
International Journal of Control, Automation, and Systems 21(1) (2023) 140-150
http://dx.doi.org/10.1007/s12555-021-1018-8

ISSN:1598-6446 eISSN:2005-4092
http://www.springer.com/12555

Gradient-based Parameter Estimation for a Nonlinear Exponential
Autoregressive Time-series Model by Using the Multi-innovation
Jian Pan* � , Yuqing Liu, and Jun Shu

Abstract: The parameter estimation methods for the nonlinear exponential autoregressive model are investigated
in this paper. We develop a forgetting factor gradient parameter estimation algorithm for improving the estimation
accuracy. For the purpose of improving the identification accuracy further, a forgetting factor multi-innovation
stochastic gradient algorithm is derived by using the multi-innovation theory. The effectiveness of the proposed
algorithms is proved by a simulation example.
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1. INTRODUCTION

Mathematical models are important for studying natu-
ral sciences [1-5]. The solutions to many problems in en-
gineering are based on the mathematical models [6-10].
Playing a key role in the system identification, parame-
ter estimation is always a hot topic in the filed of sys-
tem identification [11-15]. There are a large number of
random processes in real life, most of them have typical
nonlinear dynamic characteristics. The mean and variance
of the time series are inherently non-stationary. For in-
stance, exchange rates and stock transactions may change
over time. Linear time-series models cannot explain the
nonlinear behavior of random processes [16,17], so many
scholars have proposed a large number of nonlinear time-
series models since the 1970s. Nonlinear time-series anal-
ysis is an important subject in the fields of engineering,
economics and natural sciences [18,19]. It is an effective
tool to predict future values by using current and past data.
For example, Ahmed and Kopsaftopoulos employed an
output-only recursive maximum likelihood time-varying
auto-regressive model to investigate the uncertainty in
guided wave propagation by analyzing the time-varying
model parameters [20]. The exponential autoregressive
(ExpAR) model is a typical class of the nonlinear time-
series model. The ExpAR model was introduced in a study
of more general models of the form Xt+1 = λ (Xt)+At+1

[21]. Meanwhile, Ozaki proposed the ExpAR model. As
he was in search of a non-explosive approximation so-
lution of λ (x) =

{
a+b

(
1− cx2

)}
x and the approximate

model of the threshold autoregressive models [22].
The ExpAR model was used to capture the remarkable

characteristics of nonlinear vibration, like jump phenom-
ena, amplitude dependent frequency shifts and perturbed
limit cycles [23]. Besides, the ExpAR model can be suc-
cessfully used in many fields, such as ecology, hydrology,
and speech signal processing [24]. For instance, Sanchez
et al. studied a problem of approximation with exponential
functions and showed its relevance with economic science
[25]. Because of the wide applications of the ExpAR sys-
tem, the study of its properties and identification methods
is meaningful. Although Ozaki gave some sufficient con-
ditions for the stationarity of the ExpAR models [26,27],
they had certain limitations. As a result, it is necessary to
study the stationarity and ergodicity of the model further.
Chan and Tong proved that the ergodicity and stability of
the ExpAR model can be connected through the physical
concept of the Lyapunov function [28]. In the past few
decades, Koul and Schick constructed the asymptotic es-
timates for the ExpAR model by using a sample splitting
technique [29]. Recently, the parameter estimation of the
ExpAR model has attracted much attention. Without con-
sidering the special conditions of the model parameters,
Chen et al. proposed a variable projection method for a
generalized ExpAR model [30]. For a higher-order sys-
tem, the algebraic identification algorithms are almost im-
possible to estimate the unknown parameters directly. At
this time, adopting the recursive and iterative methods,
such as the least mean square algorithm, the stochastic
gradient algorithm and the maximum likelihood identifi-
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cation method can be more available.
The stochastic gradient algorithm has a poor conver-

gence rate because it fails to make sufficient use of data.
By means of the multi-innovation identification theory,
the Kalman filtering algorithm, and the maximum likeli-
hood method, many efficient gradient-based methods are
developed for online identification and off-line identifica-
tion [31-34]. In that case, Chen et al. gave a multi-step
gradient-based iterative algorithm for a controlled autore-
gressive model with missing outputs based on the Kalman
filtering. Compared with the classical gradient-based it-
erative algorithm, the proposed method can not only im-
proves the convergence rate but also improve the esti-
mation accuracy [35]. The recursive algorithm is used to
update the estimates by using new observations [36-41].
Therefore, this paper focuses on the highly efficient re-
cursive parameter identification methods for the ExpAR
model based on the gradient search. This paper studies
the negative gradient search algorithm for estimating the
parameters of the ExpAR model with white noise and a
multi-innovation gradient identification algorithm with the
forgetting factor. The proposed parameter estimation algo-
rithms in this paper are based on this identification model
in (1).

