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Parameter Estimation for Nonlinear Functions Related to System Re-
sponses
Ling Xu �

Abstract: This paper considers the parameter estimation problem of nonlinear models, which are related to the
impulse or step response functions of linear time-invariant (LTI) dynamical systems, based on the response data.
In terms of the nonlinear characteristic of the models, the nonlinear dynamical optimization scheme is adopted
for obtaining the system parameter estimates. By constructing a gradient criterion function, a gradient recursion
algorithm is derived. In order to overcome the difficulty of determining the step-size in the gradient recursion algo-
rithm, a trying method and a numerical approach are proposed to achieve the step-size. On this basis, a stochastic
gradient estimation method is presented by using a recursive step-size. Furthermore, a multi-innovation stochastic
gradient method is deduced for enhancing the estimation accuracy by using the dynamical window data. Finally, a
dynamical length stochastic gradient estimation technique is offered to obtain more accurate parameter estimates by
using dynamical length measured data from the step response. The examples are provided to examine the algorithm
performance and the simulation results indicate that the presented approaches are effective.

Keywords: Gradient search, multi-innovation theory, nonlinear model, parameter estimation, recursive identifica-
tion.

1. INTRODUCTION

The use of mathematical models is to accomplish dif-
ferent objectives in the design of control systems. Param-
eter estimation is an important step during the process of
developing a mathematical model [1-5]. The aim of pa-
rameter estimation is to tune the model’s parameters af-
ter the mathematical model structure is determined on the
basis of some physical principles. In general, the param-
eter estimates are obtained by comparing the model out-
puts with system measurement outputs [6-9]. Parameter
estimation methods based on statistical data have attracted
much attention [10-13]. Recently, a parameter estimation
approach was devised by using available observations on
the slow component in terms of a slow-fast stochastic dy-
namical system [14], a gradient estimation algorithm was
presented for estimating the parameters of the system with
scarce measurement data [15].

System response is the system output under some exci-
tation. The system response contains the dynamical infor-
mation of systems. For instance, the controller design is to
control the system response within the expectation range
[16]. The transfer functions of linear time-invariant sys-
tems can be computed using the step response [17,18], the

impulse response [19] and the frequency response exper-
iments [20]. The system responses of dynamical systems
are generally highly nonlinear functions with respect to
the system parameters and thus the system parameters can
be estimated by means of the system response measure-
ment data. In order to obtain the parameter estimates, the
nonlinear optimization techniques are adopted to deduce
the identification algorithms for nonlinear models in this
paper.

By constructing and optimizing a cost function, the pa-
rameter estimation method can be derived [21-24]. Many
optimization strategies are used for deriving parameter es-
timation methods [25-30]. Carvalho et al. discussed the
numerical difficulties of the nonlinear optimization for-
mulation of parameter estimation and suggested an un-
constrained derivative-free optimization method [31]. Lin
et al. considered the parameter estimation of a nonlin-
ear time-delay system using the dynamical optimization
and the gradient search [32]. Isaksson et al. established
an identification method using the moving horizon esti-
mation and the nonlinear optimization for joint parameter
estimation and state estimation [33]. On the basis of the
hierarchical identification principle and the nonlinear op-
timization, this paper presents new parameter estimation
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approaches for dynamical systems by means of the sys-
tem response observation data. The contributions of this
work are summarized as follows:

1) This paper presents some identification methods
based on the dynamical responses of systems by ap-
plying the excitation signals and using the dynamical
observations of the systems to be identified.

2) In order to test the accuracy of different number of ob-
servations for the recursive estimation, three schemes
of using the dynamical data are designed, i.e., the sin-
gle datum, the batch data and the dynamical length
data, which are dynamically sampled and used in the
recursive computation.

3) By collecting and employing the dynamical observa-
tions of the system responses, a recursive gradient al-
gorithm, a multi-innovation recursive gradient algo-
rithm and a dynamical length recursive gradient al-
gorithm are presented based on different schemes of
using the system observations.

The rest of this paper is organized as follows: Section 2
describes the problem of parameter estimation based on
the response data. Section 3 derives the gradient based
recursive method and the stochastic gradient algorithm.
Section 4 deduces the multi-innovation stochastic gradi-
ent algorithm based on the moving data window. Section 5
devises the stochastic gradient algorithm based on the dy-
namical length data. Section 6 provides some simulation
examples to show the performance of the proposed meth-
ods. Finally, Section 7 gives the concluding remarks.

2. PROBLEM DESCRIPTION

The dynamical characteristic of linear systems can be
described by transfer functions. A general system transfer
function is described as

G(s) =
βmsm +βm−1sm−1 + · · ·+β0

αnsn +αn−1sn−1 + · · ·+α1s+1
, (1)

which can equivalently be expressed as the partial frac-
tions, where n is the system order, α1, α2, · · · , αn, β0, β1,
· · · and βm are the system parameters (αn 6= 0, m6 n).

