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Disturbance Observer-based Neural Network Integral Sliding Mode Con-
trol for a Constrained Flexible Joint Robotic Manipulator
Quanwei Wen, Xiaohui Yang* � , Chao Huang, Junping Zeng, Zhixin Yuan, and Peter Xiaoping Liu

Abstract: In this paper, the tracking control problem of flexible joint robotic manipulator (FJRM) system subjected
to system uncertainties and time-varying external disturbances (TVED) is addressed. A new disturbance observer-
based neural network integral sliding mode controller with output constraints (DNISMCOC) that comprises the
merits of neural networks, disturbance observer and integral sliding mode is proposed. Considering that the radial
basis function neural network (RBFNN) has a fast learning convergence speed and great approximation ability,
two matrices of RBFNN are utilized to estimate the parameter matrices of the dynamic model of FJRM. In view
of the estimation errors of RBFNNs and TVED in the system, a disturbance observer is introduced to estimate
the lump uncertainties which consist of them. Integral sliding mode is introduced for eliminating steady errors
further. For ensuring security in some high-accuracy using occasions, a barrier lyapunov functions (BLF) is adopted
to achieve output constraints of FJRM. To validate the effectiveness of the proposed control scheme, numerical
simulations on 2-link FJRM are conducted. According to the comparisons among DNISMCOC and other state-of-
the-art controllers, the superiorities of DNISMCOC in several aspects are proved.

Keywords: Backstepping control, disturbance observer, flexible joint robotic manipulator, neural network, output
constraints.

1. INTRODUCTION

In recent decades, increasingly attentions have been
paid on FJRM since they have been widely used in
space and deep-sea exploration, Industrial manufacturing,
medical treatment, etc [1-5]. Compared with the tradi-
tional rigid joint manipulator, FJRM has advantages of
lightweight, small volume, low energy consumption, and
high load-to-weight ratio. Moreover, owing to the joint
of robotic manipulator is flexible, security is dramatically
improved. When FJRMs are happened to be stricken, the
flexible joints can alleviate the collision all the time [6].
Even if the FJRM possesses a great deal of superiorities,
there is still several challenges the researchers in this field
have to face. One of them is how to compensate the mis-
matched uncertainties that can’t directly compensated by
actual control input. Another one is the problem of “ex-
plosion of complexity” which is inherently arose by the
character of high-order of the controlled system of FJRM.
Certainly, tracking accuracy and robustness are still the
goals researchers pursue to improve.

It is noteworthy that, comparing with the rigid joint

robotic manipulator, the control scheme design for the
FJRM is not yet mature. As we all know, FJRM is a com-
plicated dynamic system, there are many parameters in
its model-based controller [7-9]. What is more, some pa-
rameters are not easy to acquire under certain conditions.
Thus, researchers have been considering a method that can
reduce the requirement of robot parameters in feedback
control. In recent years, the application of neural network
(NN) has attracted the attentions of the researchers for
their merits of learning capability mapping and parallel
processing [10-13]. In past decades, unremitting endeavor
has been made for exploring NN controllers for FJRM.
Authors of [7,14] introduce RBFNN to control FJRM, but
both of them simply use it to approximate a large compli-
cated term, which will to some extent increase the diffi-
culties of approximating and lower the tracking accuracy.
Authors of [15] use numerous RBFNNs to approximate
the uncertain parameter matrices in the dynamic model of
FJRM which can in a way overcome the above difficulties
and makes RBFNN easier to combine with other control
technique.

In most preceding researches of RBFNN control, the
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weight estimation update law of RBFNN depends signif-
icantly on tracking errors and momentary estimated data,
so the convergence of system estimation errors in RBFNN
control can’t be achieved. Besides, for the TVED, RBFNN
is not good enough to compensate it.

In most of the trajectory tracking control literatures, dis-
turbance observer (DO) is a effectively used technique for
handling TVED problem [16-20], which can achieve fi-
nite time convergence of estimation errors. Moreover, it
can also compensate the approximating errors of RBFNN
and make up its disadvantage of unable to converge. As
a consequence, designing an RBFNN-DO united control
law is desirable [21]. In [16], a sliding mode disturbance
observer is designed for nonlinear system. In [22], a ter-
minal sliding mode disturbance observer (TSMD) is de-
signed for FJRM. Authors of [23] design an adaptive dis-
turbance observer for nonlinear system. Yet, all of these
DOs contain too many parameters to combine well with
RBFNN. Besides, the sign function terms and fractional
power in these DOs are more likely to generate singular-
ity. In [24], in the condition of guaranteeing the same level
of precision, a DO with less parameters and more simpli-
fied form is proposed.

Usually, the most prevalent techniques of controller de-
sign in FJRM control are fourth-order backstepping con-
trol design method [25-27] and fourth-order dynamic sur-
face control design method [26]. Both of them require de-
signers to differentiate a state variable four times for ob-
taining three virtual control laws and an actual control in-
put. Multiple times of differentiation will increase the risk
of instability of this system. Authors of [28] introduce a
new backstepping control design method for FJRM where
the whole control scheme only includes one virtual control
law and an actual control input. This method effectively
decreases the times of differentiation during the process
of controller design, yet simply using linear sliding sur-
face (LSS) for controlling, which clearly has room for im-
provement. As is well-known, although sliding mode con-
trol (SMC) is a popular control technique for its strong
robustness [29,30], there are still several drawbacks such
as chattering issue and problem of finite-time convergence
that limit its performance in real applications. To solve
these difficulties, previous works [31,32] chose fast termi-
nal sliding mode for achieving fast convergence and chat-
tering elimination; Authors of [33] use high order sliding
mode (HOSM) for realizing finite-time convergence; Au-
thors of [34] use a integral sliding mode for implementing
fast convergence as well as reduction of steady-state er-
rors.

In addition, it’s worth noting that plenty of contribu-
tions have been made to cope with input saturation prob-
lem [35,36], yet the attentions paid on output constraints
are not adequate. In practical applications such as health
care tasks [37], for protecting patients from accidental in-
juries of FJRM, output constraints are extremely essential.

In [38], a BLF is introduced to implement output con-
straints with remarkable results, which inspired us to try
it in FJRM.

In this paper, motivated by the above discussions,
DNISMCOC is proposed to resolve the tracking control
problem of n-link FJRM under the circumstance of model
uncertainties and TVED. Specifically, DNISMCOC uses
RBFNN to estimate the model uncertainties of the sys-
tem, uses DO to estimate TVED and compensate for the
estimation errors of RBFNN, uses BLF to limit the error
range of the control outputs to ensure safety in practical
use. Compared with [10,12,13,15] that only use RBFNN
for approximation and can’t precisely estimate TVED,
DNISMCOC combines the merits of DO and RBFNN
and enables accurate estimation of TVED and conver-
gence of the system estimation errors. Unlike [7,10,12-14]
that just use one RBFNN to approximate a complicated
term in control law, DNISMCOC uses two matrices of
RBFNN to approximate uncertain matrices in dynamic
model of FJRM, which will improve the tracking accu-
racy and makes it more flexible to combine with other
techniques. Compared with [14,28] that employ tradi-
tional LSS to design control law, DNISMCOC makes use
of integral sliding surface (ISS) to improve the speed of
convergence and lower the steady state errors one step
further. Unlike [25-27,39] that employ commonly used
fourth-orders backstepping control method to design con-
trol law, DNISMCOC introduces a new backstepping de-
sign method which successfully reduces the times of dif-
ferentiation during the process of controller design and
significantly alliviates the problem of “explosion of com-
plexity”.

