli‘lliji,l +@; 1], (20)

where @1 = o1 + i
Step i,ji (], = 2, ey
function as

JI*1 +Z

where ¥; ;, =¥

m; — 1): Choose the Lyapunov

1~ 1.
’/l+§®i27ji+§qjizwji)’ 21

— W, ,, W, ;, is the estimation of ¥ o
X; - o,.\2—1/0;;
we can define W, j, = [o,7 (s% — 0 ;") o ds.

LJi
The time derlvatlve of V . 1S

m+2[ i

i ji
il ow; oW, oW,
+ lj, + l]:@ + lllly >
; < a zl il 8@,,1 8‘P,1 W
—0,,6,, -, Jl (22)
iji (O iji\2~ /'7/
According to W, ;, = fa (s — oy ) ds and
Lemma 2, one has
|avvi,j;/axi,lxi,l|
Gx/, i Oi.j; L
<(2_1/Glj lj )I/Gl (azj, )]/o—l|
07— ey
<(2—1/0;;)2 /%
X e;é,‘q'/" eil;l/m'ji du; '/‘/9)@ 1Xi]
< yijleijlldo; "’/&x, il (23)
IW,j, /9 j%i
— G - al oy
2—1/0ij; i
= e O g ) + 80 B, (24)

where y; j, > 21/ (2
ous step (23), one gets

—1/0;,). Similarly to the previ-

|(9W7,/(9h,1h,1\ < Vi, |e,j,|

da; h/ahllhzl (25)
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where il,"[ = [(:)[J,(\P,'J}T and ;l;_yl = [@iﬁl,'\i\ji’[]T.
Substituting (23)-(25) into (22) yields

Ji—1

V, <V +Z i lei| Z ’90‘, i

+ ‘80@']’1’[_” /(9@,3[@,‘71

)

2-1/0ij; isji i,
el T a4 (%) + A ()

+ ‘806;}";” /8‘?,-,1‘@,«,1

L.Ji
2-1/0ij;, _ pij;
+ ¢;. Ji l al JJi jrl ®l i ®1 JJi lPLJ/‘Pl-,]J . (26)

Utilizing the inequailty (5), it follows that

2-1/6ij; , Ppij1 Piji—1
e g —egt)
2-1/6ij, 1, Oij; o Ciji\piii/o0
=¢ ;1 (x ;/ )p”' /0 — ()P '/ b
1+v
Se lj i—1 + gl;], lj1 7 (27)

where G; ;, = v /(14 V) x (2!=Puir1/0ui ) 1+VIV,
From (27), it follows that

Ji—1

N
Z Z Cil— .]l+l 1+v

342v
Z Cii

2— 1/0,/, Pij; 2-1/01) (_pij; Pi.ji
Lot — o)

_|_

(A

v 2—1/0), N
+leij; |‘gi,jiei,/‘,-+ei4j,- i (%)

il (ae oo
i-Ji 3 Li @
+Viji Z (‘ T Xig|+ 30,, 0,
= )l I,

Oij;
806[11 A >
71}‘1

0w,

Ji—1

+Z @ (:),er)/,‘P,]‘Plerll)

+ +e A (5)

~0,,0, — ¥, ¥, ). (28)

Define the unknown nonlinear function F; ;(x; ;) =
21/0) . 4 Jigl
Gl + ey T fip(Rig) + i X <

Oi.j;
i-Ji

ax;_, -xi,l +

Ba.g'“ A
- hll

) , @ FLS can be utilized to identify the function

F (x, ;) and assumes that

FiJ[ (%i,jf) = GiT};(pi‘j[ (Xi,j[) + & j; (Xi,j[)7 (29

where | ;. (X: le)| < g, with & is a positive constant,
R 2 oz .
Xiji = Fijo Opjm1s Wijimt]' with O = [0y, ...,
i r g . . T
0] Wij—1 = [Pir, . Wiyl
By using Young’s inequality, we can get