This paper is organized as follows: Sections 2 and 3
develop a gradient search algorithm and a forgetting fac-
tor multi-innovation gradient algorithm for ExpAR mod-
els. Section 4 presents an illustrative example to test the
proposed algorithm. Finally, some concluding remarks are
given in Section 5.

2. THE GRADIENT SEARCH ALGORITHM

Let us introduce some notation. A =: X represents that
X is defined by A; X := A stands for X is defined by A; 1n

denotes an n-dimensional column vector whose elements
are all 1; the superscript T stands for the vector or matrix
transpose; the norm of a matrix (or a column vector) X is
defined as ‖X‖2 := tr[XX T].

Here derives a stochastic gradient algorithm for the ex-
ponential autoregressive model with order nth [42-44]

y(t) =
n

∑
i=1

[αi +βie−γy2(t−1)]y(t− i)+ v(t), (1)

where t is defined as the time variable, y(t) is the obser-
vation of the system at time t, v(t) is the stochastic white
noise with zero mean and variance σ 2, αi, βi and γ are the
model parameters to be identified. Suppose that y(t) = 0
and v(t) = 0 for t 6 0.

Many identification methods are derived based on the
identification models of the systems [45-51] and these
methods can be used to estimate the parameters of other
linear systems and nonlinear systems [52-58] and can be
applied to other fields [59-64]. Define the unknown pa-
rameter vector and the error between the observed output

and the model output as

θ := [αT,β T,γ]T ∈ R2n+1,

α := [α1,α2, · · · ,αn]
T ∈ Rn,

β := [β1,β2, · · · ,βn]
T ∈ Rn,

v(θ , t) := y(t)−
n

∑
i=1

[αi +βie−γy2(t−1)]y(t− i).

Based on the model in (1), define the criterion function

J1(θ) :=
1
2

v2(θ , t).

Taking the first-order derivative of J1(θ) with respect to θ

gives

grad[J1(θ)] :=
∂J1(θ)

∂θ

=

[
∂J1(θ)

∂αT
,

∂J1(θ)

∂β
T ,

∂J1(θ)

∂γ

]T

∈ R2n+1,

∂J1(θ)

∂α
=

[
∂J1(θ)

∂α1
,

∂J1(θ)

∂α2
, · · · , ∂J1(θ)

∂αn

]T

∈ Rn,

∂J1(θ)

∂β
=

[
∂J1(θ)

∂β1
,

∂J1(θ)

∂β2
, · · · , ∂J1(θ)

∂βn

]T

∈ Rn,

∂J1(θ)

∂γ
= y2(t−1)e−γy2(t−1)v(θ , t)

n

∑
i=1

βiy(t− i),

∂J1(θ)

∂αi
=−y(t− i)v(θ , t),

∂J1(θ)

∂βi
=−y(t− i)e−γy2(t−1)v(θ , t).

Define the information vectors

φ(t) := [y(t−1),y(t−2), · · · ,y(t−n)]T ∈ Rn,

ϕ(θ , t) :=
∂y(t)
∂θ

= [φ T(t),φ T(t)e−γy2(t−1),

− y2(t−1)e−γy2(t−1)
φ

T(t)β ]T ∈ R2n+1.

Let θ̂(t) := [α̂T(t), β̂
T
(t), γ̂(t)]T ∈R2n+1 be the estimate of

the parameter vector θ at t. As a result, the gradient vector
grad[J1(θ)] becomes

∂J1(θ̂(t−1))
∂αi

=−y(t− i)v(θ̂(t−1), t),

∂J1(θ̂(t−1))
∂βi

=−y(t− i)e−γ̂(t−1)y2(t−1)v(θ̂(t−1), t),

∂J1(θ̂(t−1))
∂γ

= y2(t−1)e−γ̂(t−1)y2(t−1)v(θ̂(t−1), t)

×φ
T(t)β̂ (t−1).