For a practical system, it is easy to obtain its impulse
(step) response y(t) through imposing an excitation signal
on the input terminal.

Remark 1: Although the system described by the trans-
fer function G(s) in (1) is linear, its outputs y(t) (e.g., im-
pulse response, step response, etc) are highly nonlinear
about the system parameters ai’s and bi’s. For example,
for the transfer function G(s) = b1

s+a1
+ b2

s+a2
, its impulse

response g(t) = b1e−a1t +b2e−a2t is linear with respect to
the parameters b1 and b2 but is highly nonlinear with re-
spect to the parameters a1 and a2.

In general, the input signals in identification use step
signals, impulse signals, sine signals and pseudo-random

binary codes (PRBS) signals. Once the input signal is ap-
plied to the system as the excitation, one can collect the
output data, which are the discrete sampled-data of the
system response. For a dynamical system with the transfer
function G(s), its response is the function of the parame-
ters a1, a2, · · · , an, b0, b1, · · · , bm and time t. Therefore,
the response function can be represented as y(t) = f (θ, t),
where θ := [a1, a2, · · · , an, b0, b1, · · · , bm]

T is the unknown
parameter vector.

Suppose that the discrete response data are {tk,y(tk),
k = 1,2, · · · ,L}, where L is the data length. The task of
system identification is to study new methods for esti-
mating the parameter vector θ from the data {tk,y(tk)}.
In order to obtain parameter estimates, we can construct
equations with respect to the parameter vector θ and solve
these equations. Using the obtained data, the equations for
estimating these parameters are given by y(tk) = f (θ, tk),
k = 1, 2, · · · , L.

The numerical solutions of the parameters ai’s and
bi’s can be obtained by solving these equations y(tk) =
f (θ, tk), k = 1, 2, · · · , L. However, there have no com-
mon ways for solving nonlinear equations. In general, the
numerical solution of the nonlinear equations can be ob-
tained by using some optimization method. Therefore, the
numerical solutions are the approximate solutions by the
successive approximation. This paper explores some novel
numerical methods for solving such nonlinear equations
for generating the parameter estimates of the systems.

3. THE GRADIENT BASED RECURSIVE
ALGORITHM AND STOCHASTIC GRADIENT

ALGORITHM

The function y(t) = f (θ, t) describes a mapping rela-
tionship over the definition domain of the parameter vec-
tor θ and the time variable t. Since y(t) = f (θ, t) is nonlin-
ear, it is almost impossible to directly solve these nonlin-
ear equations y(tk) = f (θ, tk) with respect to the parameter
vector θ in order to obtain the parameter estimates. Thus,
this paper derives several new recursive parameter estima-
tion methods using the nonlinear optimization techniques.

According to the definition of identification, construct
a dynamical criterion function about the output y(tk) and
the model output f (θ, tk), e.g., the gradient criterion func-
tion J(θ) := 1

2 [y(tk)− f (θ, tk)]2, which varies dynamically
as k increases and is a rolling optimization criterion func-
tion. Various estimation approaches are proposed accord-
ing to the identification criterion functions of the systems
[34-39] and these methods can be employed to identify
other linear and nonlinear systems [40-45] and can be
used in other areas [46-51] such as process engineering
systems. The gradient search direction is determined by
calculating the first derivative of the criterion function.
Taking the first-order derivation of J(θ) with respect to
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θ gives

grad[J(θ)] :=
∂J(θ)

∂θ
=−∂ f (θ, tk)

∂θ
[y(tk)− f (θ, tk)].

Let θ̂(tk) be the estimate of θ at time t = tk and µ(tk) be
the step-size, and n0 := n+m+1. Define the information
vector

ϕ(tk) :=
∂ f (θ, tk)

∂θ

∣∣∣∣
θ=θ̂(tk−1)

=
∂ f (θ̂(tk−1), tk)

∂θ
∈ Rn0 .

Define the identification innovation e(tk) := y(tk) −
f (θ̂(tk−1), tk)∈R. Minimizing the criterion function J(θ),
we can obtain the recursive relation

θ̂(tk) = θ̂(tk−1)+µ(tk)ϕ(tk)[y(tk)− f (θ̂(tk−1), tk)]

= θ̂(tk−1)+µ(tk)ϕ(tk)e(tk). (2)

In the gradient recursion (GR) algorithm in (2), the step-
size µ(tk) is an important factor because it reflects the con-
vergence rate and the estimation accuracy. Here, the step-
size µ(tk) can be determined by the following method. In
order to determine the step-size µ(tk) quickly, we can pre-
set a small positive number µ(tk) and substitute it into
the criterion function at each recursion k. If J(θ̂(tk−1)−
µ(tk)grad[J(θ̂(tk−1)])< J(θ̂(tk−1)), the step-size µ(tk) can
make the criterion function decrease, then we use µ(tk)
as the step-size at the next recursion; otherwise, choose a
new positive number and repeat the trying process.