In general, the main contributions of this paper com-
pared to existing work are as follows:

i) The proposed control technology put forward a
RBFNN-DO united control method which not only
can reduce the parameter information we have to
know during the controller design by use of RBFNN
but also can make up the shortcoming that estimation
errors of RBFNN can’t asymptotically converge by
use of DO and decrease the estimation errors further.

ii) The proposed new scheme uses two matrices of
RBFNN to approximate the uncertain matrices in the
dynamic model of FJRM which makes the track-
ing results more accurate than commonly used one-
RBFNN estimation method and facilitates RBFNN
combining with other techniques in the process of
controller design.

iii) An ISS is involved in control law design, which does
a great favor to improve the speed of convergence and
decrease the steady state errors.

iv) A new backstepping design method for FJRM is in-
troduced, which successfully reduces the times of dif-
ferentiation for virtual control law and significantly
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alleviates the problem of “explosion of complexity”
by means of dividing the controlled system into two
subsystems.

The rest of the paper is organized with the following
structure. In Section 2, the dynamic model of FJRM and
the techniques in the main contributions are present. Sec-
tion 3 states the process of designing DNISMCOC. Sim-
ulation results are shown in Section 4 to verify the effec-
tiveness and superiority of DNISMCOC and some com-
parisons with other advanced controllers are also made in
this part. In Section 5, some conclusions are given.

2. PROBLEM STATEMENT AND
PRELIMINARIES

2.1. Preliminary control design
In terms of rigid joint robotic manipulators (RJRM),

the conduction from τ to terminal actuator q is straight-
forward. Therefore, it is easy for researchers to cope with
their relationship through either the adaptive control tech-
nique or the NN control scheme.

However, different from the widely used dynamic
model of RJRM, in the model of FJRM, for taking joint
distortion in practical application into account, the angle
position of a joint is separated in two part, which are po-
sition in link side (angle of link) and position in motor
side (angle of motor shaft). These two joint sides are con-
nected through a spiral spring and torque is conducted by
torsional deformation of the spiral spring. Therefore, the
simplified physical model of FJRM can be described as
two-angle-one-spring model which is precisely illustrated
in Fig. 1. In this paper, the manipulator is assumed to be
a n-DOF (degree of freedom) manipulator with joint flex-
ibility, its nonlinear dynamic model is defined by the fol-
lowing:

M(q)q̈+C(q, q̇)q̇+G(q)+F(q, q̇)

= K(qm−q)+ τd(t), (1)

Jmq̈m +K(qm−q) = τ, (2)

where q ∈ Rn and qm ∈ Rn denote the angular positions
of the link side and the motor shafts side, respectively.

Fig. 1. Model of FJRM.

M(q) : Rn → Rn×n is the symmetric positive definite in-
ertia matrix of the rigid links. C(q, q̇)q̇ : Rn × Rn → Rn

represents the coriolis and centrifugal force matrix. G(q) :
Rn→ Rn denotes the gravitational force. F(q, q̇) ∈ Rn de-
notes the friction torques. τ ∈ Rn represents the external
input torque vector. τd(t) ∈ Rn denotes the unknown time-
varying external disturbances in motor shafts side and link
side. Jm ∈ Rn×n is the positive definite diagonal matrix of
the moments of inertia of the motors, and K ∈ Rn×n is the
positive definite diagonal matrix representing the spring
stiffness of n joints.

Remark 1: From (1) and (2), it is obvious to find that
the dynamic model of FJRM is a fourth-order system
where q, q̇, qm, q̇m are set as its state variables in each
layer. Usually, backstepping control method is introduced
to control such a higher order nonlinear system and is able
to resolve the indirect mapping issue between τ and q,
which means q must be differentiated for four times to
complete the whole control law design. The multiple dif-
ferentiation makes the control method more unstable and
prone to singularities.

To solve this problem, the dynamic model of FJRM is
divided into two subsystems in this paper. The first sub-
system is called the link-side subsystem and is represented
by (1), where a new variable qmd is set as the virtual con-
trol law and also denotes the desired trajectory of qm. qmd

forces q to track the final ideal trajectory qd . The second
subsystem, called the motor-side subsystem, is dominated
by the actual control law τ , where τ forces qm to track the
virtual control law qmd .

Remark 2: In this novel second-order backstepping
control (SOBC) design method, we only need one virtual
control law qmd rather than three virtual control laws in
traditional backstepping control design, which effectively
reduces the times of differentiation and the possibility of
occurring singularity, namely the problem of “explosion
of complexity”. qmd becomes a bridge linking τ and q, as
long as τ can force qm tracking qmd , then qm can force q
tracking qd .

As a consequence, we define two errors

e = q−qd , (3)

em = qm−qmd . (4)

And then, we choice ISS for e and em during the process
of controller design to make e and em converge to zero.

s = ė+ k1e+ k2

∫ t

0
edv, (5)

sm = ėm + k1em + k2

∫ t

0
emdv, (6)

where the gains k1,k2 are positive constants. ISS can pro-
vide smaller steady-state errors and stronger robustness
than LSS.
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2.2. Introduction of RBFNN
Since RBFNN can approximate any nonlinear function

with any precision in a compact set, it becomes an ideal
solution for the issue of unmodeled dynamics.

f (x) =W T h(x)+ ε, (7)

where W is the ideal weight matrix, h(x) is the Gaussian
basic function vector and ε is the error for approximation
that satisfy bounded restriction |ε| 6 εN (εN is the upper
bound of ε).

Since the nominal mathematical model of the inertia
matrix M(q) is relatively easier to acquire, we define
M(q) = Mno+∆M, where Mno is the nominal part and ∆M
denotes the unknown term. In this paper, we utilize two
matrices of RBFNN to approximate C(q, q̇), G(q), respec-
tively.

Remark 3: Many of papers simply use one RBFNN
to approximate a complex term which consists of C(q, q̇),
G(q). This method will augment burden of the sole
RBFNN and in the meantime lower the tracking preci-
sion. Nevertheless, the proposed method makes two matri-
ces of RBFNN take the task of approximating C(q, q̇) and
G(q), which substantially alleviates the burden as well as
improves the precision. Moreover, by estimating C(q, q̇),
G(q) separately, it is easier for researchers to construct
different forms of control law and combine RBFNN with
other techniques to further improve performance. The two
matrices of RBFNN for approximating C(q, q̇) and G(q)
are designed as follows:

Ci j(q, q̇) =
t

∑
m=1

(
WCi jm

ThC j jm(q, q̇)
)
+ εCi j

=WCi j
ThCi j(q, q̇)+ εCi j, (8)

Gi1(q) =
t

∑
m=1

(
WGi1m

ThGi1m(q)
)
+ εGi1

=WGi1
ThGi1(q)+ εGi1, (9)

where Ci j(q, q̇), Gi1(q) are the elements of C(q, q̇), G(q)
in ith row and jth column for i = 1, ..., n and j = 1, ..., n. t
denotes the number of node in RBFNN. Accordingly, the
matrices C(q, q̇), G(q) can be illustrated as

C(q, q̇) =WC⊗hC(q, q̇)+ εC(q, q̇), (10)

G(q) =WG⊗hG(q)+ εG(q), (11)

where⊗ is a new algorithm we defined in this paper which
is represented as follows:

WC⊗hC(q) =


W T

C11hC11 . . . . . . W T
C1nhC1n

· · · · · · · · · · · ·
· · · . . . . . . . . .

