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RANET: A Grasp Generative Residual Attention Network for Robotic

Grasping Detection

Qian-Qian Hong( , Liang Yang*(" , and Bi Zeng

Abstract: This paper presents a novel grasp generative residual attention network (RANET) for generating antipo-
dal robotic grasp from multi-modal images with the pixel-wise method. To strengthen the generalization ability of
unknown objects, this paper proposed a new structure that differs from the previous grasp generative network in that
it additionally integrates a coordinate attention mechanism and a symmetrical skip connection, respectively. Using
the coordinate attention module to emphasize meaningful information of the feature map and the symmetrical skip
connection to remain more fine-grained details of feature. Moreover, a multi atrous convolution module is included
in the structure to capture more high-level information, while a hypercolumn feature fusion method is incorporated
for getting the best from the complementation of different layers’ features. Through evaluation on public datasets,
the result demonstrates that we achieve 98.9% accuracy on the Cornell dataset which is the state-of-the-art perfor-
mance with real-time speed(~ 17 ms), meanwhile, we represent a 93.9% accuracy performance on the Jacquard

dataset.
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1. INTRODUCTION

The research of robotic grasping has attracted a wide
range of interests in the past several years, owing to the
various applications of this field, such as medicine [1,2],
domestic chores [3], and industrial manufacture [4,5]. Al-
though much progresses have been made in robotic grasp-
ing field, it is still challenging for a robot to decide a ap-
propriate grasp configuration (grasp pose and grasp po-
sition), which is used to accurately capture the unknown
object in the practical application environment.

In the previous work, the hand-crafted-based ap-
proaches [6-8] were employed to extract features, which
are tedious and time-consuming. Along with the recent
years’ remarkable progress of Deep Learning (DL), deep
learning methods performing a greatly improved result
on grasp detection problem [9-22]. These deep learning
grasping detection approaches can be broadly grouped un-
der two categories, which are Classification-based method
and Regression-based method. The Classification-based

methods [10-16] employ convolutional neural network
(CNN) to rank numbers of grasp position candidates,
which requires additional computational time and com-
puting resources. The Regression-based methods [19-22]
directly yield the coordinates and orientation of grasp
from CNN and performs well in grasping detection.
Nonetheless, Regression-based methods uses the average
of possible grasp configurations as output for an object
may lead to invalid grasp.

To address the above issue, we present a novel grasp
generative residual attention network (RANET) for
robotic grasping detection. Motivated by generative-based
methods [23,24], our method directly generates pixel-wise
grasp configuration from the outputs of network, which
are the quality, width, and angle of grasp, as presented in
Fig. 1. The framework of our scheme consists of encoder
path, bottle-neck layer, and decoder path. To enhance
the feature representational ability of our method, the
residual unit is implemented to extract the features of
target in the encoder path. Subsequently, by integrating
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Fig. 1. The pipeline of real-time grasp detection. Our
method directly generates pixel-wise grasp con-
figuration (position, angle, width) from provided
multi-modal images.

multi atrous convolution module with bottle-neck layer,
our model can extracts the features from multiple scales
which provide more global and local context information.
Further, to recover the lost spatial feature information of
down-sampling phase, each decoder module integrates
the feature of the corresponding encoder module through
symmetrical skip connection. Meanwhile, in combination
with coordinate attention mechanism, the decoder module
is newly constructed to assign a higher priority to the more
important feature. In addition, to get the best from mutual
complementation between the semantic information that
extracted from high-level layers and the position infor-
mation from low-level layers, we novelly incorporate the
hypercolumn-based feature fusion method into decoder
path.

To validate our method, we train and evaluate RANET
on the Cornell Grasping Dataset and the Jacquard Dataset
[25]. Through evaluation on these public datasets, the re-
sults show that our method achieves state-of-the-art 98.9%
accuracy on the Cornell dataset and 93.9% accuracy per-
formance on the Jacquard dataset with real-time speed
(~ 17 ms).

Below is the contribution of our work.

1) Compared with the previous grasping detection meth-
ods [23,24], the newly proposed one by us addi-
tionally incorporates coordinate attention mechanism
and symmetrical skip connection, which improves
the performance of grasping detection on unknown
objects. Specifically, the coordinate attention mech-
anism is leveraged to extract more meaningful con-
textual information of features, meanwhile, the fine-
grained details of target object which is lost during the
down-sampling phase are recovered from the sym-

metrical skip connection.

2) By resorting to the hypercolumn feature fusion
method, RANET gets the best from the complemen-
tation between the semantics-aware and the position-
sensitive information of features. To further enhance
the discriminability of features, a multi atrous con-
volution module is presented to extract features from
multiple receptive fields.

3) By taking advantages of the newly designed architec-
ture, the proposed grasp generative residual attention
network achieves the state-of-the-art performance on
the Cornell dataset and present 93.9% accuracy on the
Jacquard dataset.

2. RELATED WORK

Robotic grasping problem has been an object of re-
search for decades. In the previous work, the methods of
grasping mainly based on hand-crafted features are time-
consuming and display limited generalization ability to
unknown targets [26-29]. With the application of the deep
learning methods, a greatly improved performance is dis-
played on grasp detection problem.

2.1. Classification-based method

The classification-based method employs a classifier to
chose the grasp with the highest score. Lenz et al. [10]
firstly proposed a network that trained by a sparse auto-
encoder with multi-modal images to detection grasp by us-
ing sliding window. Similar to [10], Wang et al. [14] pro-
posed a convolutional neural network based multi-modal
classification network to identify candidate object region.
In [11], a multi-stage learning method is presented to
train a CNN-based network which predicts grasping lo-
cation and angle by sample image patch. The presented
approach of Pinto displays better generalization ability of
unknown objects than previous works. With recourse of
a classification-based spatial transformer network (STN)
that trained by multi-stage method, Park and Chun [12]
achieves 86.9% accuracy on the public robotic grasp de-
tection dataset. Furthermore, Chu er al. [13] presented
a CNN-based classifier with null hypothesis competition
to predict graspable location on RGB-D images and per-
forming well on Cornell dataset. These classification-
based methods present a comparatively good accuracy on
grasping detection, but not efficient both in terms of com-
putation time and memory during grasp detection.