After the gradient search direction is determined, the
step-size can be obtained by the one-dimensional search
method. An optimal step-size can be computed from

µ(tk) = argmin
µ>0

J[θ̂(tk−1)+µϕ(tk)e(tk)].

However, because the response function is nonlinear, it
is difficult to determine the step-size µ(tk) from the
above equation. Here, we consider adopting the analyti-
cal method and the numerical solution method for find-
ing µ(tk). Let the quantity µ(tk) be the step-size which
makes the criterion function reach the minimum. Substi-
tuting θ = θ̂(tk) into the criterion function J(θ) gives

J(θ) = J(θ̂(tk)) = J(θ̂(tk−1)+µϕ(tk)e(tk)).

Taking the second-order Taylor approximation of
J(θ̂(tk−1)+µϕ(tk)e(tk)) at θ̂(tk−1) gives

J(θ̂(tk)) = J(θ̂(tk−1)+µϕ(tk)e(tk))≈ J(θ̂(tk−1))

+µϕT(tk)
∂J(θ̂(tk−1))

∂θ
e(tk)

+
1
2

µ
2e2(tk)ϕT(tk)

∂ 2J(θ̂(tk−1))

∂θ∂θT
ϕ(tk),

(3)

∂J(θ̂(tk−1))

∂θ
:=−grad[ f (θ̂(tk−1), tk)]

× [y(tk)− f (θ̂(tk−1), tk)]

=−ϕ(tk)e(tk), (4)

∂ 2J(θ̂(tk−1))

∂θ∂θT
:=

∂

∂θT

∂J(θ̂(tk−1))

∂θ

=−∂ϕ(tk)
∂θT

e(tk)−ϕ(tk)
∂e(tk)
∂θT

=−∂ϕ(tk)
∂θT

e(tk)+ϕ(tk)ϕT(tk). (5)

Define ρ(tk) :=ϕT(tk)H(tk)ϕ(tk) and

H(tk) :=
∂ϕ(tk)

∂θT
e(tk)+ϕ(tk)ϕT(tk) ∈ Rn0×n0 . (6)

Substituting (4) and (6) into (3) gives

J(θ̂(tk)) = J(θ̂(tk−1)+µϕ(tk)e(tk))

≈ J(θ̂(tk−1))−µϕT(tk)ϕ(tk)e2(tk)

+
1
2

µ
2e2(tk)ϕT(tk)H(tk)ϕ(tk)

= J(θ̂(tk−1))−µ‖ϕ(tk)‖2e2(tk)

+
1
2

µ
2e2(tk)ϕT(tk)H(tk)ϕ(tk). (7)

Note that J(θ̂(tk−1)) =
1
2 e2(tk). Let g(µ) := 2J(θ̂(tk−1)+

µϕ(tk)e(tk)). Then, (7) becomes

g(µ) = e2(tk)−2µ‖ϕ(tk)‖2e2(tk)+µ
2e2(tk)ρ(tk)

= [1−2µ‖ϕ(tk)‖2 +µ
2
ρ(tk)]e2(tk).

The best step-size can be obtained by minimizing g(µ).
Taking the first-order derivative of g(µ) with respect to µ

and letting it be zero give

g′(µ) = 2µρ(tk)e2(tk)−2‖ϕ(tk)‖2e2(tk) = 0.

When ρ(tk) 6= 0, solving the above equation gives

µ(tk) =
‖ϕ(tk)‖2

ρ(tk)
=

‖ϕ(tk)‖2

ϕT(tk)H(tk)ϕ(tk)
.

Next, we introduce the mathematical method for finding
the optimal step-size. The basic idea is to obtain the opti-
mal value through the iterative method. The optimization
method can adopt the gradient search, the Newton search
and so on. Substituting θ = θ̂(tk) into J(θ) gives

g(µ) := 2J(θ̂(tk))

= [y(tk)− f (θ̂(tk−1)−µϕ(tk)e(tk), tk)]2.

The optimal step-size µ(tk) can be determined by solving
g′(µ) = 0. Taking the first-order derivative of g(µ) with
respect to µ gives

g′(µ) = 2
∂J(θ̂(tk))

∂ µ
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=−2[y(tk)− f (θ̂(tk−1)−µϕ(tk)e(tk), tk)]

× f ′µ(θ̂(tk−1)−µϕ(tk)e(tk), tk).

Letting g′(µ) = 0 gives

[y(tk)− f (θ̂(tk−1)−µ(tk)ϕ(tk)e(tk), tk)]

× f ′µ(θ̂(tk−1)−µϕ(tk)e(tk), tk) = 0, (8)

where f ′µ(θ̂(tk−1) − µϕ(tk)e(tk), tk) is the first-order
derivative with respect to µ . Solving (8) can obtain the
optimal step-size µ(tk). If f (θ, tk) is linear, it is easy to
solve by direct solving. If f (θ, tk) is nonlinear, the iterative
method can be used to get an approximation solution.