W T
Cn1hCn1 . . . . . . W T

CnnhCnn

 , (12)

WG⊗hG(q) =


W T

G11hG11

. . .

. . .
W T

Gn1hGn1

 . (13)

The ideal RBFNN weights matrices WC and WG are
comprised of their elements WCi j and WGi j separately; the
activation functions matrices hC and hG consist of their
elements hCi j, hGi j separately; the approximation errors
εC(q, q̇), εG(q) are composed by the elements εCi j, εGi1,
separately.

2.3. Preliminary of DO

Considering the following nonlinear system

ḣ = f1(x)u+ f2 (x, ẋ)+∆(t), (14)

where f1(x), f2(x, ẋ) are nonlinear functions, u is the input
and ∆(t) denotes the lumped uncertainties of the whole
system.

Therefore, DO can be designed in following forms:

∆̂(t) = p(t)+Koh,

ṗ(t) =−Ko( f1(x)u+ f2(x, ẋ)+ ∆̂(t)), (15)

where K0 is a positive definite diagonal design matrix, ∆̂(t)
is the estimation of ∆(t).

2.4. Introduction of needed assumptions

To facilitate design, the assumptions that need to be
used are illustrated as follows:

Assumption1: The desired signal qid , (i = 1, 2, ..., n)
is continuous and available, and [qid , q̇id , q̈id ]

T ∈Ωid , (i =
1, 2, ..., n) with the known compact set Ωid = {[qid , q̇id ,
q̈id ]

T : q2
id + q̇2

id + q̈2
id ≤ Bio} ∈ R3, where Bio, (i = 1, 2, ...,

n) are known positive constants and qid , q̇id , q̈id denotes
the ith element of qd , q̇d , q̈d .

Assumption2: The time-varying lumped uncertainty is
first-order differentiable and its first-order derivative is
bounded, i.e., τiD(t), (i = 1, 2, ..., n) satisfy |τ̇iD(t)| ≤
τ̇Dmax with τ̇Dmax is a positive constant, where τiD(t) de-
notes the ith element of τD.

Assumption3: ∆Mq̈ (the matrix uncertainty of M(q)) is
bounded (it will be formulated in the following text), i.e.,
∆Mq̈ satisfy ‖∆Mq̈‖< a‖q̈‖< ap, where a, p are positive
constants and ‖ ·‖ denotes the Euclidean norm of a vector.

Remark 4: All the three assumptions are necessary to
the stability analysis in Subsection 3.4. ‖∆Mq̈‖2

2 , q̈2
id
2 are the

two terms in the polynomial function BN . If we need to
ensure that BN is bounded, ‖∆Mq̈‖2

2 , q̈2
id
2 must be bounded.

Therefore, we need to use Assumptions 1 and 3. q2
id
2 , q̇2

id
2 are

the two terms in the polynomial function B2. If we need
to ensure that B2 is bounded, q2

id
2 , q̇2

id
2 must be bounded.

Therefore, we need to use Assumption 1. ‖τ̇D‖2

2 is a term in
the polynomial function BD. If we need to ensure that BD

is bounded, ‖τ̇D‖2

2 must be bounded. Therefore, we need to
use Assumption 2.
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3. CONTROL DESIGN

3.1. Preliminary control design
Definition 1 (SGUUB) [22]: The solution x(t) of

the system is semiglobally uniformly ultimately bounded
(SGUUB) if for any compact set Ω and all x(t0)∈Ω, there
exists an µ > 0 and T (µ,x(t0)) such that ‖x(t)‖ ≤ µ for
all t > t0 +T .

Aiming to achieve the technique of output constraints,
BLF [38] is adopted for designing control law. The ac-
quired control law possesses a property that can restrict
the movement of FJRM in the limited sphere that we set
in advance by adjusting its parameters kai.

Choose the following symmetric BLF candidate

V1 =
1
2

n

∑
i=1

ln
k2

ai

k2
ai− e2

i
, (16)

V̇1 =
n

∑
i=1

eiėi

k2
ai− e2

i
, (17)

where ei denotes the ith element of vector e. It is obvious
to find that when |ei| approaches kai, V̇1 will go to negative
infinity to prevent ei from exceeding kai. Hence, the output
errors are limited in [−kai; kai], i = 1, 2, ..., n. The specific
theory analysis refers to [40].

Thereafter, we add common quadratic lyapunov func-
tion terms behind V1 and generate V2 (For ease of expres-
sion, we use M, C, G, F in the following parts to denote
M(q), C(q, q̇), G(q), F(q, q̇)).

V2 =V1 +
1
2

eT
mem +

1
2

sT Ms+
1
2

sT
mJmsm

+
1
2
(e− em)

T K(e− em). (18)

Taking the derivative of V2 with respect to time and take
(3), (4), (5), (6) into it, we acquire

V̇2 =
n

∑
i=1

ei · si

k2
ai− e2

i
−

n

∑
i=1

k1e2
i

k2
ai− e2

i
−

n

∑
i=1

k2ei
∫ t

0 eidv
k2

ai− e2
i

+ sT M(q̈− q̈d + k1ė+ k2e)+ sT
mJm(q̈m− q̈md

+ k1ėm + k2em)+(e− em)
TK
(

s− k1e− sm

+ k1em− k2

∫ t

0
edv+ k2

∫ t

0
emdv

)
+ eT

m(sm

− k1em− k2

∫ t

0
emdv)+ sTCs. (19)

Transform (19) into

V̇2 =−
n

∑
i=1

k1e2
i

k2
ai− e2

i
−

n

∑
i=1

k2ei
∫ t

0 eidv
k2

ai− e2
i
− eT

mk1em

− eT
mk2

∫ t

0
emdv− (e− em)

TKk1(e− em)

− (e− em)
TKk2

(∫ t

0
edv−

∫ t

0
emdv

)

+ sT(Ψ+Mṡ+Cs+K(e− em)︸ ︷︷ ︸
(A)

)

+ sT
m(em + Jmṡm−K(e− em)︸ ︷︷ ︸

(B)

), (20)

where

Ψ =

[
e11

k2
a1− e2

11
,

e12

k2
a2− e2

12
, . . . ,

e1n

k2
an− e2

1n

]T

. (21)

Using(1), (3) and (5), (A) in (20) can be transformed
into

(A) = Ψ−Kqd−F−G−M(q̈d− k1ė− k2e)

−C
(

q̇d− k1e1− k2

∫ t

0
edv
)
+Kqmd + τd(t).