N

Y leiilFiji (%)

i=1

rh

‘el J/|(0lj @i, J/(%l ]x) T& J/(%l ]x))

Il
=

1+v I4+v I+v

I+v
l+v iji vJ: || 1]:||

” G j; (%iaji) ”

IA
mZ

v a*(1+V)/V+ 1 1+v _1+v

_|_

1+v i,Ji 1+v iLji i
v (1+v)fv (14+v)/v
b b )
y 1 1 1+ 1
v
S Z] [eljtv(a ,J/r,v i.ji ‘(Pl,J:(lex)H +b1tv)
+ wiﬁji] s (30)

where a; j, and b; j, are positive design parameters, ©; ; =
167, |, and @ = a (O 4 b IR (g2 Y0,

l.}l
Similar to (15)

Z 2— l/O',hA[jl( )

Q

k
4-2/0; ;.
ZZ i fou (& +yin)djir  BD

whereqj,,,—22’ 1 X kNd, Z ql] i
According to (30) and (31) (28) can be rewritten as

1171

Z Z cii— Jit etV — chle%HV

2- 1/ Oij; 1 Pij; Pij; 2— 1/ Gij;  Pij;
+e (xij+1*O‘i,j,-+1)7L i-ji Qi ji+1

* 1
+e 1+v( i3 Ol (i) I + 611

4-2/0; %
+): 2o (2 ) ey

2d; j
Ji—1 A A

+ Y (50,0 +7, Vi Vi + @)
=1

A A

— 0,0, - ¥l (32)

where ¥}, = max
biJi l<r<kqj“lr
Des1gn the virtual controller @; j1, the adaptive laws
@, ,j; and ‘I’, i as
1/6i 41
®ijir1 = —e; " [(cij,

+ azlxv@ il 0 (X ji)

]z+1)+C”, 2+V+b1+v

1

‘ +V+D,~ﬁji]l//"-/x’
(33)

%501 (34)

A 1
0, = zljjv zl;r,vH(Ptyjl(%lJ,)H v

k
A 4-2/c;
lI’i,ji = Z ei,j,» fou (el Ji +y )

r=1

1/”"1’ ijis (35)

k
lh \P’ iJi Z (612';1

Where Di,j; — +y122) Wlth 775i,j, = 2 _
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(Gi.j,-+1 +Pij; Oi.j;

OO ) the design parameters c; j,, ¢; ., % j,» and

Y, j, are positive constants.
Substituting (33)-(35) into (32) yields

Z|: jzctl_]l+l 1+V

vy o2 1/6ij; ¢ pij; Pij;
- Z cile; €iji (xi.ji+l - O‘i,jf+1)

+ Z (%010 + 7, PP+ ay)|, (36
=i

where @;; = @;; + 2d,
Step i,m;: Consider the Lyapunov function as

m,—mel'i_Z

where ¥; ;, =¥,

1
im; + §®2 + lezm ) (37)

— P, ,, W, is the estimation of ¥, i
Xim; (O, Gi.m; 2— 1/0', i

we can define W, = [o, (s — ;") ds.

The time derivative of V i

m;—1

Z Cll_ml+l 1+V

V <Z Z Clleuzv
+€},T1,V( zl;)}@jm,H(PiM;(Xim)”1+v +bin)

2—1/6im, p‘m, 4— 2/0,,,,1 X r 2
te tm, +Z lle, tm,+yi‘d)

1 I’ I’
@; m; @ ®z Jm, lP le m;
T S, ’ |

m;—1 . .
+ Y (7000 +7,, Vi Vi + @), (38)
=1

where
Zmi = || i’jmiHlJrv’
Oipm, :ai—.ri&v}/ +b; rE,,HV)/V( lm/)(1+v)/v’
‘szl = max le i

1<r<k
Design the virtual controller u;, the adaptive laws C:),-‘mi
and lili,mf as