Remark 2: Equation (8) is a one-degree equation with
respect to µ . It is described as λ (µ) = 0. When f (θ, t)
is linear on the parameter space, we can obtain the alge-
braic solution of λ (µ) = 0. But when f (θ, t) is not linear,
one can only use the iterative method to solve λ (µ) = 0,
such as the Newton iterative method, the gradient iterative
method and so on. The iterative formula of the Newton it-
erative algorithm is given by µl+1 = µl −λ ′(µl)/λ ′′(µl),
l = 0, 1, 2, · · · , where l is the iterative variable. After giv-
ing an initial value of the step-size, the satisfied step-size
can be obtained by multiple iterations. The gradient iter-
ation does not need computing the second-order deriva-
tive and has less computation load. The gradient iterative
method can be used to obtain the numerical solution of
the step-size. The formula of gradient iterative method is
given by µl+1 = µl −ηlλ

′(µl), l = 0, 1, 2, · · · . This pro-
cess needs multiple iterations to achieve the optimal value
µl .

Finally, the GR algorithm for computing the parameter
estimation vector θ̂(tk) can be expressed as

θ̂(tk) = θ̂(tk−1)+µ(tk)ϕ(tk)e(tk), (9)

e(tk) = y(tk)− f (θ̂(tk−1), tk), (10)

ϕ(tk) = grad[ f (θ̂(tk−1), tk)], (11)

µ(tk) = argmin
µ>0

J[θ̂(tk−1)+µϕ(tk)e(tk))], or (12)

µ(tk) =
‖ϕ(tk)‖2

ρ(tk)
=

‖ϕ(tk)‖2

ϕT(tk)H(tk)ϕ(tk)
. (13)

The steps of the GR algorithm are as follows: Firstly,
let k = 0 and give θ̂(t0). Pre-set a recursion length L.
Secondly, gather the output data y(tk). Thirdly, compute
the innovation e(tk) using (10) and the information vec-
tor ϕ(tk) using (11). Fourthly, compute the optimal step-
size µ(tk) according to (12). Finally, update the parameter
estimation vector θ̂(tk), if k = L, terminate this recursive
process; otherwise let k := k+1 and repeat this recursive
process.

In order to provide a convenient method to determine
the step-size µ(tk), referring to [52], we have the following
stochastic gradient (SG) parameter estimation algorithm:

θ̂(tk) = θ̂(tk−1)+ϕ(tk)e(tk)/r(tk), (14)

ϕ(tk) =
∂ f (θ̂(tk−1), tk)

∂θ
, (15)

e(tk) = y(tk)− f (θ̂(tk−1), tk), (16)

r(tk) = r(tk−1)+‖ϕ(tk)‖2, r(t0) = 1. (17)

Remark 3: Compared the SG algorithm in (14)-(17)
with the GR algorithm in (9)-(13), their difference lies in
the step-sizes. For the SG algorithm, the determination
of the step-size is based on the information vector and
does not need the one-dimensional optimization. So the
SG method is more convenient than the GR method.

4. THE MULTI-INNOVATION GRADIENT
ALGORITHM BASED ON THE MOVING

DATA WINDOW

This section applies the multi-innovation identification
theory to study the parameter estimation for nonlinear
models. In linear cases, the multi-innovation algorithms
have been developed for a linear output-error system [15]
and a linear regression model [53]. The method here is for
nonlinear models (e.g., the output of dynamical systems is
nonlinear about the systems’ parameters) and completely
differs from the previous work and is the extension from
linear cases in [15,53] to nonlinear cases.

For convenience, assume that t = tk is the current time.
For the GR algorithm or the SG algorithm, the cur-
rent parameter estimate θ̂(tk) is obtained by the previ-
ous estimate θ̂(tk−1) plus a modification term ϕ(tk)

r(tk)
e(tk) or

µ(tk)ϕ(tk)e(tk). The modification term is composed of the
product of the innovation e(tk) and the gain vector ϕ(tk)

r(tk)
or µ(tk)ϕ(tk). The innovation is the useful information
which can improve the estimation accuracy. In the SG al-
gorithm and the GR algorithm, the innovation is a scalar
and only the current data y(tk) is used to generate new pa-
rameter estimate. These two algorithms use only less mea-
surement information at each recursion, so the estimation
accuracy is relatively low.

In order to make full use of the observation data, the dy-
namical moving window data are presented to participate
the estimation operation. Define the moving window data
length p. Suppose that the current observation is y(tk). The
moving window data can be represented as {y(tk), y(tk−1),
· · · , y(tk−p+1)}. In the SG algorithm, the innovation is de-
noted as e(tk) = y(tk)− f (θ̂(tk−1),k)∈R. It is obvious that
only the current data y(tk) is used for computing the scalar
innovation. When the moving window data are used in the
presented algorithm, the scalar innovation should be ex-
panded into the innovation vector and the information vec-
tor ϕ(tk) should be expanded into the information matrix
Φ(p, tk).