(22)

Then we define (22) = −K1s and acquire the virtual
control law qmd as follows:

qmd = K−1
(
−K1s−Ψ+M(q̈d− k1ė− k2e)+C

(
q̇d

− k1e− k2

∫ t

0
edv
)
+F +G− τd(t)

)
+qd ,

(23)

where K1 is a positive definite diagonal matrix that repre-
sents the control gain.

And then, using (2), (4) and (6), the term (B) in (20) can
be transformed into

(B) = em + τ−K (qmd−qd)

− Jm (q̈md− k1ėm− k2em) . (24)

Then we define (24) = −K2sm and acquire the actual
control law τ as follows:

τ = −K2sm− em + Jm (q̈md− k1ėm− k2em)

+K (qmd−qd) . (25)

As a result, replacing qmd , τ in (20) with (23), (25), we
obtain

V̇2 = −
n

∑
i=1

k1e2
i

k2
ai− e2

i
−

n

∑
i=1

k2ei
∫ t

0 eidv
k2

ai− e2
i
− eT

mk1em

− eT
mk2

∫ t

0
emdv− (e− em)

TKk1(e− em)

− sTK1s− (e− em)
TKk2

(∫ t

0
edv−

∫ t

0
emdv

)
− sT

mK2sm. (26)

Proof: Considering the following compact set

Ω =

{ n

∑
i=1

ln
k2

ai

k2
ai− e2

i
+ eT

mem + sT Ms+ sT
mJmsm



1248 Quanwei Wen, Xiaohui Yang, Chao Huang, Junping Zeng, Zhixin Yuan, and Peter Xiaoping Liu

+(e− em)
T K(e− em)≤ 2p1

}
. (27)

Then

V̇2 ≤−
(

k1−
k2

2

)( n

∑
i=1

e2
i

k2
ai− e2

i
+ eT

mem + sT K1

k1− k2
2

s

+sT
m

K2

k1− k2
2

sm +(e− em)
TK(e− em)

)

+
n

∑
i=1

k2
(∫ t

0 eidv
)2

2
(
k2

ai− e2
i

) +
∫ t

0
(e− em)

TdvK
k2

2

∫ t

0
(e

−em)dv+
k2

2

∫ t

0
eT

mdv
∫ t

0
emdv. (28)

If we choose k1 > k2
2 , λmax(M) ≤ λmin

(
K1

k1−
k2
2

)
,

λmax (Jm)≤ λmin

(
K2

k1−
k2
2

)
, then we can obtain

V̇2 ≤−2
(

k1−
k2

2

)
V2 +Q(t), (29)

where

Q(t) =
n

∑
i=1

k2
(∫ t

0 eidv
)2

2
(
k2

ai− e2
i

) +
k2

2

∫ t

0
eT

mdv
∫ t

0
emdv

+
∫ t

0
(e− em)

TdvK
k2

2

∫ t

0
(e− em)dv. (30)

According to the compact set Ω, it is obvious that Q(t)
is a bounded term and V2 ≤ p1. Therefore we define its
maximum as Qmax. When V2 = p1,

V̇2 ≤−2
(

k1−
k2

2

)
p1 +Qmax. (31)

If we set Qmax
2p1
≤ k1− k2

2 , then we can obtain V̇2 ≤ 0. In
conclusion, V2 ≤ p1 is an invariable set, namely if V2 (0)≤
p1, then V2(t)≤ p1 when t > 0.

Solving the inequation V̇2≤−2
(
k1− k2

2

)
V2+Qmax , we

obtain

V2(t)≤
Qmax

2
(
k1− k2

2

)
+

(
V2(0)−

Qmax

2
(
k1− k2

2

))e−2(k1−
k2
2 )t . (32)

As a consequence, all of the closed-loop errors of state
variables are SGUUB.

Remark 5: The aforementioned virtual control law qmd

and actual control law τ are preliminary and simplified
versions which merely can be used in ideal situation. In
practical case, not only are the internal system uncertain-
ties and TVED unknown, but also some state variables,
for example q̇md and q̈md , are unmeasurable. Accordingly,
in the following parts, we are going to equip qmd , τ with
RBFNN, DO and first-order filter (FOF) to solve these
practical problems and mature the control scheme further.

3.2. Design of first order filter
According to (25), if we intend to obtain τ , we need to

know q̇md and q̈md first. Since we can’t measure q̇md and
q̈md directly, we introduce a FOF to estimate them.

The first FOF (FOF1) can be designed as

ζ1 ˙̂qmd + q̂md = qmd , (33)

q̂md(0) = qmd(0), (34)

where ζ1 is a positive constant and ˙̂qmd is the output of
FOF1. We use ˙̂qmd as the estimation of q̇md .

In the same way, the second FOF (FOF2) can be de-
signed as

ζ2
˙̇̂
q̂md +

ˆ̂̇qmd = ˙̂qmd , (35)
ˆ̂̇qmd(0) = ˙̂qmd(0), (36)

where ζ2 is a positive constant and
˙̇̂
q̂md is the output of

FOF2. We use
˙̇̂
q̂md as the estimation of q̈md .

3.3. Design of DNISMCOC
Using M(q)=Mno+∆M, (10), (11), the dynamic model

of FJRM ((1), (2)) can be rewritten as

Mno(q)q̈+WC⊗hC(q, q̇)q̇+WG⊗hG(q)

= K (qm−q)+ τD(t),

Jmq̈m +K (qm−q) = τ, (37)

where τD(t) = τd(t)−F(q, q̇)−∆Mq̈− εC(q, q̇)q̇− εG(q)
is a lumped uncertainty of the system.

Introducing above-mentioned RBFNN in Subsection
2.2 to approximate WC⊗hC(q, q̇), WG⊗hG(q), we can de-
fine

CNN(q, q̇) = ŴC⊗hC(q, q̇), (38)

GNN(q) = ŴG⊗hG(q), (39)

where ŴC, ŴG are the estimations of weights matrices WC,
WG.

Accordingly, using (37), (38), (39), we can rewrite (23)
as

qmd =K−1 (−K1s−Ψ+Mno(q)(q̈d− k1ė− k2e)

+CNN(q, q̇)
(

q̇d− k1e− k2

∫ t

0
edv
)
+GNN(q)

−τD)+qd . (40)

And the network updating laws are suggested as

˙̂WCi j = ΓCi j hCi j(q, q̇)q̇r jri−ΓCi j ηCŴCi j , (41)
˙̂WGi1 = ΓGi1 hGi1(q)ri−ΓGi1 ηGŴGi1 , (42)

where i = 1, ..., n and j = 1, ..., n denote the ith row and
jth column of CNN(q, q̇), GNN(q), respectively. ΓCi j, ΓGi1
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are positive definite diagonal matrices, and q̇r j, ri denote
the jth and ith elements of q̇r, r respectively. And r, q̇r are
defined as follows:

r =−ė−Λe, (43)

q̇r = q̇d−Λe, (44)

where Λ is a positive constant diagonal matrix.
Then, we introduce above-mentioned DO to approxi-

mate the lumped uncertainty τD. On the basis of the con-
tents in Subsection 2.3, we start to design DO for τD(t).
Transforming (1) into the form that is similar to (14), we
obtain

q̈ = Mno(q)−1K (qm−q)−Mno(q)−1CNN(q, q̇)q̇

−Mno(q)−1GNN(q)+Mno(q)−1
τD(t), (45)

where comparing with (14), Mno(q)−1τD(t) corresponds
to ∆(t), Mno(q)−1 corresponds to f (x1), K(qm − q) cor-
responds to u, −Mno(q)−1CNN(q, q̇)q̇−Mno(q)−1GNN(q)
corresponds to f2(x, ẋ), q̇ corresponds to h.

