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Dynamic Event-triggered Fuzzy Filtering for Semi-linear Parabolic PDE
Systems: A Reduced-order Approach
Zhen Zhang, Xiaona Song* � , and Xiangliang Sun

Abstract: This paper investigates dynamic event-triggered fuzzy reduced-order filtering for a class of nonlinear
semi-linear parabolic partial differential equation (PDE) systems. First, the considered systems are reconstructed
by a Takagi-Sugeno (T-S) fuzzy model based on the sector nonlinearity approach. Furthermore, a dynamic event-
triggered mechanism is developed to improve network resource utilization. Based on the non-parallel distribu-
tion compensation principle, several theorems that guarantee the augmented system’s asymptotic stability with L2-
L∞ performance are provided. Finally, two examples are introduced to illustrate the effectiveness of the proposed
method.
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1. INTRODUCTION

Numerous practical systems like chemical reaction pro-
cesses, community dynamics systems, and fluid heat ex-
change systems [1-4] tend to have distributional parameter
properties, i.e., their behavior is not only time-dependent
but also spatially location-dependent and often described
by partial differential equations (PDE) [5-11]. These PDE
systems can be classified into three types according to
the properties of spatial differential operators: hyperbolic
[5,6], parabolic [7-9], and elliptic [10,11]. Since these
PDE systems have infinite dimensions, it is not easy to
employ the control theory of lumped parametric systems
(LPS) directly for controller/filter design. Therefore, re-
searchers have developed many new methods to solve
the controller/filter design problem for PDE systems. For
example, Wang and Wu [12] investigated output feed-
back control for nonlinear parabolic PDE systems; con-
trol design for parabolic PDE systems was discussed in
[13]. These works employ the Takagi-Sugeno (T-S) fuzzy
model [14-16] to linearize the nonlinear part of the PDE
systems and construct the fuzzy controller for fuzzy sys-
tems by the parallel distribution compensation (PDC)
method (fuzzy control rules share premise variables and
fuzzy sets with fuzzy PDE models). However, due to com-
plex factors such as time delay and packet loss in the

network, the premise variables and fuzzy sets are often
difficult to match perfectly. Therefore, applying the non-
parallel distribution compensation (non-PDC) technique
is meaningful for the stability analysis of PDE systems
[17-19]. In [17], the problem of fuzzy filter design based
on the event-triggered mechanism (ETM) was addressed
by using the non-PDC technique; event-triggered fuzzy
control based on the non-PDC method was addressed in
[18].

As described in [17,18], the introduction of ETM in
controller/filter design can effectively reduce the network
communication burden and improve network resource uti-
lization compared with traditional time-triggered mech-
anisms (TTM) (periodic sampling). However, the tradi-
tional ETM [20,21] cannot reflect the time-varying na-
ture of event-triggered and systems updates. Therefore,
it is essential to introduce variables that adapt to dy-
namic environments in ETM, also referred to as dynamic
event-triggered mechanisms (DETM) [22-25]. Based on
the DETM, the authors in [22] designed a controller for
networked control systems; the dynamic event-triggered
control for linear stochastic systems was considered in
[23]. Currently, DETM has been applied to some non-
linear systems, and the results show that DETM can ef-
fectively reduce the number of signal transmissions com-
pared to ETM. However, to the authors’ knowledge, few
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articles apply DETM for PDE systems, allowing us to
carry out the current study.

Nonlinear dynamic systems in engineering are com-
monly multiple-input multiple-output systems [26-33],
which may lead to difficulty and complexity in evaluat-
ing systems performance and analyzing systems stability.
More seriously, due to the requirement of system con-
trol/filtering, the designed controller/filter needs to be in
the same order as the original system, further increasing
the difficulty of the controller and filter design. There-
fore, it is necessary to simplify the mathematical model by
adopting a suitable reduced-order (RO) criterion, which is
a hot topic of current research [34-36]. To this end, several
techniques have been proposed to design a lower-order fil-
ter than the original system according to specific criteria
[37,38]. In [37], a RO filter design method was proposed
for fuzzy systems with ETM. Based on ETM, the filter
design for networked control systems with time-varying
delays was investigated in [38]. These results indicate that
the RO filter is more flexible and simple. It is worth men-
tioning that the existing works on fuzzy PDE system fil-
tering are limited, and to the authors’ knowledge, there
are few precedents of fuzzy RO filtering applied to PDE
systems, which stimulates the current research.

Based on the above research motivation, we aim to de-
sign a RO filter with L2-L∞ performance for fuzzy PDE
systems. The main contributions of our research results
are as follows:

1) In [38], a RO filter design method is proposed. How-
ever, this method failed to take into account the sys-
tems’ spatial characteristics. In addition, combined
with the existing works [17], it is the first attempt
to design a fuzzy RO filter for semi-linear parabolic
fuzzy PDE systems.

2) Different from [37], the fuzzy filter shares the same
premise variables and fuzzy sets with the original sys-
tems, which will make the filter design unreasonable
and inflexible. Therefore, employing the non-PDC
method to design filters with L2-L∞ performance is
more general.

3) In contrast to [20], the traditional ETM can not re-
flect the systems’ dynamic characteristics effectively.
Therefore, a suitable DETM is designed for PDE sys-
tems with spatiotemporal characteristics, which can
effectively improve the efficiency of network resource
transmission.

The remainder of the paper is organized as follows: Sec-
tion 2 introduces the fuzzy PDE systems with the filter de-
sign, the DETM, some definitions and citations. The main
results on RO filter design and non-PDC techniques are
presented in Section 3. In Section 4, two simulation ex-
amples are developed to indicate the effectiveness of the
adopted approaches. Finally, Section 5 concludes this ar-
ticle and gives future research guidelines.