Let the integral number p denote the innovation length.
Based on the SG algorithm in (14)-(17), expand the infor-
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mation vector ϕ(tk) to the stacked information matrix

Φ(p, tk) := [ϕ(tk),ϕ(tk−1), · · · ,ϕ(tk−p+1)] ∈ Rn0×p.

Expand the scalar innovation e(tk) into the innovation vec-
tor

E(p, tk) :=


y(tk)− f (θ̂(tk−1), tk)

y(tk−1)− f (θ̂(tk−1), tk−1)
...

y(tk−p+1)− f (θ̂(tk−1), tk−p+1)

 ∈ Rp.

Finally, we can obtain the multi-innovation stochastic gra-
dient (MISG) parameter estimation algorithm

θ̂(tk) = θ̂(tk−1)−Φ(p, tk)E(p, tk)/r(tk), (18)

E(p, tk) = Y (p, tk)−F (p, tk), (19)

Y (p, tk) = [y(tk),y(tk−1), · · · , y(tk−p+1)]
T, (20)

Φ(p, tk) = [ϕ(tk),ϕ(tk−1), · · · , ϕ(tk−p+1)], (21)

F (p, tk) = [ f (θ̂(tk−1), tk), f (θ̂(tk−1), tk−1), · · · ,
f (θ̂(tk−1), tk−p+1)]

T, (22)

r(tk) = r(tk−1)+‖ϕ(tk)‖2, r(t0) = 1, (23)

ϕ(tk−i) =
∂ f (θ̂(tk−1), tk−i)

∂θ
, i = 0, 1, · · · , p−1.

(24)

The GR algorithm and the MISG algorithm are of the re-
cursive form and can be applied to online identification
in real time. The steps of computing the parameter esti-
mates θ̂(tk) using the MISG algorithm in (18)-(24) are as
follows:

1) Let k = 1, set the innovation length p and the error
ε > 0, and let θ̂(t0) be a real vector.

2) Collect the output data y(tk), compute the information
vector ϕ(tk−i) using (24) and form the stacked infor-
mation matrix Φ(p, tk) using (21).

3) Form the stacked observation output vector Y (p, tk)
using (20), the stacked nonlinear function vector
F (p, tk) using (22) and the innovation vectorE(p, tk)
using (19).

4) Compute r(tk) using (23). Update the parameter esti-
mate θ̂(tk) using (18).

5) If ‖θ̂(tk)− θ̂(tk−1)‖< ε , then terminate this recursive
process and obtain the parameter estimate; otherwise,
let k := k+1 and go to Step 2.

Remark 4: In the MISG algorithm in (18)-(24), the
stacked observation output vectorY (p, tk) in (20) contains
y(tk), y(tk−1), · · · , y(tt−p+1) in the moving data window
and thus the estimation accuracy can be improved, also
see the explanation for linear models in the 2nd bullet on
Page 3 in [53].

5. THE GRADIENT ALGORITHM BASED ON
THE DYNAMICAL LENGTH DATA

For the GR algorithm, the SG algorithm and the MISG
algorithm, there are two different ways for using the out-
put data. One is using the current data; the other is us-
ing the moving window data. In order to use more ob-
servational data to enhance the estimation accuracy, in
this section a dynamical length data method is proposed
to construct the criterion function to deduce the parame-
ter estimation algorithm. In each recursion, all of the data
from the first sampling time to the current sampling time
are used for generating the parameter estimates. There-
fore, the collected data length increases with the increas-
ing of the sampling time and the data length varies dynam-
ically. Define the criterion function based on the increas-
ing length data

J(θ, tk) := J(θ, tk−1)+
1
2
[y(tk)− f (θ, tk)]2.

Define the stacked output vector Y (tk), the nonlinear
function vector F (tk) and the information matrix Φ(tk) as

Y (tk) :=


y(t1)
y(t2)

...
y(tk)

 ∈ Rk,

F (tk) :=


f (θ̂(tk−1), t1)
f (θ̂(tk−1), t2)

...
f (θ̂(tk−1), tk)

 ∈ Rk,

Φ(tk) := [ϕ(t1), ϕ(t2), · · · , ϕ(tk)] ∈ Rn0×k,

whose dimensions increase with the data length k increas-
ing. Define

ξ(tk) :=Φ(tk)Y (tk)

= ξ(tk−1)+ϕ(tk)y(tk) ∈ Rn0 ,

Q(tk) :=Φ(tk)F (tk)

=Q(tk−1)+ϕ(tk) f (θ̂(tk−1), tk) ∈ Rn0 .