The information vector and innovation can be denoted as

ϕ(θ̂(t−1), t) = [φ T(t),φ T(t)e−γ̂(t−1)y2(t−1),
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− y2(t−1)e−γ̂(t−1)
φ

T(t)β̂ (t−1)]T,

v(θ̂(t−1), t) = y(t)−
n

∑
i=1

[α̂i(t−1)

+ β̂i(t−1)e−γ̂(t−1)y2(t−1)]y(t− i).

Let 0 6 λ 6 1 be the forgetting factor. We can get the
stochastic gradient (SG) algorithm for estimating the pa-
rameter vector θ̂ = [α̂T, β̂

T
, γ̂]T as

α̂i(t) = α̂i(t−1)−µ(t)
∂J1(θ̂(t−1))

∂αi

= α̂i(t−1)+
y(t− i)

r(t)
v(θ̂(t−1), t), (2)

β̂i(t) = β̂i(t−1)−µ(t)
∂J1(θ̂(t−1))

∂βi

= β̂i(t−1)+
y(t− i)e−γ̂(t−1)y2(t−1)

r(t)

× v(θ̂(t−1), t), (3)

γ̂(t) = γ̂(t−1)−µ(t)
∂J1(θ̂(t−1))

∂γ

= γ̂(t−1)− y2(t−1)e−γ̂(t−1)y2(t−1)

r(t)

×φ
T(t)β̂ (t−1)v(θ̂(t−1), t), (4)

v̂(t) := v(θ̂(t−1), t)

= y(t)−
n

∑
i=1

[α̂i(t−1)

+ β̂i(t−1)e−γ̂(t−1)y2(t−1)]y(t− i), (5)

r(t) = λ r(t−1)+‖ϕ(θ̂(t−1), t)‖2, r(0) = 1, (6)

φ(t) = [y(t−1),y(t−2), · · · ,y(t−n)]T, (7)

ϕ̂(t) = ϕ(θ̂(t−1), t)

= [φ T(t),φ T(t)e−γ̂(t−1)y2(t−1),

− y2(t−1)e−γ̂(t−1)
φ

T(t)β̂ (t−1)]T, (8)

α̂(t) = [α̂1(t), α̂2(t), · · · , α̂n(t)]T, (9)

β̂ (t) = [β̂1(t), β̂2(t), · · · , β̂n(t)]T, (10)

θ̂(t) = [α̂T(t), β̂
T
(t), γ̂(t)]T. (11)

The steps of the FF-SG parameter estimation algorithm
in (2)-(11) are as follows.

1) Set the initial values: let t = 1, θ̂(0) = 12n+1/p0, p0 =
106, r(0) = 1, set the data length L and the forgetting
factor λ .

2) Collect the output data y(t) and form φ(t) using (7).

3) Compute the innovation v̂(t) by (5), the information
vector ϕ̂(t) by (8) and r(t) by (6).

4) Compute the estimates α̂i(t), β̂i(t) and γ̂(t) using (2)-
(4) and form α̂(t), β̂ (t) and θ̂(t) using (9)-(11).

5) If t < L, then increase t by 1, go to Step 2; otherwise,
output the parameter estimates and terminate this cal-
culation procedure.

The characteristic of the stochastic gradient algorithm is
using a single innovation to modify the parameter esti-
mates of each recursive process. In order to make full use
of the innovation to improve the accuracy of parameter es-
timation, we can increase the innovation length and derive
a multi-innovation stochastic gradient algorithm.

3. THE MULTI-INNOVATION GRADIENT
ALGORITHM

The criterion function of the stochastic gradient algo-
rithm only uses the current observation data. To a certain
degree, the more observation data are used in each recur-
sive calculation, the higher accuracy of the parameter es-
timation is obtained. Hence, we consider using a batch of
data to construct a criterion function. Considering the data
from j = t− p+1 to j = t and defining the criterion func-
tion. In this section, we derive a multi-innovation stochas-
tic gradient parameter estimation algorithm based on the
model in the stochastic framework.

Define the criterion function with respect to θ

J2(θ) :=
1
2

p−1

∑
j=0

v2(θ , t− j),

where the integer p > 1 is the length of the innovation.
Define the information vectors

φ(t, j) := [y(t− j−1), y(t− j−2), · · · ,
y(t− j−n)]T ∈ Rn,

ϕ(θ , t− j) := [φ T(t, j),φ T(t, j)e−γy2(t− j−1),

− y2(t− j−1)e−γy2(t− j−1)

×φ
T(t, j)β ]T ∈ R2n+1.