Notations: Rn stands for n-dimensional Euclidean
space. Hn is the infinite-dimensional Hilbert space. I,
diag{·} and col[·] are represents identity matrix, block-
diagonal matrix and column vectors, respectively. P > 0
means that P is a positive definite matrix. The symbol ∗
denotes the transpose of the symmetric matrix. L2 repre-
sents the space of the square-integrable vector functions
and ‖ · ‖ denotes the usual L2[0,∞) norm. For simplicity,
define y = y(x, t), ȳ = ȳ(x, t), zo = zo(x, t), ẑo = ẑo(x, t),
z̃o = z̃o(x, t), z̃o = zo− ẑo, zm = zm(x, t), zm(tk) = zm(x, tk),
zm(tk + nT ) = zm(x, tk + nT ), zmh = zm(x, t− h(t)), emh =
em(x, t − h(t)), ω = ω(x, t), ω(s) = ω(x,s), η = η(x, t),
ξ = col[y ŷ], ξh = ξ (x, t−h), ξht = ξ (x, t−h(t)), ξ (s) =
ξ (x,s), yt =

∂y(x,t)
∂ t , yxx =

∂ 2y(x,t)
∂x2 , ηt =

∂η(x,t)
∂ t , ξx =

∂ξ (x,t)
∂x ,

ξs(s) =
∂ξ (s)

∂ s , θ = θ(x, t), ϑ = ϑ(x, t), hi = hi(θ), g j =
g j(ϑ). Matrices not explicitly stated in the text are as-
sumed to have the appropriate dimensionality.

2. PROBLEM FORMULATION

2.1. Fuzzy system model
In this paper, a class of nonlinear distributed parameter

systems described by PDE is considered:
yt = Θyxx + f (y)+ c(y)ω,

zo = d(y),

zm = e(y),

(1)

where y ∈ Hn indicates the state with x ∈ [0, l] ⊂ R and
t > 0; zo stands for the signal to be estimated; zm repre-
sents the measured output; ω ∈ L2[0,∞) means the ex-
ternal disturbance. Θ is a constant; f (y), c(y), d(y) and
e(y) are adequately smooth nonlinear functions satisfying
f (0) = c(0) = d(0) = e(0) = 0, which is reasonable and
feasible in combination with the sector nonlinear method
[12,17]. The above systems with the following boundary
conditions

yx(0, t) = yx(l, t) = y(l, t) = 0, (2)

and the initial condition

y(0, t) = y0(x). (3)

Next, the following T-S fuzzy rule is employed to re-
construct the nonlinear systems to deal with the unknown
nonlinear function:

Plant Rule ℵi: IF θ1 is F i
1 , ..., and θz is F i

z , THEN
yt = Θyxx +Aiy+Ciω,

zo = Diy,

zm = Eiy,

(4)

where θq = [θ1, · · · , θz] stand for the premise variable vec-
tors; F i

q represent the fuzzy sets of rule i corresponding to
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θq with i ∈ {1, 2, · · · , r} and q ∈ {1, 2, · · · , z}. Ai, Ci, Di

and Ei indicate known matrices with appropriate dimen-
sions. Then, (4) can be represented as

yt = Θyxx +
r

∑
i=1

hi[Aiy+Ciω],

zo =
r

∑
i=1

hiDiy,

zm =
r

∑
i=1

hiEiy,

(5)

where hi =

z
∏

q=1
F i

q(θq)

r
∑

i=1

z
∏

q=1
F i

q(θq)
is the normalized membership

grade; F i
q(θq) is the membership function corresponding

to the fuzzy F i
q and satisfies hi ≥ 0,

r
∑

i=1
hi = 1.

Remark 1 (The well-posedness analysis): Inspired by
[39], the PDE system (1) based on the boundary condi-
tions (2) and the initial condition (3) is formulated as the
following abstract differential equation

ẏ(t) =Ay(t)+ f (y(t))+ω(t), y(0) = y0(·), (6)

where y(t) = y(·, t), {y(x, t), x ∈ [0, l]}, ω(t) = ω(·, t),
{ω(x, t), x ∈ [0, l]} and the operator A is defined as

Aȳ(x),
d
dx

(
dȳ(x)

dx

)
,

whose domain is D(A) , {ȳ ∈ Hn(0, l) : dȳ(x)/dx|x=0 =
ȳ(l) = 0} and the nonlinear term f (y(t)) is chosen as
f (y(t)), f (y(·, t)). By Exercise 2.10 (see [40]), it is eas-
ily checked that the operator A with D(A) generates a C0

semigroup exp(At) on L2([0, l]). As f (y) is of class C1

in y, by Theorem 3.1.3 in Chapter 3 on page 103 of [40],
Theorem 1.5 in Chapter 6 on page 187 of [41], one can
easily conclude that the abstract evolution equation (6) has
a unique classical solution.

Assumption 1: The systems (1) are quadratically sta-
ble.

This assumption ensures that the estimation error is
bounded since the asymptotic stability of the error dynam-
ics also depends on the systems’ state.