Next, the DO can be designed as

∆̂(t) = p(t)+Koq̇, (46)

ṗ(t) =−Ko
(
Mno(q)−1K(qm−q)

−Mno(q)−1CNN(q, q̇)q̇

−Mno(q)−1GNN(q)+ ∆̂(t)
)
, (47)

τ̂D(t) = Mno(q)∆̂(t), (48)

where τ̂D is the estimation of τD.
Replacing τD in (40) with τ̂D, the ultimate virtual con-

trol law qmd can be written as

qmd = K−1 (−K1s−Ψ+Mno(q)(q̈d− k1ė− k2e)

+CNN(q, q̇)
(

q̇d− k1e− k2

∫ t

0
edv
)
+GNN(q)

−τ̂D)+qd . (49)

Remark 6: This composite control law combines the
merits of RBFNN and DO. The estimation errors from
RBFNN are observed by DO further. To some extent,
the errors are decreased and are smaller than using sin-
gle RBFNN or DO for approximating in the condition of
the same values of control gains.

Replacing q̇md , q̈md with ˙̂qmd ,
˙̇̂
q̂md , respectively in (25)

and placing (49) in (25), we can obtain

τ = − (K2 + Jmk1) q̇m− (K2k1 + I + Jmk2)em +(K2

+Jmk1) ˙̂qmd + Jm
˙̇̂
q̂md−K2k2

∫ t

0
emdv−K1s−Ψ

+Mno(q)(q̈d− k1ė− k2e)+CNN (q̇d− k1e

−k2

∫ t

0
edv
)
+GNN− τ̂D, (50)

where I denotes a unit matrix. Equation (50) is the ulti-
mate actual control law of DNISMCOC. The whole con-
trol process of DNISMCOC is presented in Fig. 2.

Fig. 2. Block diagram of DNISMCOC.

3.4. System stability analysis
Considering the following compact set

Ω2 =

{
n

∑
i=1

ln
k2

ai

k2
ai− e2

i
+ eT

mem + sT Ms+ sT
mJmsm

+(e− em)
T K(e− em)+ ˙̃qT

md
˙̃qmd + ˜̈qT

md
˜̈qmd

+ q̃T
md q̃md + rT Mr+

n

∑
i=1

n

∑
j=1

W̃ T
Ci jΓ

−1
Ci jW̃Ci j

+
n

∑
i=1

W̃ T
Gi1Γ

−1
Gi1W̃Gi1 + τ̃

T
D τ̃D ≤ 2p2

}
. (51)

We design the candidate lyapunov function V3 as

V3 =
1
2

n

∑
i=1

ln
k2

ai

k2
ai− e2

i
+

1
2

eT
mem

+
1
2

sT Ms+
1
2

sT
mJmsm +

1
2
(e− em)

T K(e− em)

+
1
2

˙̃qT
md

˙̃qmd +
1
2

˜̈qT
md

˜̈qmd +
1
2

q̃T
md q̃md +

1
2

rT Mr

+
1
2

n

∑
i=1

n

∑
j=1

W̃ T
Ci jΓ

−1
Ci jW̃C j j +

1
2

n

∑
i=1

W̃ T
Gi1Γ

−1
Gi1W̃Gi1

+
1
2

τ̃
T
D τ̃D, (52)

where W̃Ci j, W̃Gi1 are estimation errors of WCi j, WGi1 which
are defined as

ŴC j−WCi j = W̃C j j,

ŴGi1−WGi1 = W̃Gi1. (53)

τ̃D is the estimation error of the lumped uncertainty τD

which is defined as τ̃D = τ̂D− τD. And in (52)

q̃md = q̂md−qmd ,

˙̃qmd = ˙̂qmd− q̇md ,

˜̂̇qmd =
ˆ̂̇qmd− ˙̂qmd ,

˜̈qmd =
˙̇̂
q̂md− q̈md . (54)
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Besides

V2 =
1
2

n

∑
i=1

ln
k2

ai

k2
ai− e2

i
+

1
2

eT
mem +

1
2

sT Ms+
1
2

sT
mJmsm

+
1
2
(e− em)

T K(e− em)+
1
2

˙̃qT
md

˙̃qmd +
1
2

˜̈qT
md

˜̈qmd

+
1
2

q̃T
md q̃md , (55)

VNN =
1
2

rT Mr+
1
2

n

∑
i=1

n

∑
j=1

W̃ T
Ci jΓ

−1
Ci jW̃Ci j

+
1
2

n

∑
i=1

W̃ T
GilΓ

−1
Gi1W̃Gi1, (56)

VD =
1
2

τ̃
T
D τ̃D. (57)

Differentiating V3 with respect to time, we obtain

V̇3 = V̇2 +V̇NN +V̇D

−
n

∑
i=1

k1e2
i

k2
ai− e2

i
−

n

∑
i=1

k2ei
∫ t

0 eidv
k2

ai− e2
i

−eT
mk1em−eT

mk2

∫ t

0
emdv−(e−em)

TKk1(e−em)

− (e− em)
TKk2

(∫ t

0
edv−

∫ t

0
emdv

)
+ sT

(
Ψ

−Kqd−G−F + τd−M (q̈d− k1ė− k2e)

−C
(

q̇d− k1e1− k2

∫ t

0
edv
)
+Kqmd

)
+sT

m(em−K(qmd−qd)−Jm(q̈md−k1ėm−k2em)

+τ)+ ˙̃qT
md

¨̃qmd+ ˜̈qT
md

˙̈̃qmd+q̃T
md

˙̃qmd+rT (Mṙ+Cr)

+
n

∑
i=1

n

∑
j=1

W̃ T
ci jΓ

−1
Cy

˙̂WCi j +
n

∑
i=1

W̃ T
GilΓ

−1
Gil

˙̂WGi1 + τ̃
T
D

˙̃τD.