Let θ̂(t) := [α̂T(t), β̂
T
(t), γ̂(t)]T ∈ R2n+1 be the estimate

of the parameter vector θ at t. As a result, the gradient
vector grad[J2(θ)] becomes. We can obtain the following
multi-innovation stochastic gradient (MISG) algorithm for
estimating the parameter vector θ̂ = [α̂T, β̂

T
, γ̂]T as

α̂i(t) = α̂i(t−1)−µ(t)
∂J2(θ̂(t−1))

∂αi

= α̂i(t−1)+
1

r(t)

p−1

∑
j=0

y(t− j− i)

× v̂(t− j), (12)

β̂i(t) = β̂i(t−1)−µ(t)
∂J2(θ̂(t−1))

∂βi

= β̂i(t−1)+
1

r(t)

p−1

∑
j=0

y(t− j− i)
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× e−γ̂(t−1)y2(t− j−1)v̂(t− j), (13)

γ̂(t) = γ̂(t−1)−µ(t)
∂J2(θ̂(t−1))

∂γ

= γ̂(t−1)− 1
r(t)

p−1

∑
j=0

y2(t− j−1)

× e−γ̂(t−1)y2(t− j−1)v̂(t− j)

×φ
T(t, j)β̂ (t−1), (14)

r(t) = λ r(t−1)+‖ϕ̂(t− j)‖2, r(0) = 1, (15)

φ(t, j) = [y(t− j−1),y(t− j−2), · · · ,
y(t− j−n)]T, (16)

ϕ̂(t− j) := ϕ(θ̂(t−1), t− j)

= [φ T(t, j),φ T(t, j)e−γ̂(t−1)y2(t− j−1),

− y2(t− j−1)e−γ̂(t−1)y2(t− j−1)

×φ
T(t, j)β̂ (t−1)]T, (17)

v̂(t− j) := v(θ̂(t−1), t− j)

= y(t− j)−
n

∑
i=1

[α̂i(t−1)+ β̂i(t−1)

× e−γ̂(t−1)y2(t− j−1)]y(t− j− i), (18)

α̂(t) = [α̂1(t), α̂2(t), · · · , α̂n(t)]T, (19)

β̂ (t) = [β̂1(t), β̂2(t), · · · , β̂n(t)]T, (20)

θ̂(t) = [α̂T(t), β̂
T
(t), γ̂(t)]T. (21)

The steps of computing the FF-MISG parameter esti-
mates in (12)-(21) are as follows:

1) Set the initial values: let t = 1, θ̂(0) = 12n+1/p0, p0 =
106, r(0) = 1 and choose the data length L and the
forgetting factor λ .

2) Collect the output data y(t) and form φ(t, j) using
(16).

3) Compute the innovation v̂(t− j) by (18), and the in-
formation vector ϕ̂(t− j) by (17) and r(t) by (15).

4) Use (12)-(14) to compute α̂i(t), β̂i(t) and γ̂(t) respec-
tively, and form α̂(t), β̂ (t) and θ̂(t) using (19)-(21).

5) If t < L, then increase t by 1, go to Step 2; other-
wise, output the parameter estimates and terminate
the computational procedure.

Compared with the stochastic gradient algorithm, the
multi-innovation stochastic gradient method can obtain
more accurate parameter estimates due to the dynamically
changing batch data.

4. SIMULATION EXAMPLES

In this section, we present an example to illustrate the
performance of the proposed algorithms. The performance
of the proposed algorithms is examined for the ExpAR
identification in the perspective of the estimation error
based on two evaluation metrics: δ and MSE, which are
defined as

δ =
norm(θ̂(t)−θ)

norm(θ)
, MSE = mean(θ̂(t)−θ),

respectively, where θ is the parameter vector and θ̂(t) rep-
resents the estimate of the parameter vector θ at time t.

Consider the following exponential autoregressive
time-series model

y(t) = [α1 +β1e−γy2(t−1)]y(t−1)

+ [α2 +β2e−γy2(t−1)]y(t−2)+ v(t),

θ = [α1, α2, β1, β2, γ]T

= [0.83, −0.66, 0.95, −0.56, 0.25]T.