2.2. Dynamic event-trigger mechanism
As shown in Fig. 1, for the purpose of saving the lim-

ited communication resources, a novel DETM (see [25])
is adopted with a sampler and zero-order holder (ZOH).
Define zm(tkT + nT ), zm(tkT ) as the current sample sig-
nal and latest transmitted signal, respectively. Then, the
DETM is established as follows:

η+θ [δ zT
m(tkT )Ωzm(tkT )−eT

m(skT )ΩeT
m(skT )]≥ 0,

(7)

where δ ∈ [0, 1), θ > 0, Ω is a positive definite symmetric
matrix; em(skT )= zm(tkT +nT )−zm(tkT ) is expressed as

Fig. 1. The frame of networked filtering system.
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the transmission error; skT = tkT +nT stands for the sam-
pling time between tkT (current instant) and tk+1T (ap-
proaching instant). η is a dynamic variable and satisfies
the following equation

ηt =−λη +δ zT
mΩzm− eT

mΩem, (8)

where λ > 0, η0 > 0 is the initial value of η . Assuming
that α is a non-zero natural number satisfying tk+1 = tk +
α +1. Then, consider the time interval of ZOH

[tkT +χtk , tk+1T +χtk+1) =
α⋃

n=0

Γn,k,

where

Γn,k
∆
= [tkT +nT +χtk+n, tkT +(n+1)T +χtk+n+1),

n= 0, 1, ..., α.

Define the network transmission delay as follows:

h(t) = t− (tkT +nT ) = t− skT ,
t ∈ Γn,k, 0≤ h(t)≤ h,

and the input of the RO filter under the behavior of the
ZOH can be expressed as follows:

ẑm = zm(tkT ) = zm(skT )− em(skT )
= zmh− emh, t ∈ [tk +χtk , tk+1 +χtk+1). (9)

Remark 2: When the dynamic variable η = 0, (7) can
be regarded as δ zT

m(tkT )Ωzm(tkT )− eT
m(skT )Ωem(skT ).

At this time, the DETM (7) is converted to a traditional
static ETM as follows:

δ zT
m(tkT )Ωzm(tkT )− eT

m(skT )Ωem(skT )≥ 0, (10)

which means that the ETM can be used as a special situ-
ation of DETM (7) as θ → +∞. The introduction of dy-
namic variables is more helpful to widen the interval be-
tween two consecutive triggered times.

Remark 3: The triggered threshold δ ∈ [0, 1) is a given
constant. When δ = 0, the DETM will be changed to the
traditional TTM. As δ gradually increases from 0 to 1, the
network transmission data will gradually decrease to save
the network transmission resources.

2.3. Structure of reduced-order fuzzy filter
Next, using the non-PDC method to design a fuzzy RO

filter, which is expressed as follows:
Filter Pule ℑ j: IF ϑ1 is N j

1 , ..., and ϑp is N j
p, THEN{

ŷt = Θkŷxx +Ak j ŷ+Bk j ẑm,

ẑo =Ck j ŷ,
(11)

where ŷ ∈ Rl represents the filter’s state and l < n; ẑm

stands for the filter’s practical input signal; ẑo expresses

the estimate signal of zo; ϑν = [ϑ1, ..., ϑp] stand for the
filter premise variable vectors; N j

ν denote the fuzzy sets
of rule j corresponding to ϑν with j ∈ {1, 2, · · · , r} and
ν ∈ {1, 2, · · · , p}. Ak j, Bk j and Ck j are the filter coefficient
matrices to be determined. Then, the following fuzzy filter
can be obtained

ŷt = Θkŷxx +
r

∑
j=1

g j[Ak j ŷ+Bk j ẑm],

ẑo =
r

∑
j=1

g jCk j ŷ,
(12)

where g j =

p
∏

ν=1
N j

ν (ϑν )

r
∑
j=1

p
∏

ν=1
N j

ν (ϑν )
is the normalized membership

grade; N j
ν(ϑν) is the membership function corresponding

to the fuzzy N j
ν and satisfies g j ≥ 0,

r
∑
j=1

g j = 1.

Although the PDC method has made significant
progress, it is difficult to match the premise variables
and fuzzy sets of the filter with the original systems due to
many complex factors, such as network delay and packet
loss. Therefore, this paper adopts a non-PDC method to
design the proposed fuzzy RO filter.

2.4. Problem formulation
Combining (5) and (12), the filtering error system is

constructed as follows:

ξt = Θ̄ξxx +
r

∑
i=1

r

∑
j=1

hig j[Āi jξ +C̄iω + B̄i jξht − B̄ jemh],

z̃o =
r

∑
i=1

r

∑
j=1

hig jD̄i jξ , (13)

where

Θ̄ =

[
Θ 0
0 Θk

]
, Āi j =

[
Ai 0
0 Ak j

]
, B̄i j =

[
0 0

Bk jEi 0

]
,

B̄ j =

[
0

Bk jHT

]
, C̄i =

[
Ci

0

]
, Ēi =

[
Ei

0

]
,

D̄i j =

[
DT

i
−CT

k j

]T

.

The aim of robust RO filtering is to obtain an estimate
ẑo of the signal zo such that a guaranteed performance cri-
terion is minimized in an estimation error sense. Next, the
problem of robust L2-L∞ fuzzy filter can be defined as fol-
lows:

Definition 1: Given noise attenuation level γ > 0, de-
termine the filter parameters so that for any time h(t) sat-
isfying

i) The system (13) is asymptotically stable;
ii) Under zero initial conditions, the system (13) satisfies

γ‖ω‖2 > ‖z̃o‖∞
, (14)
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for any non-zero ω ∈ L2[0,∞), where ‖z̃o‖2
∞
=

supt{z̃T
o z̃o}.

Lemma 1 [42]: Assume that ς(t), %(t) are sequential
functions. The function £(t,?) is the difference of conti-
nuity for all t ≥ 0. %(t) ≤ ς(t) is established for all t ≥ 0
by satisfying the following conditions

ς̇(t) = £(t,ς(t)), ς(t0) = ς0,

%̇(t)≤ £(t,%(t)), %(t0)≤ ς0.