(58)

On the basis of (33) and (35), we have

˙̃qT
md

¨̃qmd =−
˙̃qT
md

˙̃qmd

ζ1
− ˙̃qT

md q̈md , (59)

˜̈qT
md

˙̈̃qmd =−
1
ζ2

˜̈qT
md

˜̈qmd +
1

ζ 2
1 ζ2

˜̈qT
md q̃md +

1
ζ1ζ2

˜̈qT
md q̇md

− 1
ζ2

˜̈qT
md q̈md− ˜̈qT

md
...q md , (60)

q̃T
md

˙̃qmd =−
1
ζ1

q̃T
md q̃md− q̃T

md q̇md . (61)

Taking use of (49), (50) to substitute for qmd , τ and plac-
ing (59), (60), (61) in (58), we acquire

V̇2 =−
n

∑
i=1

k1e2
i

k2
ai− e2

i
−

n

∑
i=1

k2ei
∫ t

0 eidv
k2

ai− e2
i
− eT

mk1em

− (e− em)
T Kk2

(∫ t

0
edv−

∫ t

0
emdv

)
− sTK1s

− eT
mk2

∫ t

0
emdv− (e− em)

TKk1(e− em)

− (e− em)
T Kk2

(∫ t

0
edv−

∫ t

0
emdv

)
− sTK1s

+ sT
m

(
Jm ˜̈qmd +(K2 + Jmk1) ˙̃qmd

)
−

˙̃qT
md

˙̃qmd

ζ1

− ˙̃qT
md q̈md−

1
ζ2

˜̈qT
md

˜̈qmd +
1

ζ 2
1 ζ2

˜̈qT
md q̃md

+
1

ζ1ζ2
˜̈qT
md q̇md−

1
ζ2

˜̈qT
md q̈md− ˜̈qT

md
...q md

− 1
ζ1

q̃T
md q̃md− q̃T

md q̇md , (62)

where

σC =C−CNN = εC−W̃C⊗hC,

σG = G−GNN = εG−W̃G⊗hG. (63)

Placing (63) into (62), we can acquire

V̇2 =−
n

∑
i=1

k1e2
i

k2
ai− e2

i
−

n

∑
i=1

k2ei
∫ t

0 eidv
k2

ai− e2
i
− eT

mk2

∫ t

0
emdv

− eT
mk1em− (e− em)

TKk1(e− em)− sTK1s− (e

−em)
T Kk2

(∫ t

0
edv−

∫ t

0
emdv

)
− sT

mK2sm

+ sT
∆M (ë+ k1ė+ k2e)+ sT

σC (ė+ k1e

+k2

∫ t

0
edv
)
+ sTW̃C⊗hCq̇+ sTW̃G⊗hG

− sT
τ̃D + sT

m

(
(K2+ Jmk1) ˙̃qmd + Jm ˜̈qmd

)
−

˙̃qT
md

˙̃qmd

ζ1
− ˙̃qT

md q̈md−
1
ζ2

˜̈qT
md

˜̈qmd+
1

ζ 2
1 ζ2

˜̈qT
md q̃md

+
1

ζ1ζ2
˜̈qT
md q̇md−

1
ζ2

˜̈qT
md q̈md− ˜̈qT

md
...q md

− 1
ζ1

q̃T
md q̃md− q̃T

md q̇md . (64)

Using young’s inequality, we obtain

V̇2 ≤ −
(

k1−
k2

2

)( n

∑
i=1

e2
i

k2
ai− e2

i
+ eT

mem +(e

−em)
T K(e−em)+sT

m

(
K2−Jm−Jmk1−I

2k1− k2

)
sm

+ ˜̈qT
md

( I
2ζ2
− I

2ζ 2
1 ζ2
− I

2ζ1ζ2
− I

2 −
Jm
2

k1− k2
2

)
˜̈qmd

+sT

(
K1− 5

2 I

k1− k2
2

)
s+

( 1
ζ1
− 1

2ζ 2
1 ζ2
− 1

2

k1− k2
2

)
q̃T

md q̃md

+ ˙̃qT
md

(
I

ζ1
− I

2 −
Jmk1+K2

2

k1− k2
2

)
˙̃qmd

)
+B2. (65)

B2 is a continuous bounded function which satisfies
|B2| ≤ N2 (N2 is a positive constant).

If we set

λmin (K2− Jm− k1Jm− I)≥ (2k1− k2)λmax (Jm) ,

λmin

(
K1−

5
2

I
)
≥
(

k1−
k2

2

)
λmax(M),
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1
ζ1
− 1

2ζ 2
1 ζ2
− 1

2
≥ k1−

k2

2
, k1 >

k2

2
,

λmin

(
I

2ζ2
− I

2ζ 2
1 ζ2
− I

2ζ1ζ2
− I

2
− Jm

2

)
≥
(

k1−
k2

2

)
I,

λmin

(
I

ζ1
− I

2
− Jmk1 +K2

2

)
≥
(

k1−
k2

2

)
I,

then we can acquire

V̇2 ≤−(2k1− k2)V2 +N2. (66)

Placing network updating laws (41), (42) into (58), we
acquire

V̇NN = rT (Mṙ+Cr)

+
n

∑
i=1

n

∑
j=1

(
W̃ T

Ci̇ jhCi j(q, q̇)q̇r jri−W̃ T
Ci jηCŴCi j

)
+

n

∑
i=1

(
W̃ T

Gi1hGi1(q)ri−W̃ T
Gi1ηGŴGi1

)
. (67)

On the basis of (43) and (44), (1) can be transformed
into

M(q)(q̈r− ṙ)+C(q, q̇)(q̇r− r)+G(q)+F(q, q̇)

= K (qmd + em−qd− e)+ τd(t). (68)

Placing (10), (11), (38), (39), (49) into (68) and trans-
forming (68) further, we have

Mṙ+Cr = −∆Më−∆MΛė− εCė− εCΛe+K1s+Ψ

−W̃C⊗hC(q, q̇)q̇r−W̃G⊗hG(q)−Mno (Λė

−k1ė−k2e)−CNN

(
Λe−k1e−k2

∫ t

0
edv
)

−K (em− e)+ τ̃D. (69)

Placing (69) into (67) and using the following equations

rTW̃C⊗hC(q, q̇)q̇r =
n

∑
i=1

n

∑
j=1

W̃ T
Ci jhCi j(q, q̇)q̇r jri,

rTW̃G⊗hG(q) =
n

∑
i=1

W̃ T
Gi1hGi1(q)ri,

we obtain

V̇NN = − rT M (k1I−Λ)r− rT Mk1Λe+ rT (MΛ
2

+k2M)e+ rT
∆M (Λė− k1ė− k2e)− rT K (em

−e)+ rT K1s− rT
∆Më− rT (∆MΛ+ εC) ė

− rT (C−σC)

(
Λe− k1e− k2

∫ t

0
edv
)

− rT
εCΛe+ rT

Ψ+ rT
τ̃D−

n

∑
i=1

n

∑
j=1

W̃ T
Ci jηCŴCi j

−
n

∑
i=1

W̃ T
Gi1ηGŴGi1. (70)

Using young’s inequation and 2W̃ TŴ ≥ ‖W̃‖2−‖W‖2,
we obtain

V̇NN ≤ − rT
(

M
(

k1I−Λ− k1Λ

2
− Λ2 + k2I

2

)
−4I

−K
2
− K1

2

)
r−

n

∑
i=1

n

∑
j=1

ηC

2
W̃ T

Ci jW̃Ci j

−
n

∑
i=1

ηG

2
W̃ T

Gi1W̃Gi1 +
n

∑
i=1

n

∑
j=1

ηC

2
‖WCi j‖2

+
n

∑
i=1

ηG

2
‖WGi1‖2 +

ëT ∆MT ∆Më
2

+(Λė− k1ė− k2e)T ∆MT ∆M
2

(Λė− k1ė− k2e)