The noise {v(t)} is simulated as an uncorrelated random
sequence with zero mean and variance σ 2. Then the output
of the system is generated on the basis of the above model
parameters. Taking the data length L = 3000 and the noise
variance σ 2 = 0.202, applying the FF-SG algorithm in (2)-
(11) with the forgetting factor λ = 1, λ = 0.98, λ = 0.96
and λ = 0.94 to estimate the parameters of this exam-
ple system. The parameter estimates and their errors are
shown in Tables 1-4. The parameter estimation errors ver-
sus t of the FF-SG algorithm is shown in Fig. 1.

Considering that the parameters identification accuracy
can be increased with the appropriate multi-innovation
length, taking λ = 0.98, we applying the FF-MISG algo-
rithm in (12)-(21) with the innovation lengths p= 2, p= 4
and p = 6 to estimate the parameters. The parameter es-
timates and their errors are shown in Tables 5-7 and their
errors δ := ‖θ̂(t)−θ‖/‖θ‖ are shown in Fig. 2.

Table 1. The FF-SG estimates and their errors (σ 2 = 0.202, λ = 1).

t α1 α2 β1 β2 γ δ (%)

100 0.30077 -0.18691 0.25644 -0.23162 -0.10304 71.17535
200 0.30093 -0.19130 0.25347 -0.23662 -0.08906 70.79141
500 0.30346 -0.19643 0.25726 -0.24143 -0.09170 70.37833
1000 0.30568 -0.20112 0.25984 -0.24578 -0.08987 69.95603
2000 0.30748 -0.20667 0.26152 -0.25115 -0.08630 69.50818
3000 0.30817 -0.20907 0.26007 -0.25350 -0.06858 69.08932

True values 0.83000 -0.66000 0.95000 -0.56000 0.25000
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Table 2. The FF-SG estimates and their errors (σ 2 = 0.202, λ = 0.98).

t α1 α2 β1 β2 γ δ (%)

100 0.37126 -0.27764 0.35424 -0.29036 -0.05280 60.37523
200 0.37614 -0.29607 0.35802 -0.30927 -0.04287 59.03501
500 0.40073 -0.33910 0.38611 -0.34901 -0.04114 55.28528
1000 0.45024 -0.39036 0.43946 -0.39488 -0.01726 48.96937
2000 0.54304 -0.45336 0.53138 -0.45860 0.01979 38.89625
3000 0.62232 -0.50367 0.60189 -0.52358 0.06127 30.64630

True values 0.83000 -0.66000 0.95000 -0.56000 0.25000

Table 3. The FF-SG estimates and their errors (σ 2 = 0.202, λ = 0.96).

t α1 α2 β1 β2 γ δ (%)

100 0.31348 -0.20581 0.26205 -0.25478 -0.10374 69.61629
200 0.32541 -0.23065 0.27077 -0.27978 -0.07883 67.25411
500 0.38130 -0.30746 0.34261 -0.34127 -0.05806 59.02729
1000 0.49277 -0.40897 0.46233 -0.43147 -0.00463 45.42732
2000 0.68237 -0.49896 0.63355 -0.55182 0.08507 26.99649
3000 0.76037 -0.55833 0.72388 -0.62037 0.15739 18.07783

True values 0.83000 -0.66000 0.95000 -0.56000 0.25000

Table 4. The FF-SG estimates and their errors (σ 2 = 0.202, λ = 0.94).

t α1 α2 β1 β2 γ δ (%)

100 0.32267 -0.21786 0.26918 -0.26813 -0.10677 68.53837
200 0.34500 -0.25457 0.28924 -0.30424 -0.07801 64.80400
500 0.43358 -0.35728 0.39606 -0.38625 -0.03624 52.71379
1000 0.60221 -0.47906 0.56232 -0.51023 0.04530 34.09177
2000 0.77899 -0.53959 0.73913 -0.62111 0.16226 17.42899
3000 0.78692 -0.59701 0.82061 -0.60864 0.19701 10.74382

True values 0.83000 -0.66000 0.95000 -0.56000 0.25000

Table 5. The FF-MISG parameter estimates and their errors (σ 2 = 0.202, λ = 0.98, p = 2).

t α1 α2 β1 β2 γ δ (%)