Lemma 2 (Jensen’s inequality) [43]: Assume ζ ∈ Hn

be a vector function. Then, for any matrix M > 0, the fol-
lowing inequality holds∫ b

a
ζ

T (x)Mζ (x)dx

≥ 1
b−a

(∫ b

a
ζ

T (x)dx
)

M
(∫ b

a
ζ (x)dx

)
,

Lemma 3 [44]: Let ψ1, ψ2, · · · , ψN : Rm 7→ R have
non-negative values in an open subset C of R. Then, the
reciprocally convex combination of ψi to C satisfies

min
{βi|βi>0,∑

i
βi=1}∑i

1
βi

ψi(t) = ∑
i

ψi(t)+max
ϕi, j(t)

∑
i6= j

ϕi. j(t),

subject to{
ϕi, j(t) : Rm 7→ R,ϕ j,i(t)

∆
= ϕi, j(t),[

ψi(t) ϕi, j(t)
ϕi, j(t) ψ j(t)

]
≥ 0

}
.

3. MAIN RESULT

In this section, the filter design and the stability analysis
with L2-L∞ performance will be presented in Theorem 1.
On this basis, the non-PDC problem is solved in Theorem
2. Finally, the solution of the RO filter parameters is given
in Theorem 3.

Theorem 1: For given scalars 0 < δ < 1 and h > 0, the
system (13) is asymptotically stable if there exist matrices
P > 0, Q > 0, R > 0, S satisfying SΘ̄ ≥ 0 and G that the
following inequalities hold for all i∈ {1, 2, · · · , r}, j ∈ {1,
2, · · · , r}

Ψ1i j =

[
Ψ1

1i j Ψ2
1i j

∗ Ψ3
1

]
< 0, (15)

Ψ2i j =

[
P D̄T

i j
∗ γ2I

]
> 0, (16)

where
[

R G
G R

]
≥ 0, Ψ1

1i j =

[
Ψ11

1i j 0
∗ Ψ12

1i j

]
, Ψ2

1i j =[
Ψ21

1i j Ψ22
1i j

0 0

]
, Ψ3

1 =

[
Ψ31

1 0
0 Ψ32

1

]
, Ψ11

1i j =

[
Ψ111

1i j Ψ112
1i j

∗ Ψ122
1i j

]
,

Ψ21
1i j =

[
Ψ211

1i j GT

SB̄i j 0

]
, Ψ22

1i j =

[
−SB̄ j SC̄i

−SB̄ j SC̄i

]
, Ψ31

1 =[
Ψ311

1 Ψ312
1

∗ Ψ313
1

]
, Ψ12

1i j = Ψ133
1i j , Ψ32

1 = diag{−Ω, −I},

Ψ111
1i j =Q−R+SĀi j+ĀT

i jS
T , Ψ112

1i j =P+ĀT
i jS

T−S, Ψ122
1 =

h2R−S−ST . Ψ133
1i j =−SΘ̄− Θ̄ST , Ψ211

1i j = R−GT +SB̄i j,
Ψ311

1 = −2R + G + GT + δ ĒT ΩĒ, Ψ312
1 = R − GT ,

Ψ313
1 =−Q−R.

Proof: The dynamic variable η is positive according to
(8), which is proved as follows:

ηt +λη = δ zT
mΩzm− eT

mΩem ≥−
η

θ
, (17)

with η0 > 0 and Lemma 1, we can get

η ≥ η0e−(λ+
1
θ
)t , ∀t > 0. (18)

The following Lyapunov-like functions are adopted

V (t) =
5

∑
n=1

Vn(t),

where

V1(t) =
∫ l

0
ξ

T Pξ dx, V2(t) =
∫ l

0
ξ

T
x SΘ̄ξxdx,

V3(t) = h
∫ l

0

∫ 0

−h

∫ t

t+σ

ξ
T
s (s)Rξs(s)dsdσdx,

V4(t) =
∫ l

0

∫ t

t−h
ξ

T (s)Qξ (s)dsdx, V5(t) =
∫ l

0
ηdx.

Calculating the derivative of V (t), one obtains

V̇1(t) =
∫ l

0
2ξ

T Pξtdx, V̇2(t) =−
∫ l

0
2ξ

T
t SΘ̄ξxxdx,

V̇3(t) =
∫ l

0
[h2

ξ
T
t Rξt −h

∫ t

t−h
ξ

T
s (s)Rξs(s)ds]dx,

V̇4(t) =
∫ l

0
[ξ T Qξ −ξ

T
h Qξh]dx, V̇5(t) =

∫ l

0
ηtdx.

(19)

Based on Lemma 2, the following inequality can be ob-
tained

−h
∫ l

0

∫ t

t−h
ξ

T
s (s)Rξs(s)dsdx

≤−
∫ l

0
{ h

h−h(t)
[
∫ t−h(t)

t−h
ξ

T
s (s)ds]R[

∫ t−h(t)

t−h
ξs(s)ds]

+
h

h(t)
[
∫ t

t−h(t)
ξs

T (s)ds]R[
∫ t

t−h(t)
ξs(s)ds]}dx. (20)

Combing (20) and Lemma 3, it is obvious that the fol-
lowing inequality holds

−h
∫ l

0

∫ t

t−h
ξ

T
s (s)Rξs(s)dsdx
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≤−
∫ l

0
{[
∫ t−h(t)

t−h
ξ

T
s (s)ds]R[

∫ t−h(t)

t−h
ξs(s)ds]

+ [
∫ t

t−h(t)
ξ

T
s (s)ds]R[

∫ t

t−h(t)
ξs(s)ds]

+2[
∫ t−h(t)

t−h
ξ

T
s (s)ds]G[

∫ t

t−h(t)
ξs(s)ds]}dx. (21)

From (13), we can get

0 = 2
∫ l

0
[ξ T

t S+ξ
T S]{−ξt + Θ̄ξxx

+
r

∑
i=1

r

∑
j=1

hig j[Āi jξ + B̄i jξht − B̄ jemh +C̄iω]}dx.