+(em−e)T K
2
(em−e)+sT K1

2
s+

εT
GεG

2
+

ΨT Ψ

2

+

(
Λe− k1e− k2

∫ t

0
edv
)T (CTC+σ T

C σC

2

)
×
(

Λe− k1e− k2

∫ t

0
edv
)
+

eT ΛεT
C εCΛe
2

+
τ̃T

D τ̃D

2
+

ėT (∆MΛ+ εC)
T (∆MΛ+ εC) ė
2

+ eT M
(
Λ2 + k1Λ+ k2I

)
2

e. (71)

If we set λmin

(
M
(

k1I − Λ− k1Λ

2 −
Λ2+k2I

2

)
− 4I − K

2 −
K1
2

)
≥ λmax(M), ηC

2 ≥ λmax(Γ
−1
Ci j),

ηG
2 ≥ λmax

(
Γ
−1
Gi1

)
, then

we can acquire

V̇NN ≤−VNN +BN . (72)

BN is a continuous bounded function which satisfies
|BN | ≤ NN (NN is a positive constant). Then we have

V̇NN ≤−VNN +NN . (73)
According to (58)

V̇D = τ̃
T
D

˙̃τD = τ̃
T
D

( ˙̂τD− τ̇D
)
. (74)

Differentiating (48) once, we have
˙̂τD = Ṁno(q)∆̂(t)+Mno(q)

˙̂
∆(t). (75)

Differentiating (46) once, we have
˙̂
∆(t) = ṗ(t)+Koq̈. (76)

Placing (76), (47) into (75) and using (37), we obtain
˙̂τD = Ṁno(q)∆̂(t)−Koτ̃D +KoW̃C⊗hC(q, q̇)q̇

+KoW̃G⊗hG(q). (77)
Placing (77) into (74), we have

V̇D =τ̃
T
DKoτ̃D + τ̃

T
DṀno(q)∆̂(t)+ τ̃

T
DKoW̃C⊗hC(q, q̇)q̇

+ τ̃
T
DKoW̃G⊗hG(q)− τ̃

T
D τ̇D. (78)

Using young’s inequation, we have

V̇D ≤− τ̃
T
D

(
Ko

2
− I
)

τ̃D +BD. (79)

BD is a continuous bounded function which satisfies
|BD| ≤ ND (ND is a positive constant).

Then we can obtain

V̇D ≤−λmin (Ko−2I)VD +ND. (80)
To sum up,

V̇3 ≤−ϑV3 +N, (81)
where ϑ =min(2k1−k2, 1, λmin(Ko−2I)), N =N2+NN +
ND.
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According to the compact set Ω2, we can conclude that
V3 ≤ p2. When V3 = p2,

V̇3 ≤−ϑ p2 +N. (82)
If we set 2k1 > k2, λmin(Ko) > 2, N

p2
≤ ϑ , then we can

obtain V̇3 ≤ 0. In conclusion, V3 ≤ p2 is an invariable set
,namely, if V3(0)≤ p2, then V3(t)≤ p2 when t > 0. Solv-
ing the inequality (82), we have

V3 ≤
N
ϑ

+

(
V3(0)−

N
ϑ

)
e−ϑ t . (83)

Therefore, we can conclude that all of the closed-loop er-
rors of state variables are SGUUB and the system can re-
alize stability.

4. SIMULATION STUDIES

In this section, the effectiveness of DNISMCOC will
be verified through the following several comparisons. I:
compare with LSS [28] in FJRM control for demonstrat-
ing the superiority of ISS for finite-time convergence and
reduction of steady-state errors. II: compare with tradi-
tional forth-order backstepping dynamic surface control
(DSC) [26] for showing the superiority of SOBC in re-
duction of tracking errors and singularity avoidance. III:
compare with NN-based controller (NNC) [15] and NN-
TSMD controller [22], the superiority of DO proposed in
this paper can be proved. IV: compare with single RBFNN
controller (SNNC) [14] for showing the excellence of the
proposed method in tracking precision. Besides, two sim-
ulation comparisons about parameter setting are shown in
V and VI. In V, we maintain the parameters of RBFNN
invariable (same as the parameter values in I, II, III, IV)
and lower the values of all the gains including the gains
of DO twice to see how their changes in each times affect
the performance of our algorithm. In VI, we maintain the
values of all the gains invariable (same as the parameter
values in I, II, III, IV) and change the values of param-
eters of RBFNN twice to see how their changes in each
times affect the performance of our algorithm. The pa-
rameter combinations for the two variations in V and VI
are shown in Tables 1 and 2, respectively. Without loss of
generality, a two-link FJRM is used for the following sim-
ulations. The dynamic of the FJRM in (1), (2) is described
by

M(q) =

 (m1 +m2) l2
1 +m2l2

2 m2l2
2

+2m2l1l2 cos(q2)+ J1 +m2l1l2 cos(q2)

m2l2
2 +m2l1l2 cos(q2) m2l2

2 + J2

 ,
C(q, q̇) =

−m2l1l2 sin(q2) q̇2 −m2l1l2 sin(q2) q̇1

−m2l1l2 sin(q2) q̇2

m2l1l2 sin(q2) q̇1 0

 ,
G(q) =

[
(m1 +m2) l1gcosq1 +m2l2gcos(q1 +q2)

m2l2gcos(q1 +q2)

]
,

F(q̇) = 0.2sign(q̇), K =

[
400 0
0 400

]
, Jm =

[
1 0
0 1

]
,

Table 1. The parameter setting in comparison V.

Parameter Original
setting

First
resetting

Second
resetting

K1 500 450 400
K2 500 450 400
k1 35 30 25
k2 20 15 10
K0 500 450 400

Table 2. The parameter setting in comparison VI.

Parameter Original
setting

First
resetting

Second
resetting

b 10 5 1
ΓCi j = ΓGi1 100 75 50
ηCi j = ηGi1 0.0001 0.0005 0.001

Λ 50 40 30

where q1, q2 stand for the angle positions of the two
joints, and q̇1, q̇2 are angle velocities of the two joints.
The nominal parameters for the system are selected as

l0
1 = 1 m, l0

2 = 0.8 m, m0
1 = 0.5 kg, m0

2 = 1.5 kg, J0
1 =

5 kg · m2, J0
2 = 5 kg · m2. The gravitational accelera-

tion g is 9.8 kg/N. Initial conditions of simulations are
given as q(0) = [0.02,0.02]T , q̇(0) = [0.001,0.001]T ,
qm(0) = [0.001,0.001]T , q̇m(0) = [0.001,0.001]T . The de-
sired trajectories q1, q2 are given as q1d = 0.3sin(2t),
q2d = 0.3sin(2t). TVED are given as τd1 = 2sin t +
0.5sin(200t), τd2 = cos2t +0.5sin(200t). In view of sys-
tem uncertainties, an additive variance of 20% of their
nominal values is considered for practical value, which
implies m1 = m0

1 + 0.2 m0
1,m2 = m0

2 + 0.2 m0
2, J1 = J0

1 +
0.2 J0

1, J2 = J0
2 +0.2 J0

2. The control gains of DNISMCOC

are chosen as K1 =

[
500 0
0 500

]
, K2 =

[
500 0
0 500

]
. The

parameters of ISS are selected as k1 = 35, k2 = 20. The
parameters of BLV are selected as ka1 = 0.1, ka2 = 0.1.
With regard to RBFNN, we chose eleven-nodes RBFNN
to estimate each element of C(q, q̇) and G(q). The cen-
ter of the Gaussian function is selected as µi j ∈ (−0.3,
0.3), and the scaling parameter is chosen as bCi j = 10,
bGi1 = 10. The values of adaptive gains in (41), (42) are
taken to be ΓCi j = 100, ΓGi1 = 100, ηCi j = 0.0001, ηGi1 =

0.0001, Λ =

[
50 0
0 50

]
. The parameters of DO are set as

Ko =

[
500 0
0 500

]
, and the parameters of FOF1, FOF2 are

set as ζ1 = 0.0001,ζ2 = 0.0001. The position tracking re-
sults of the two joints are shown in Figs. 3 and 4.