1/0'Lm,~+1 [(C
i,m;

im;

—mi+ 1)+ e, +bin’
+ a,l;,v®l m; H(Pi,mi (hi,m,-) | y + Di.m,-] I/Pmi ) (39)
(:)l m = =etVa HV”‘P! m; (hi-,mi) HHV - %,mié) (40)

i,m; zm,

U — —

i,m;s

4=2/Cim; 1 2r r 1
lmz Zé’ /o €1 +y12,d) - %ﬁm,-qjiﬁmi? (41)

where Dlﬂ,m,' = ””'lP, m; Z ( lm +y,d) with Tim; = 2—

l Jm;

(Gr.m,+l +Pij; Oim;

/
G Como ) , the design parameters c; »,, Cimp> Yiymis and

Y., are positive constants.

Substituting (39)-(41) into (38) yields
N m;
Vm,- SZ _Z Czl—mz+1 1+v Zc 83+2v
i lmi I 1~ ) o
+Y (10O +7, YV + @) |, (42)
I=1
where @;; = w;; + ﬁ/[

Furthermore, we can recapitulate the controller de-
signed above as the following theorem.

Theorem 1: For high-order nonlinear large-scale sys-
tems (1), under Assumption 1, the controller (39), inter-
mediate control functions (17) and (33), adaptive laws
(18), (19), (34), (35), (40), and (41), can ensure that the
system (1) is SPFTS, and tracking errors convergence to a
small neighborhood of the origin within fixed time.

Proof: It follows from the definitions of @,vﬁl, ‘i’u (=1,

. mi) that

%.0:,0;,; < *%@i, + %( zl)z, 43)
5 Vivge Vit e
VWV < — 2’1 97+ 2’1( ) (44)

In view of (43) and (44), one obtains
Vm,<z|: Z Cll—m1+1 1+V ZC 63+2v

_Z % tl\P +Z 71

7/ i
2

(Wi + (Du)} - (45)

According to the definition of W, ;, (ji =1, ...,
inequality (5), it holds

Yidi o 0ij\2-1/0;;

m;) and the

i i
2—1 i
< iy — 0 ei |21/

< 2er (46)
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LT ST
— =0 =%
=1 ( 2 ut 2 lJ)

+ {yz’( ;,)2+}/2’*’(\P;i,)2+@i,,}]. (47)
1

E

—
I

E

+
s

N
Il

where ki = (14+V)/2, ko = (3+2v)/2, and p =
min{Zk' (Ci,l —m; + 1),21(26';71,2’)/1‘#[72}41).
Due to Lemma 2, one has

m @2 \ k m; ()2
y )" oy O + (1 —ky kT (49)
= 4 = a
m; @2 @2
<Z> <Z (1 k)k3, (50)
I=1
where 7| = lf—lkl, T, = lfzkz are the design parameters, and

Js2 2
74,1(%)]”, 7{,(\}:{" )k are similar to (48) and (49).
Substituting (49) and (50) into (48) yields

Vi < =BV — BV + 2, (51)

where ) = p, B = p/ m; —|—1 * and

N m;
A= ;I:ZI{@,-JH%J/Z)@ T+

+(1—ki )k +

i/2¥i0)}
(1= ko)k2.

Then, the settling time is

1 1
T <Thax = + . 52
m = B S0 —) T Badle —1) (>2)
Moreover, from the definition of V,,,, one has
[vi = yial < V2 )% (53)

(1-98)p,

Thus, the tracking errors can converge to a small neigh-
borhood of zero within a fixed time by tuning the parame-
ters appropriately.

Remark 4: From the proof of Theorem 1, the conver-
gence rate of the tracking error ¢; | depends on the design
parameters ﬁz and A. We can increase the design parame-
ters ¢; j, and cl i or decrease the design parameters Vv, ¥, j.,
Y. j» @i j;» and b; j, to better achieve the system performance
from (51). However, increasing the design parameters c; j,
and ¢} _i» may make the control energy greater. Therefore,
a tradeoff should be considered between the system track-
ing performance and the control effort.