(22)

According to boundary conditions (2), the following
equation can be obtained

2
∫ l

0
ξ

T SΘ̄ξxxdx =−
∫ l

0
ξ

T
x (SΘ̄+ Θ̄ST )ξxdx. (23)

Define

ȳ ∆
= col[ξ ξt ξx ξht ξh emh ω].

Inspired by [45], considering (19)-(23) with ω = 0 and
applying the Schur complement lemma to (15), it is easy
to get

V̇ (t)≤ 0,

for all t > 0. Therefore, system (13) with ω = 0 is asymp-
totically stable.

Next, the L2−L∞ performance of the filtering error sys-
tem (13) is established under the zero initial condition. For
all ξ 6= 0 and η > 0, the following inequalities can be ob-
tained

V̇ (t)−ω
T (t)ω(t)≤

∫ l

0

r

∑
i=1

r

∑
j=1

hig j ȳT
Ψ1i j ȳdx≤ 0,

(24)

which means∫ l

0
ξ

T Pξ dx≤V (t)≤
∫ l

0

∫ t

0
ω

T (s)ω(s)dsdx,

and using the schur complement, (16) can guarantee

r

∑
i=1

r

∑
j=1

D̄T
i jD̄i j < γ

2P.

Then, it is easily constructed the following inequality
for t > 0,∫ l

0
z̃T

o z̃odx =
r

∑
i=1

r

∑
j=1

hig j

∫ l

0
ξ

T D̄T
i jD̄i jξ dx

< γ
2
∫ l

0
ξ

T Pξ dx≤ γ
2
∫ l

0

∫ t

0
ω

T (s)ω(s)dsdx

≤ γ
2
∫ l

0

∫
∞

0
ω

T (s)ω(s)dsdx. (25)

Therefore, γ‖ω‖2 > ‖z̃o‖∞
, for any non-zero ω(t) ∈

L2 [0,∞), this completes the proof. �

Remark 4: If there exist matrices P > 0, Q > 0, R > 0
and SΘ̄ > 0, combining with [12], we can get the Lya-

punov function
4
∑

n=1
Vn(t) ≥ 0. Meanwhile, based on the

(18) with l > 0, we can get V5 =
∫ l

0 ηdx ≥ 0. Therefore,
the Lyapunov-like functions satisfy the positive semidefi-
nite.

Remark 5: The obtained conditions (15)-(16) in The-
orem 1 guarantee that system (13) is asymptotically sta-
ble with L2-L∞ performance. However, adopting the same
membership function for the RO filter as [37] will increase
the complexity of the designed filter. Inspired by [46], we
will solve this problem in the following Theorem 2.

Theorem 2: For given scalars 0 < δ < 1, 0 < ρ j ≤
1 and h > 0, the membership functions satisfying g j −
ρ jh j ≥ 0, the systems (13) is asymptotically stable with
L2-L∞ performance, if there exist matrices P> 0, ϒι i =ϒT

ι i,
Q > 0, R > 0, S satisfying SΘ̄≥ 0 and G, which make the
following inequalities hold for all i∈ {1, 2, · · · , r}, j ∈ {1,
2, · · · , r}, ι = {1, 2},

Ψι i j−ϒι i < 0,

ρiΨι i j−ρiϒι i +ϒι i < 0, i < j,

ρ jΨι i j +ρiΨι ji−ρ jϒι i−ρiϒι j +ϒι i +ϒι j < 0,

(26)

where Ψι i j are shown in Theorem 1.

Proof: Defining ϒι i = ϒT
ι i, we have

r

∑
i=1

r

∑
j=1

hi[h j−g j]ϒι i = 0. (27)

Inspired by [46], one can obtain

r

∑
i=1

r

∑
j=1

hig jΨι i j

=
r

∑
i=1

r

∑
j=1

hi{[h j−g j +ρ jg j−ρ jg j]ϒι i +hig jΨι i j}

=
r

∑
i=1

r

∑
j=1

hi{h j[ρ jΨι i j−ρ jϒι i +ϒι i]

+ (g j−ρ jh j)(Ψι i j−ϒι i)}

=
r

∑
i=1

h2
i (ρiΨι ii−ρiϒι i +ϒι i)

+
r

∑
i=1

r

∑
j=1

hi(g j−ρ jh j)(Ψι i j−ϒι i)

+
r−1

∑
i=1

r

∑
j=1

hih j(ρ jΨι i j−ρ jϒι i +ϒι i +ρiΨι ji
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−ρiϒι j +ϒι j). (28)

Considering g j − ρ jh j ≥ 0 and (26), we can get
r
∑

i=1

r
∑
j=1

hig jΨι i j < 0. Thus, the system (13) is asymptoti-

cally stable with L2-L∞ performance, which completes the
proof. �

The problem of the RO filter design will be solved by
Theorem 3.