100 0.49459 -0.41578 0.47737 -0.42189 -0.00490 44.67272
200 0.51249 -0.43140 0.49469 -0.43805 0.00414 42.57981
500 0.56467 -0.46585 0.54467 -0.47616 0.03354 36.84731
1000 0.65285 -0.51149 0.62443 -0.53857 0.07657 28.11586
2000 0.76240 -0.53957 0.72832 -0.60694 0.14803 18.33844
3000 0.77804 -0.58503 0.78782 -0.61592 0.18397 13.23753

True values 0.83000 -0.66000 0.95000 -0.56000 0.25000

Table 6. The FF-MISG parameter estimates and their errors (σ 2 = 0.202, λ = 0.98, p = 4).

t α1 α2 β1 β2 γ δ (%)

100 0.61836 -0.49804 0.60202 -0.50896 0.05843 31.03227
200 0.65574 -0.51193 0.63142 -0.53358 0.06244 28.09340
500 0.71937 -0.53712 0.68982 -0.58481 0.13600 21.26255
1000 0.78102 -0.57444 0.77371 -0.61497 0.17937 14.25171
2000 0.80308 -0.58970 0.86548 -0.60068 0.20301 8.32926
3000 0.80158 -0.63329 0.90643 -0.58405 0.22730 4.33343

True values 0.83000 -0.66000 0.95000 -0.56000 0.25000
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Table 7. The FF-MISG parameter estimates and their errors (σ 2 = 0.202, λ = 0.98, p = 6).

t α1 α2 β1 β2 γ δ (%)

100 0.92369 -0.65771 0.68845 -0.59239 0.36646 19.54527
200 0.91766 -0.67283 0.72356 -0.56707 0.31296 16.20921
500 0.87885 -0.66914 0.78577 -0.53785 0.31013 11.81558
1000 0.87650 -0.67620 0.85966 -0.53544 0.28443 7.17627
2000 0.84222 -0.64073 0.91942 -0.55505 0.24192 2.53642
3000 0.82580 -0.65956 0.93966 -0.56242 0.25501 0.80516

True values 0.83000 -0.66000 0.95000 -0.56000 0.25000
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Fig. 1. The FF-SG estimation errors δ versus t (σ 2 =
0.202).
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Fig. 2. The FF-MISG estimation errors δ versus t (σ 2 =
0.202, λ = 0.98).

We select three different forgetting factor comparing
their parameter estimates errors when p = 6. The results
are shown in Tables 7-9, the parameter estimation errors
versus t is shown in Fig. 3.

From Fig. 4, we can see that the appropriate forget-
ting factor and multi-innovation length, the parameter es-
timates of the FF-MISG algorithm tend to the correspond-
ing true values.

The robustness of the FF-MISG identification method
is examined for noise levels, through statistical analyses
based on the MSE. The corresponding results are pre-
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Fig. 3. The FF-MISG estimation errors δ versus t (σ 2 =
0.202, p = 6).

0 500 1000 1500 2000 2500 3000

 t

-0.5

0

0.5

1

 P
a
ra

m
e
te

r 
e
s
ti
m

a
te

s
 

1

1

2

2

Fig. 4. The FF-MISG estimation errors δ versus t (σ 2 =
0.202, λ = 0.98, p = 6).

sented in Figs. 5 and 6. In Fig. 5, the x-axis represents
the data length, the y-axis shows the corresponding mean
MSE value for different noise variances σ 2 = 0.102, σ 2 =
0.202 and σ 2 = 0.302, the lower multi-innovation length p
provides comparatively less accurate results. Meanwhile,
the higher multi-innovation length provides more accurate
results while it is more easily affected by different noise
levels. The variation of the MSE versus at t is presented in
Fig. 6.

In order to test the effectiveness of the proposed algo-
rithms, we use the FF-MISG estimation method to build
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Table 8. The FF-MISG parameter estimates and their errors (σ 2 = 0.202, λ = 1, p = 6).

t α1 α2 β1 β2 γ δ (%)

100 0.91540 -0.65018 0.67015 -0.61239 0.36322 20.52797
200 0.90988 -0.66126 0.68441 -0.60069 0.34364 19.06502
500 0.90672 -0.65921 0.69993 -0.58257 0.33345 17.77141
1000 0.90226 -0.66115 0.71200 -0.57225 0.32672 16.80981
2000 0.89955 -0.66791 0.72287 -0.56561 0.31257 15.85836
3000 0.89251 -0.67153 0.72898 -0.56062 0.30741 15.29062