4. SIMULATION RESULT

In this chapter, one simulation example confirms the
feasibility of the fuzzy adaptive fixed-time decentralized
control scheme for nonlinear high-order large-scale sys-
tems.

Example: Consider the nonlinear high-order large-
scale systems as

X1,1 :ﬁljl + fi(xn) F AL Y2),

X2 ="+ fio(xi,x12) + A2 (v1,y2), (54)
Y1 =X11,

Xo1 = X554 fo1(x2,1) + M1 (v1,)2),

X0 =Us 4 foo(x2,1,%02) + Mon (y1,)2), (55)
Y2 =X21,

where fi; = 0.2x;,¢ 0%, f15 = —0.1x;cos(1/1 +
xt1) far = 007x21, o2 = —2x5,05,, Ay = —0.12
SlIl(.X]}[le]), A]}z = —0.1()(1_’1 —x%’l), AQ’[ = 02—
O.ZCOS(XHXQJ), A272 = 70.1()C171 +XQ71), Vid = sinz, and
V2.4 = sint.

Choose the fuzzy membership functions as (i = 1, 2;
I=1,...,5)

xi1—341)°
Mg (xi1) = exp [(2) ’
i1 —3410)7°
Hp1 (£i2) = exp [(Xlzﬂ
[ (Xi.,2*3+l)2
X exp T S—

Choose the design parameters as v = 0.2; p;; = 2,
Pi2=12,p1 =12, prr=12;01; =1, 61, =10/9,
013 = 10/9, Oy = 1, Oy0 = 10/9’ Or3 = 10/9’ cL = 8,
cia =16, ca1 =10, c22 = 16; ¢} ; = 0.3, ¢}, = 1.2,
¢y =15, CIZ.,Z =15,a11 =03, a2 =03, ay; =0.5,
azp =035 b1y =03, by = 0.1, by = 0.3, byy = 0.1;
Y1 = 0.3, N2 = 0.6, Y1 = 0.3, Yoo = 0.6; 7/1,1 =02,
?/1,2 = 037 /}/2‘1 - 03, 7/2,2 = 03
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0 5 10 15 20 25 30 35 40
t/s

Fig. 1. The trajectories of y; and y; 4.

0 5 10 15 20 25 30 35 40
t/s

Fig. 2. The trajectories of y, and y; 4.

Let the initial conditions be x; ;(0) = x;»
121(0) =x22(0) = —0.3,0;;, =0,%,;, =0
1,2).

Thus, the simulation results are shown in Figs. 1-7,
where Figs. 1 and 2 reflect the trajectories of outputs y;
and their tracking signals y; 4, respectively, it can be seen
that the outputs y; have excellent tracking performance;
Figs. 3 and 4 indicate the trajectories of u; and u,, re-
spectively, which shows that u; and u, are saturated dur-
ing the initialization transient phase; Figs. 5 and 6 show
the trajectories of the adaptive parameters @, j, and ‘i‘i7 jio
(i=1,2;j=1,2); Fig. 7 gets the trajectories of states x; »
and x; 5.

4107

10 I I I I

t/s

Fig. 3. The trajectory of u;.
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Fig. 5. The trajectories of @, j,.
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Fig. 6. The trajectories of ¥, ;..
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Fig. 7. The trajectories of x; » and x; 5.

S. CONCLUSION

This paper researches the problem of the fuzzy adap-
tive fixed-time tracking control for nonlinear high-order
large-scale systems. The fuzzy adaptive fixed-time decen-
tralized control scheme is proposed by using backstepping
design technology and adding a power integrator method.
The developed control algorithm can indicate that both the
tracking performance and the closed-loop stability are pre-
served within a fixed time.The simulation results show the
feasibility of the advanced control approach.
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