Theorem 3: Given scalars 0 < ρ j ≤ 1, h > 0, γ > 0
and ε ∈ [0, 1), if there exist matrices Ãk j, B̃k j, C̃k j, S1 > 0,
R > 0, Ω > 0, and Q > 0 satisfying the following matrix
inequations for i ∈ {1, 2, · · · , r}, j ∈ {1, 2, · · · , r}, ι = {1,
2}, 

Ψ̄ι i j− ϒ̄ι i < 0,

ρiΨ̄ι i j−ρiϒ̄ι i + ϒ̄ι i < 0, i < j,

ρ jΨ̄ι i j +ρiΨ̄ι ji−ρ jϒ̄ι i−ρiϒ̄ι j + ϒ̄ι i + ϒ̄ι j < 0,
(29)

where Ψ̄1i j =

[
Φ1

1i j Φ2
1i j

∗ Φ3
1

]
, Ψ̄2i j = Ψ2i j, Φ1

1i j =Φ11
1i j Φ12

1i j 0
∗ Φ13

1i j 0
∗ ∗ Φ14

1i j

, Φ2
1i j =

Φ21
1i j G Φ23

1i j
Φ22

1i j 0 Φ23
1i j

0 0 0

, Φ3
1 = Ψ3

1,

Φ11
1i j =

[
Φ111

1i j Φ112
1i j

∗ Φ122
1i j

]
, Φ12

1i j =

[
Φ113

1i j Φ114
1i j

Φ123
1i j Φ124

1i j

]
,

Φ13
1i j =

[
Φ133

1i j Φ134
1i j

∗ Φ144
1i j

]
, Φ14

1i j =

[
Φ155

1i j Φ156
1i j

∗ Φ166
1i j

]
, Φ21

1i j =[
Φ211

1i j Φ212
1i j

Φ221
1i j Φ222

1i j

]
, Φ22

1i j =

[
Φ231

1i j 0
Φ241

1i j 0

]
, Φ23

1i j =

[
Φ215

1i j Φ216
1i j

Φ225
1i j Φ226

1i j

]
,

Φ111
1i j = Q1−R1 +S1Ai +AT

i ST
1 , Φ112

1i j = Q2−R2 +HÃk j +

AT
i HV , Φ113

1i j = P1+AT
i ST

1 −S1, Φ114
1i j = P2+AT

i HV−HV ,
Φ122

1i j = Q3−R3 + Ãk j + ÃT
k j, Φ123

1i j = P3 + ÃT
k jHT −VTHT ,

Φ124
1i j = P4 + ÃT

k j − VT , Φ133
1i j = h2R1 − S1 − ST

1 , Φ134
1i j =

h2R2−2HV , Φ144
1i j = h2R3−VT −V , Φ155

1i j =−S1Θ−ΘST
1 ,

Φ156
1i j = −HS2(Θ + Θk), Φ166

1i j = −S2Θk −ΘkST
2 , Φ211

1i j =

R1−GT
1 +HB̃k jEi, Φ212

1i j = R2−GT
2 , Φ215

1i j = −HB̃k jHT ,
Φ216

1i j = S1Ci, Φ221
1i j = RT

2 −G2 + B̃k jEi, Φ222
1i j = R3 −GT

3 ,
Φ225

1i j = −B̃k jHT , Φ226
1i j = VTHTCi, Φ231

1i j = HB̃k jEi,
Φ241

1i j = B̃k jEi, ϒ̄1i = diag{UT , UT , I, I, I, I, I}ϒ1i{U , U ,
I, I, I, I, I}, ϒ̄2i = ϒ2i, then the RO filter design problem
is solvable. Furthermore, the desired RO filter parameters
in (12) can be derived with the following transformation
relation[

Ak j Bk j

Ck j 0

]
∆
=

[
V−1 0

0 I

][
Ãk j B̃k j

C̃k j 0

]
. (30)

Proof: First, the non-singular matrix S is split into

S ∆
=

[
S1 HS2

∗ S3

]
with H ∆

= [Ir×r 0r×(n−r)]
T , S1 ∈ Rn×n,

S2 ∈ Rr×r, S3 ∈ Rr×r.

Then the following matrix is defined

U ∆
=

[
I 0
0 S−1

3 ST
2

]
,V ∆

= S2S−1
3 ST

2 , (31)[
Ãk j B̃k j

C̃k j 0

]
∆
=

[
S2 0
0 I

][
Ak j Bk j

Ck j 0

][
S−1

3 ST
2 0

0 I

]
, (32)

furthermore, we can get

UT SĀi jU
∆
=

[
S1Ai HÃk j

VTHT Ai Ãk j

]
,

UT SB̄ j
∆
=

[
HB̃k jHT

B̃k jHT

]
,

UT ĀT
i jS

TU ∆
=

[
AT

i ST
1 AT

i HV
ÃT

k jHT ÃT
k j

]
,

UT SC̄i
∆
=

[
S1Ci

VTHTCi

]
,

UT STU ∆
=

[
ST

1 HV
VTHT VT

]
,

UT SU ∆
=

[
S1 HV
VTHT V

]
,

UT SB̄i j
∆
=

[
HB̃k jEi 0
B̃k jEi 0

]
. (33)

Performing contract transformation on Ψ1i j in (15) with
diag{U U I I I I I}.

If the condition that (31)-(33) hold, inequality (29)
holds. Therefore, the system (13) satisfies the asymp-
totic stability condition with L2-L∞ performance. More-
over, note that (32) is equivalent to[

Ak j Bk j

Ck j 0

]
∆
=

[
(S−T

2 S3)
−1V−1 0

0 I

]
×
[

Ãk j B̃k j

C̃k j 0

][
S−T

2 S3 0
0 I

]
. (34)

Consequently, the filter parameters (Ak j,Bk j,Ck j) are
obtained from (34). In general, let S−T

2 S3 = I, (30) can be
obtained, which can be adopted to construct the RO fuzzy
filter in (12) and complete the proof. �

Based on the above analysis, the fuzzy RO filter design
and DETM can be organized as in Algorithm 1.