I: Comparison between LSS and the designed ISS of
DNISMCOC in FJRM control.

To facilitate the comparisons, the backstepping control
gains in LSS will be chosen same as in DNISMCOC. Ac-
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Fig. 3. Position tracking of joint 1.
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Fig. 4. Position tracking of joint 2.
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Fig. 5. Position tracking error of joint 1.

cording to Figs. 5-8, we can see that DNISMCOC pro-
vides superior tracking performance for the FJRM system
even in presence of system uncertainties and TVED. Be-
sides, in the condition of the same control gains, ISS of
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Fig. 6. Position tracking error of joint 2.

0 2 4 6 8 10 12 14 16 18 20

-0.2

-0.1

0

0.1

0.2

V
e
lo

c
it
y
 t
ra

c
k
in

g
 e

rr
o
r 

o
f 
jo

in
t 
1

 

NN-TSMD NNC LSS DNISMCOC

0 2 4 6 8 10 12 14 16 18 20

Time(s)

-0.05

0

0.05

 

DSC SNNC DNISMCOC

10 12 14 16

-4

-2

0

2

10
-4  

10 12 14 16

-1

0

1

10
-3  

Fig. 7. Velocity tracking error of joint 1.
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Fig. 8. Velocity tracking error of joint 1.

DNISMCOC provides faster speed on convergence and
lower steady-state errors than LSS both in tracking of po-
sitions and velocities. All these advantages are owing to
the integral term in ISS.

II: Comparison between DSC and DNISMCOC.
The simulation results are shown as Figs. 5-10. Accord-

ing to Figs. 5-8, we can learn that both DSC and DNISM-
COC can offer great tracking performance, yet DNISM-
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Fig. 9. Control torque of joint 1.
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Fig. 10. Control torque of joint 2.

COC offers lower steady-state errors in the tracking of po-
sitions and velocities and there are high frequency jumps
in velocity tracking errors of DSC. Furthermore, from the
torque results in Figs. 9 and 10, it is inevitable in sin-
gularity for DSC because of its multiple differentiation,
which can be clearly observed through its periodic jumps
in torque. Nevertheless, the torques of DNISMCOC in
joints 1 and 2 are periodically smooth curves, which sig-
nificantly proves its effectiveness in singularity avoidance.

III: Comparison among NNC, NN-TSMD and
DNISMCOC.

From the tracking error results in Figs. 5-8, it is obvi-
ous that there are periodically sudden jumps in the results
of NN-TSMD during the tracking process, and in the pro-
cess of velocity tracking, this phenomenon is more pro-
nounced. The reason is the complexity of TSMD and its
introduction of fraction-order term in mathematical equa-
tions. Therefore, the superiority of DO for its simplicity
is revealed. As to NNC, we can find that its steady-state
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Fig. 11. Position tracking error of joint 1 in V.

errors of positions and velocities are larger than DNISM-
COC. This is because NNC only uses NN for approxima-
tion and not in combination with DO for approximation.

IV: Comparison between SNNC and DNISMCOC.
On the basis of the simulation results shown in Figs. 5-

8, we can see that the position tracking results of SNNC
can’t be regarded as truly successful tracking, for its po-
sition tracking errors in both joint 1 and joint 2 still lo-
cating below the zero point from start to finish rather than
periodically crossing it. This is because SNNC only uses
one RBFNN to approximate a complex term in the con-
trol law, and its tracking performance is naturally not as
good as DNISMCOC, which uses two RBFNN matrices
to separately approximate the two uncertain matrices in
the control law.

V: How the changes of the values of the gains affect
the performance of our algorithm.

Fig. 11 shows the simulation results of this comparison.
In accordance with Fig. 11, we can see that the position
tracking errors of the three parameter setting schemes re-
main the same order of magnitude for all gain values re-
duced twice. However, based on the enlarged plot in Fig.
11, we can find that the higher the values of gains are, the
lower the steady-state errors are and the faster the conver-
gence rate is.

VI: How the changes of the values of parameters of
RBFNN affect the performance of our algorithm.

Fig. 12 shows the simulation results of this comparison.
According to Fig. 12, we can learn that the effect of pa-
rameter changes of RBFNN on simulation results is not
significant. This is because the curves of the three sets of
parameters largely overlap in the case of order of 10−4.
This phenomenon demonstrates the strong robustness of
RBFNN to parameter changes. Nevertheless, from the en-
larged plot in Fig. 12, we can still see that “original set-
ting” has the best simulation results for its smoother curve.
Therefore, we can conclude that smaller ηCi j, ηGi1 and
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Fig. 12. Position tracking error of joint 1 in VI.

larger b, ΓCi j, ΓGi1, Λ provide relatively better tracking
results.

5. CONCLUSION

This paper puts forward a novel DNISMCOC for FJRM
in the presence of the system uncertainties and TVED.
Specifically, DNISMCOC uses RBFNN to estimate the
internal uncertainties of the system, uses DO to esti-
mate TVED and compensate for the estimation errors of
RBFNN, uses BLF to limit the error range of the con-
trol outputs to ensure safety in practical use. Different
from the traditional RBFNN control schemes, DNISM-
COC uses multiple RBFNNs to approximate each element
of the uncertain matrices of FJRM dynamic. Besides, a
DO is introduced for approximating the lumped distur-
bances which consist of errors of RBFNN, TVED, friction
term and system uncertainties of parameters. This method
combines the merits of both RBFNN and DO. Moreover,
ISS is introduced to reduce steady-state errors and speed
up convergence. Since the problem of “explosion of com-
plexity” is a commonly happened difficulty in backstep-
ping control design, we propose a new backstepping de-
sign method for FJRM with output constraint which ef-
fectively decreases the times of differentiation and alle-
viates the problem of “explosion of complexity”. In ad-
dition, we achieve output constraints by employing BLF.
Through the lyapunov stability analysis, we identify that
the proposed controller can guarantee stability. In the end,
simulations are conducted, and the results verify the effec-
tiveness of the proposed control scheme.

In the future research, we will consider to design the
controller based on the dynamic model of electrically
driven FJRM which takes the dynamic of DC motor into
consideration. In addition, force tracking for robotic ma-
nipulator is also a promising technology we planned to
realize in the future study.
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