Minimizing the criterion function J(θ) and applying the
negative gradient search deduce the stochastic gradient al-
gorithm based on the dynamical length data (the DL-SG
algorithm for short)

θ̂(tk) = θ̂(tk−1)+ [ξ(tk)−Q(tk)]/r(tk), (25)

r(tk) = r(tk−1)+‖ϕ(tk)‖2, r(t0) = 1, (26)

ξ(tk) = ξ(tk−1)+ϕ(tk)y(tk), ξ(t0) = 0, (27)

Q(tk) =Q(tk−1)+ϕ(tk) f (θ̂(tk−1), tk),Q(t0) = 0,
(28)

ϕ(tk) =
∂ f (θ̂(tk−1), tk)

∂θ
. (29)
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Fig. 1. The GR estimation error δ versus k.

The proposed approaches in this paper can combine some
mathematical tools and strategies [54-59] to study new pa-
rameter estimation algorithms [60-64] and can be applied
to other fields [65-70] such as information processing. The
steps of computing the parameter estimates θ̂(tk) using the
DL-SG algorithm in (25)-(29) are as follows:

1) Let k = 0, set θ̂(t0) and a small number ε > 0.

2) Collect the output data y(tk). Compute ϕ(tk) using
(29). ComputeQ(tk) using (28) and ξ(tk) using (27).

3) Compute r(tk) using (26). Update θ̂(tk) using (25).

4) If ‖θ̂(tk)− θ̂(tk−1)‖< ε , then terminate this recursion
process and obtain the parameter estimation vector
θ̂(tk); otherwise, let k := k+1 and go to Step 2.

Remark 5: The number of the sampled data used in the
DL-SG algorithm increases gradually with the increasing
of recursion k. It means that more observation information
about the parameters to be estimated is utilized in the esti-
mation method. Thus, the parameter estimation accuracy
can be enhanced by using the dynamical data.

6. SIMULATION EXAMPLES

Here gives three simulation examples: one is the non-
linear function fitting from its observation data y(tk) and
the other two are the transfer function fitting of the control
systems from their output response data y(tk).

Example 1: Consider a nonlinear function

y(t) = 4t +3sin t +2e−3t .

Here, θ1 = 4, θ2 = 3, θ3 = 2 and θ4 =−3 are the parame-
ters to be identified.

In the simulation, the white noise with zero mean and
variance σ 2 = 0.102, σ 2 = 0.502 and σ 2 = 1.002 is added
to the response y(t), respectively. Using the proposed GR
method to estimate the system parameters, the parameter
estimates and the estimation errors are illustrated in Ta-
ble 1 and the parameter estimation errors δ := ‖θ̂(tk)−
θ‖/‖θ‖ versus k are shown in Fig. 1.
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Fig. 2. The SG estimation errors δ versus k.
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Fig. 3. The MISG estimation errors δ versus k.

In the same condition, the proposed SG algorithm is
used to estimate the parameters. The results are shown in
Table 2 and Fig. 2.

Example 2: Consider the system impulse response

y(t) = 4.8e−1.15t +2.7e−1.4t .

Here, the parameters to be identified are θ1 = 4.8, θ2 =
1.15, θ3 = 2.7, θ4 = 1.4. In the simulation, take the in-
novation length p = 3. The white noise with the variance
σ 2 = 0.502 and σ 2 = 1.002 is added to the system out-
puts respectively to generate the noisy output data. Using
the presented MISG estimation algorithm, the results are
shown in Table 3 and Fig. 3.

Example 3: Consider the system impulse response

y(t) = 3e−2.9t +6e−1t .

Here, the parameters to be identified are θ1 = 3, θ2 = 2.9,
θ3 = 6, θ4 = 1. In the simulation experiment, the white
noise is added to the system responses and the noise vari-
ance is σ 2 = 0.102 and σ 2 = 0.502, respectively. Utilizing
the proposed DL-SG method to estimate the system pa-
rameters, the results are shown in Table 4 and Fig. 4.

Example 4: Suppose that a typical closed loop system
with bounded oscillation is shown in Fig. 5, where the
damping ratio is ξ , the undamped natural frequency is ωn

with unit rad/s and u(t) is a step input with the amplitude
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Table 1. The GR estimates and their estimation errors.