Remark 6: The matrix H is called the RO factor and
plays a crucial role in the RO filter design process. When
H is a unit matrix, the filter designed at this time is a full-
order (FO) filter. Thus, we can easily convert between the
RO and FO filter by changing the order of the matrixH.

Remark 7: The above non-PDC method only consid-
ers the partial mismatch problem between the fuzzy sys-
tems and the fuzzy filter (i.e., premise variables and fuzzy
sets do not match) and does not consider the fuzzy rules
mismatch case (complete mismatch). Therefore, inspired
by [47], the completely mismatched fuzzy filter design
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Algorithm 1: Fuzzy RO filter design with DETM.

Set appropriate DETM parameters θ , δ and λ ;
for t = 0 : 3 and z = 0 : 1∣∣∣∣∣∣∣∣∣∣

if Trigger condition are met; then∣∣ Signal transmission;
else∣∣ Cancel transmission.
end

end
The filter parameters Ak j, Bk j and Ck j are obtained
by solving linear matrix inequalities (29);
for i = 1 : 2, j = 1 : 2∣∣∣∣∣∣∣∣∣∣∣∣

if Satisfy tmin<0 in the feasp solver for (29);∣∣ Get the filter parameters Ak j, Bk j and Ck j;
else∣∣∣∣ Change the given systems parameters

and DETM parameters to meet tmin< 0.
end

end

method is introduced to further make the designed filter
more flexible and reasonable, which is designed as fol-
lows:

The model of the fuzzy filter in (12) is given as follows:
ŷt = Θkŷxx +

c

∑
j=1

g j[Ak j ŷ+Bk j ẑm],

ẑo =
c

∑
j=1

g jCk j ŷ,
(35)

where g j =

p
∏

ν=1
N j

ν (ϑν )

c
∑
j=1

p
∏

ν=1
N j

ν (ϑν )
and satisfy g j ≥ 0,

c
∑
j=1

g j = 1 and

c 6= r.
According to Theorem 1 in [47], the system (13) is

asymptotically stable with L2-L∞ performance, if there ex-
ist ϖi j that hig j − h̄iḡ j −ϖi j > 0 and matrices M = MT ,
Wi j = W T

i j , Wi j ≥ 0, such that the following inequalities
hold

r

∑
i=1

c

∑
j=1

((h̄iḡ j +ϖi j)(Ψ̄ι i j +Wi j)+ϖi jM)< 0, (36)

where the h̄i and ḡ j are the staircase membership functions

that satisfy h̄i ∈ [0, 1], ḡ j ∈ [0, 1],
r
∑

i=1
h̄i = 1 and

c
∑

i=1
ḡ j = 1.

4. NUMERICAL EXAMPLE

Example 1: In this section, the following FHN equation
is considered to indicate the applicability of the proposed
approach{

y1t = y1xx− y3
1−1.2y1− y2 +2ω,

y2t = y2xx−0.1y2 +0.5ω,
(37)

with the following boundary and initial conditions

yx(0, t) = yx(1, t) = 0,

y1(s) = 0.5+0.3cos(πx),

y2(s) = 0.4cos(πx).

Assume y = col[y1 y2], and the external disturbance ω

is given as follows:

ω = cos(0.05πx)sin(4πt), t ∈ [0, 2).

Then, the systems (37) can be described as follows:

yt = yxx +Ay+Cω,

with A =

[
−y2

1−1.2 −1
0 −0.1

]
, C =

[
2

0.5

]
.

If y1 ∈ [−1.5 1.5], then y2
1 ∈ [0 2.25], y2

1 can be ex-
pressed as follows:

y2
1 = 2.25 ·h1(y1)+0 ·h2(y1),

where h1(y1) ∈ [0, 1], h2(y1) ∈ [0, 1], h1(y1)+h2(y1) = 1.
It can be noticeably obtained

h1(y1) =
1

2.25
y2

1, h2(y1) = 1−h1(y1).

Similar to the procedure in [17], the T-S fuzzy model
can be generated as follows:

yt = yxx +
2

∑
i=1

hi(y1)[Aiy+Ciω].

We can also obtain the following estimated output and
measured output signals

zo =
2

∑
i=1

hi(y1)Diy, zm =
2

∑
i=1

hi(y1)Eiy,

where

A1 =

[
−3.45 −1

0 −0.1

]
, A2 =

[
−1.2 −1

0 −0.1

]
,

C1 =C2 =
[
2 0.5

]T
, D1 =

[
1 0

]
,

D2 =
[
0 1

]
, E1 =

[
1 0

]
, E2 =

[
0 1

]
,

and the rest of the parameters are shown in Table 1.
Assume g2(ŷ1) = cos(0.8ŷ1), g1(ŷ1) = 1− g2(ŷ1), and

the filter parameters are obtained by Theorem 3

Ak1 =−21.3842, Bk1 =−3.6025, Ck1 =−5.1507,

Table 1. Simulation parameters.

δ = 0.05 h = 1 ms Θ = 1 Θk = 0.5 λ = 0.2
ρ1 = 0.9 ρ2 = 0.8 θ = 20 η0 = 1
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Fig. 2. The trajectory of ω(x, t).

Fig. 3. The trajectory of ẑm(x, t).

Fig. 4. The trajectory of z̃(x, t).

Ak2 =−19.9713, Bk2 =−3.9856, Ck2 =−4.1226,

Ω = 32.6733, γ = 0.5596.

Under the zero initial condition, one gets ‖z̃o‖∞

‖ω‖2
=

0.0833 < 0.5596.
Simulation results: The trajectory of the external dis-

turbance is shown in Fig. 2. The actual input of the RO
filter based on the DETM is given in Fig. 3, which shows
that the DETM reduces the network data transmission ef-
fectively.