True values 0.83000 -0.66000 0.95000 -0.56000 0.25000

Table 9. The FF-MISG parameter estimates and their errors (σ 2 = 0.202, λ = 0.99, p = 6).

t α1 α2 β1 β2 γ δ (%)

100 0.91957 -0.65363 0.67894 -0.60239 0.36527 20.05155
200 0.91502 -0.66650 0.70340 -0.58271 0.32981 17.66243
500 0.89100 -0.66875 0.74451 -0.55128 0.31504 14.47213
1000 0.88473 -0.67762 0.80128 -0.53592 0.29088 10.73151
2000 0.86508 -0.65789 0.86407 -0.53757 0.24969 6.16100
3000 0.83868 -0.66934 0.89840 -0.55014 0.25470 3.50040

True values 0.83000 -0.66000 0.95000 -0.56000 0.25000
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Fig. 5. The variation of the mean MSE values versus
σ 2(λ = 0.98).

the simulated model. The predicted output of the model
can be obtained as

ŷ(t) = y(t)− [α̂1(t)+ β̂1(t)e−γ̂(t)y2(t−1)]y(t−1)

− [α̂2(t)+ β̂2(t)e−γ̂(t)y2(t−1)]y(t−2).

Using the FF-MISG estimates with noise variance σ 2 =
0.202 and t = 3000 in Table 1 to construct the estimated
model

ŷ(t) = y(t)− [α̂1(t)+ β̂1(t)e−γ̂(t)y2(t−1)]y(t−1)

− [α̂2(t)+ β̂2(t)e−γ̂(t)y2(t−1)]y(t−2),

θ̂(t) = [α̂1(t), α̂2(t), β̂1(t), β̂2(t), γ̂(t)]T

= [0.83705,−0.65480,0.91406,
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Fig. 6. The MSE against independent executions of the
FF-MISG algorithm (λ = 0.98, p = 6).

−0.55765,0.24109]T.

For model validation, we use a set of data from t = L+1 to
t = L+Lr to calculate the predicted output ŷ(t), Lr is taken
as 100. The output error between the predicted model and
the actual system versus t is shown in Fig. 7. To evaluate
the prediction performance, the root mean square error can
be defined as

E(ŷ(t)) =

√√√√ 1
Lr

L+Lr

∑
j=L+1

[ŷ(t)− y(t)]2 = 0.1802.

It can be seen from Fig. 7 that there is a proper multi-
innovation length, the model output is close to the system
actual output. It is shown that the simulated model can
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Fig. 7. The FF-MISG estimation errors δ versus t (σ 2 =
0.202, λ = 0.98, p = 6).

capture the dynamic performance of the system well.

From Tables 1-9 and Figs. 1-5, we can draw the fol-
lowing conclusions. 1) The estimation errors given by
the FFSG algorithm and the FF-MISG algorithm become
smaller as the recursive time t increases - see the estima-
tion errors δ in Tables 1-9. 2) The FF-MISG algorithm
needs less recursion number achieving the same accuracy
compared with the FFSG algorithm - see Fig. 2. 3) The
estimation errors given by the FFSG and the FF-MISG al-
gorithms become smaller with the forgetting factor λ de-
creasing - see Fig. 1 and Fig. 3. 4) The FF-MISG algo-
rithm provides better parameter estimates and MSE val-
ues than the FFSG algorithm and this accuracy is further
enhanced by increasing the length of multi-innovation.
Moreover, the FF-MISG algorithm provides better param-
eter estimates than the FFSG algorithm for all noise levels
- see Fig. 5.

5. CONCLUSIONS

This article considers the parameter estimation of the
nonlinear exponential autoregressive time-series model.
By means of the negative gradient search and the multi-
innovation theory, the SG algorithm and MISG algorithm
are proposed to identify the unknown parameters. In order
to improve the computational efficiency, we obtain the FF-
MISG algorithm by introducing the forgetting factor. The
simulation results demonstrate that the FF-MISG algo-
rithm has a higher parameter estimation accuracy than the
FF-SG algorithm under the same noise variance. The pro-
posed algorithms in this paper can combine other meth-
ods to study parameter identification of different systems
[65-71] and can be applied to other control and schedule
areas [72-77] such as information processing and indus-
trial process systems [78-80] and so on.
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