σ 2 k θ1 θ2 θ3 θ4 δ (%)

0.102

5 4.99873 3.89873 2.46155 -2.60287 23.92924
15 4.98645 3.88648 2.37394 -2.62491 23.16683

100 4.26960 3.22633 2.05922 -2.91594 5.94888
200 3.98595 3.00836 2.05132 -2.93436 1.37736
600 3.99235 3.01200 2.05133 -2.93434 1.37157

0.502

5 5.00028 3.90028 2.51147 -2.59941 24.24182
15 4.98733 3.88736 2.42076 -2.62298 23.40388

100 4.26871 3.22851 2.10798 -2.91566 6.13867
200 3.94952 2.98358 2.09900 -2.93690 2.09005
600 3.95065 2.99874 2.09903 -2.93678 2.06730

1.002

5 5.00151 3.90151 2.55142 -2.59659 24.50864
15 4.98803 3.88807 2.45821 -2.62145 23.60935

100 4.26802 3.23029 2.14679 -2.91582 6.35580
200 3.92039 2.96377 2.13693 -2.93940 2.81315
600 3.91728 2.98814 2.13697 -2.93921 2.78341

True values 4.00000 3.00000 2.00000 -3.00000

Table 2. The SG estimates and their estimation errors.

σ 2 k θ1 θ2 θ3 θ4 δ (%)

0.102

5 4.94097 3.74098 2.78167 -3.37137 23.97047
15 4.87800 3.67814 2.31528 -3.25892 19.17505
60 4.52101 3.33170 1.96379 -3.02925 10.04776

100 4.26598 3.10210 1.92813 -2.97862 4.77904
600 4.00268 2.96244 1.92459 -2.97049 1.44878

0.502

5 4.93899 3.73900 3.04700 -3.36179 26.43231
15 4.84179 3.64205 2.43730 -3.18130 18.81308
60 4.51300 3.32375 2.12263 -2.95909 10.06159

100 4.29701 3.12895 2.09000 -2.90931 5.64677
200 4.07467 2.97086 2.08584 -2.89866 2.51644
600 4.01096 2.95964 2.08582 -2.89855 2.25985

1.002

5 4.93741 3.73742 3.25954 -3.35100 28.70988
15 4.81318 3.61352 2.53504 -3.10872 18.74872
60 4.50490 3.31570 2.24697 -2.89179 10.60398

100 4.31956 3.14821 2.21680 -2.84338 7.17483
600 4.01748 2.95667 2.21199 -2.82997 4.47317

True values 4.00000 3.00000 2.00000 -3.00000

a. When ξ = 0, the step response with bounded oscilla-
tion is y(t) = a(1−cosωnt). In this example, the proposed
SG, MISG and DL-SG algorithms are employed to iden-
tify two unknown parameters a and ωn.

1) SG and MISG test and comparison
In this case, the SG method and the MISG method are

used to compare the performance for the system response
with bounded oscillation. In the simulation, the innovation
length is set p = 1, p = 5, p = 10 and p = 30. In the simu-
lation, the white noise with variance σ 2 = 0.602 is applied
to the observations and the sample period is h = 0.01 sec-
ond. The parameter estimates and estimation errors versus
recursion k are illustrated in Table 5. The parameter esti-

mation errors versus k obtained by setting different inno-
vation length p are shown in Fig. 6.

2) DL-SG test
In this case, we test the accuracy with different data

length. The data length is set as 1000, 2000, 3000, 4000,
6000, 8000, 10000 and 12000. The parameter estimates
and estimation errors are illustrated in Table 6 and the es-
timation errors obtained by different data length are shown
in Fig. 7.

3) Performance comparison among tree methods
In this case, the SG method, the MISG method and the

DL-SG method are employed to compare the estimation
accuracy. In the simulation, the data length of recursion is
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Table 3. The MISG estimates and their estimation errors.

σ 2 k θ1 θ2 θ3 θ4 δ (%)

0.502

5 4.86538 2.78340 2.22448 2.26227 32.91651
10 5.06735 1.87068 2.41124 1.80066 15.75908
20 5.14550 1.21630 2.47883 1.49083 7.33680
40 5.15522 1.06590 2.48626 1.42807 7.31225
50 5.15495 1.07325 2.48610 1.43057 7.28873

1.002

5 4.26188 3.32624 1.63039 2.55880 47.27613
10 4.56242 1.99446 1.90871 1.88415 22.02198
20 4.66916 1.10990 2.00115 1.46419 12.33274
40 4.68291 0.89426 2.01164 1.37452 12.83357
50 4.68233 0.91008 2.01128 1.37990 12.74691

True values 4.80000 1.15000 2.70000 1.40000

Table 4. The DL-SG estimates and their estimation errors of Example 3.

σ 2 k θ1 θ2 θ3 θ4 δ (%)

0.102

1 4.94845 3.36033 6.46823 1.79333 17.86553
10 4.63137 3.13475 6.22298 1.10856 9.15977
20 4.42424 3.12052 6.20751 1.06568 6.70377
50 4.30536 3.11715 6.20386 1.05554 5.48928
60 4.29266 3.11697 6.20366 1.05499 5.37213

0.502

1 4.97021 3.39850 6.50714 1.84905 18.78879
10 4.73803 3.23383 6.32298 1.22863 11.50408
20 4.55310 3.22412 6.31213 1.19236 9.42411
50 4.45480 3.22203 6.30978 1.18452 8.46997
60 4.44414 3.22191 6.30965 1.18407 8.37423

True values 4.00000 2.90000 6.00000 1.00000
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Fig. 4. The DL-SG estimation errors δ versus k.
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Fig. 5. The closed loop system with bounded oscillation.