The trajectory of the filtering error is shown in Fig. 4,
which can be seen that the filtering system satisfies asymp-
totically stable with L2−L∞ performance. Fig. 5 presents
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Fig. 5. Release instants and release interval.

Table 2. The NTs by different ETM.

δ The dynamic event The static event
δ = 0.01 362 390
δ = 0.05 185 208
δ = 0.1 141 156
δ = 0.5 61 67

Table 3. The NTs by different θ with δ .

θ δ = 0.01 δ = 0.05 δ = 0.1 δ = 0.5
θ = 0.2 362 185 141 61
θ = 20 367 204 153 66
ETM 390 208 156 67

the release instants and release intervals under the DETM
(7) to reduce network transmission data and improve the
utilization of network resources. The following two tables
further demonstrate the adopted approach’s effectiveness.
For different δ , the number of transmissions (NTs) with
θ = 80, λ = 8 are chosen in Table 2. In Table 3, vary-
ing the δ yields the NTs with different θ . As shown in
the table above, the DETM is more effective in mitigating
communication redundancy and improving resource uti-
lization efficiency than static ETM, and with increasing θ

and δ , the NTs decrease, further demonstrating the effec-
tiveness of the adopted DETM.

Example 2: Consider a class of nonlinear semi-linear
parabolic PDE systems{

y1t = y1xx− sin(y1)−1.2y2− y2 +2ω,

y2t = y2xx−0.1y1 + y3
2 +0.5ω,

(38)

and assuming the same boundary and initial conditions as
Example 1. Based on the fuzzy method in the NUMERI-
CAL EXAMPLES of [48] and assume

y1 ∈ [−a, a], y2 ∈ [−b, b],

where a = 0.8 and b = 1.5. The nonlinear PDE systems
(38) can be represented by the following T-S fuzzy model
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Plant rule 1: IF y1 is F11 and y2 is F21, Then

yt = yxx +A1y+C1ω,

Plant rule 2: IF y1 is F11 and y2 is F22, Then

yt = yxx +A2y+C2ω,

Plant rule 3: IF y1 is F12 and y2 is F21, Then

yt = yxx +A3y+C3ω,

Plant rule 4: IF y1 is F12 and y2 is F22, Then

yt = yxx +A4y+C4ω,

where

F11(y1) =
y2

1

a2 , F12(y1) = 1−F11(y1),

F21(y2) =


bsiny2− y2 sinb

y2(b− sinb)
, y2 6= 0,

1, y2 = 0,

F22(y1) = 1−F21(y2),

A1 =

[
1 −1.2
−0.1 a2

]
, A2 =

[ sin(b)
b −1.2
−0.1 a2

]
,

A3 =

[
1 −1.2
−0.1 1

]
, A4 =

[ sin(b)
b −1.2
−0.1 1

]
,

C1 =C2 =C3 =C4 =
[
2 0.5

]T
,

and the rest of the parameters are shown in Table 1. The
external disturbance ω is given as follows:

ω = e−t cos(0.5x)sin(4πt), t ∈ [0, 2).

Assume g2(ŷ1) = cos(0.8ŷ1), g1(ŷ1) = 1− g2(ŷ1). By
using the method in [47], the filter parameters can be ob-
tained

Ak1 =−4.9312, Bk1 =−2.7306, Ck1 =−1.2654,

Ak2 =−4.8300, Bk2 =−3.1016, Ck2 =−1.5153,

Ω = 20.7299, γ = 0.6749.

Under the zero initial condition, one gets ‖z̃o‖∞

‖ω‖2
=

0.0027 < 0.6749.
Simulation results: The trajectory of the external dis-

turbance is shown in Fig. 6. Fig. 7 represents the actual
input of the fuzzy RO filter. The trajectory of the filter-
ing error is shown in Fig. 8. When x = 0.5, the original
systems output zo, the estimated output ẑo and the filter-
ing error z̃o are shown in Fig. 9. The release instants and
intervals under the DETM are presented in Fig. 10. From
these figures, it can be seen that the ideal estimation of zo

is achieved by the L2-L∞ RO filter based on the DETM,
which can save communication bandwidth and computa-
tional resources to a certain extent.

Fig. 6. The trajectory of ω(x, t).

Fig. 7. The trajectory of ẑm(x, t).

Fig. 8. The trajectory of z̃(x, t).

0 0.5 1 1.5 2 2.5 3
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0

0.2

0.4

0.6

0.8

Fig. 9. Outputs zo, estimated output ẑo, filtering error z̃o.
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Fig. 10. Release instants and release interval.

5. CONCLUSION

In this work, a fuzzy dynamic event-triggered RO fil-
ter has been developed for fuzzy PDE systems. Initially, a
T-S fuzzy model has been adopted to reconstruct the non-
linear systems. Then, a DETM has been adopted to im-
prove resource utilization. Due to the DETM can lead to
premise variables’ incomplete match between the fuzzy
filter and the original systems, the non-PDC method can
effectively increase the flexibility of the filter design. In
addition, a Lyapunov-like function has been constructed,
and sufficient conditions for asymptotic stability of the
augmented system have been obtained by the Lyapunov
direct method. Furthermore, the relevant parameters of the
fuzzy RO filter have been obtained by the linear matrix in-
equalities method. Eventually, two numerical examples il-
lustrate that the proposed method is effective. Recently, a
polynomial fuzzy model has been employed for PDE sys-
tems, which reduces conservatism effectively. Thus, poly-
nomial fuzzy filtering is worth exploring.
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