6000. The noise variance is σ 2 = 0.502. The innovation is
p = 1, p = 3, p = 5 and p = 10. It is noted that the inno-
vation setting is used for the MISG method. When p = 1

Table 5. The SG and MISG estimates and their estimation
errors of Example 4.

p k a ωn δ (%)

p = 1
(SG)

5 0.24999 0.84999 26.07798
100 0.28989 0.87287 21.96530
500 0.41099 0.92240 10.56167
1000 0.41511 0.93376 9.63088
2000 0.41393 0.94331 9.21836

p = 5
(MISG)

5 0.24995 0.84997 26.08224
100 0.35215 0.90866 15.54377
500 0.47641 0.95977 4.17112
1000 0.48061 0.97124 3.10229
2000 0.47933 0.98072 2.52794

p = 10
(MISG)

5 0.25142 0.85084 25.92923
100 0.38215 0.92598 12.44763
500 0.50701 0.97740 2.11654
1000 0.51129 0.98895 1.41272
2000 0.50993 0.99836 0.90016

True values 0.50000 1.00000

the MISG method becomes the SG method. The parame-
ter estimation errors versus k with different p obtained by
the MISG method and DL-SG method are demonstrated
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Fig. 6. The SG and MISG estimation errors δ versus k of
Example 4.

Table 6. The DL-SG estimates and their estimation errors
of Example 4.

k a ωn δ (%)

1000 0.40671 0.92612 10.64380
2000 0.45661 0.96540 4.96361
6000 0.49696 0.97742 2.03828

10000 0.50510 0.97991 1.85386
12000 0.50712 0.98069 1.84086

True values 0.50000 1.00000
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Fig. 7. The DL-SG estimation errors δ versus different
data length of Example 4.

in Fig. 8.
Moreover, the system responses obtained by the SG,

MISG and DL-SG methods are compared and the re-
sponse curves are shown in Fig. 9.

From the numerical simulation results, we can draw the
following conclusions. The parameter estimation errors
obtained by the GR algorithm and the SG algorithm be-
come smaller with the increasing of the recursion variable
k under relatively low noise levels. It shows the effective-
ness of the GR method and the SG method. The parameter
estimation accuracy is associated with the noise variance.
If the noise variance is large, the estimation accuracy is
low (see Figs. 1 and 2).
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Fig. 8. The SG, MISG and DL-SG estimation errors δ ver-
sus k of Example 4.
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Fig. 9. The responses of the system obtained by SG,
MISG and DL-SG of Example 4.

Comparing the GR method with the SG method, the es-
timation error curves (see Fig. 2) given by the SG method
are smooth while the estimation error curves (see Fig. 1)
given by the GR method are not smooth for large noise
variances. This simulation results demonstrate that the SG
method is not sensitive to the noise and has more robust
than the GR method.

The parameter estimates given by the MISG method
and DL-SG method are close to the true values with the
increase of the recursion k. If the noise variance is small,
then the parameter estimation errors are small. Moreover,
the estimation error versus k in Figs. 3 and 4) indicates
that the estimation error variations gradually decrease with
the increasing of recursion k. This means that the MISG
method and the DL-SG method are effective.

From the performance comparison results among the
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SG method, the MISG method and the DL-SG method in
Fig. 8, we can see that with the increasing of the recursion
k, the parameter estimation errors become smaller gradu-
ally and the parameter estimation accuracy of the DL-SG
method is the best one compared with other two meth-
ods. In terms of the DL-SG method, more observations are
joined into the recursion computing with the increasing of
k than the SG and MISG methods. Therefore, the DL-SG
has better performance and can be used for on-line identi-
fication.

From Fig. 9, we can see that the system response ob-
tained by the DL-SG method is very close to the true sys-
tems and the response obtained by the SG method has
larger errors. Moreover the system response obtained by
the MISG method when p = 10 has good tracing perfor-
mance. Therefore, the proposed MISG method and the
DL-SG method are effective for identifying the systems
with bounded oscillation.

7. CONCLUSIONS

In this paper, the problem of parameter estimation is
considered from the system response using the dynam-
ical optimization scheme. The GR estimation method is
derived according to the nonlinear gradient search princi-
ple. On this basis, the SG method, the MISG method and
the DL-SG method are presented using different dynami-
cal observation data. The mathematical simulation results
indicate that the parameter estimation accuracy given by
the proposed methods are acceptable. The proposed esti-
mation algorithms in this paper can integrate some adap-
tive estimation algorithms to explore identification meth-
ods for various systems [71-76] and can be applied to Con-
trol and schedule areas [77-85] such as signal processing,
system modeling [76-92] and transportation systems.
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