2.2. Regression-based method

The regression-based method utilizes convolutional
neural network to yield the position and angle of grasp
directly. In [19], a large neural network with single-stage
regression method is proposed to predict grasp coordi-
nate, meanwhile, they get 88% accuracy and 76 ms pre-
diction time on the Cornell dataset. Following the research
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of [19], Watson et al. [30] performed the grasping ex-
periment on real objects. In [20], a hybrid deep archi-
tecture is presented to predict the grasp configurations
by combining the visual and tactile information. At the
same time, Kumra and Kanan [21] designed a network that
uses ResNet as feature extractor to predict the grasp from
multi-modal data. Furthermore, to improve the feature ex-
pression, a multi-modal fusion architecture that integrates
atrous convolution and novel loss function is constructed
by Zhang et al. [22]. These regression-based methods per-
formed well in grasping detection, nonetheless, yield the
grasp configuration from the average of possible grasps
would lead to unreasonable grasp.

2.3. Generative-based method

The generative-based method directly generates the po-
sition and angle of grasp from pixels. In [23], a generative-
based convolutional neural network (GGCNN) is pro-
posed to predict the grasp pose and grasp position from
the pixels of depth image. Following the research of
[23], Chalvatzaki et al. [31] presented an orientation-
attentive method to augment feature representation and
predict pixel-wise grasp configurations from depth image.
Meanwhile, Xu et al. [32] proposed a oriented diame-
ter circle representation method to predict the grasp from
point cloud. Subsequently, Kumra et al. [33] embedded
the residual module on the bottle-neck layer of generative
grasping network to improve the ability of feature extrac-
tion. At the same time, a segment-based fully convolution
network was presented in [34], which proposes pose esti-
mation from RGB-D image, while achieving 91.02% ac-
curacy on the Cornell Dataset. Moreover, Dolezel et al.
[35] presented an attention squeeze parallel network with
image transformation approach, which can be applied on
the single board computer. Based on the similar concept
of generative-based method, our work further develop on
this field.

3. PROBLEM STATEMENT

In this section, our work formulate the robotic grasp-
ing problem as predict an antipodal grasp from given n-
channel multi-modal images of unknown object which is
lay on a planar surface. Instead of using oriented rectan-
gle to evaluate grasp [36], we follow up the previous work
which is improved by Morrison et al. [23] that using the
contact points to evaluate the result of model. Similar to
the work of Morrison, the grasp in world coordinates is
defined as

& = (Prs6r,wr,4,), (D
where p, = (x,,¥,,z,) is the center point of robot gripper’s
tip, 6, is a angle within (—7, 7) that represents the rota-

tion of robot’s gripper around z-axis. The required width

of gripper is denoted by w,. The last element g, represents
a scalar grasp quality score € [0, 1] that corresponds to the
probability of a successful grasp on every pixels of input
image.

Further, given the n-channels image that we use as in-
put, we denote the grasp as

gi:(piveiawiaqi)a (2)

where p; = (x;,y;) is the center coordinate of grasp in im-
age, the rotation angle of camera frame around z-axis is
denoted by 6;, meanwhile, w; refers to the required width
of gripper which is limited by the max open range of the
gripper.

Moreover, the definition of grasp g can be expended to
the grasp set G when we have multi grasps in the input
image, which is described by

G=(0,W,0)c R*HWV, 3)

where ®, W, Q represent each result Rl’-i ‘W from the results
set of our model R*#W which contains grasp angle, grasp
width, and grasp quality at every pixel respectively. Fur-
ther, the best grasp g; of the grasp set G is represented by
gi= mélX(G).

4. FRAMEWORK

In this section, we first present the general structure of
our model. Subsequently, we will further discussion the
multi atrous convolution module, hypercolumn-based fea-
ture fusion method, and coordinate attention module on
the next subsections.

4.1. Overview

To make a balance between accuracy and detection
speed, a new grasp generative residual attention network
is proposed as illustrated in Fig. 2, in which static muti-
model image is used as input.

The main structure of the grasp generative residual at-
tention network is motivated by the encoder-decoder ar-
chitecture which can be divided into three sections, which
is the encoder path, bottle-neck layer, decoder path. To
take advantage of the powerful representational ability of
the residual method, we employ residual unit as our fea-
ture encoder module. Moreover, we observe that the main-
path kernel size of the first encoder module with {7,5}
and set the kernel size of the bypass convolution layer to
3 that gets the better performance during detection. The
structure of feature encoder module is shown in Fig. 3.

After extracting features from the encoder path, we feed
the feature map into bottle-neck layer which is augmented
by a multi atrous convolution module that is applied to
provides more local and global context information about
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Fig. 2. An overview of the grasp generative residual attention network’s architecture.
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Fig. 3. The structure of the residual based encoder mod-
ule.

the target by extracting features at multiple scales. Differ-
ent from the previous layers which mainly focus on en-
hancement the generalization ability of our model, the de-
coder path pays more attention to exploit the advantage
of extracted features. The coordinate attention module is
used to filter and emphasize meaningful features infor-
mation of decoder module. Further, we integrate the hy-
percolumn feature fusion method into decoder-path, other
than use the feature map of the last decoder module as fea-
ture representation, we concatenate the features from dif-
ferent layers as the input to predict pixel-wise grasp con-
figurations.

4.2.  Multi atrous convolution module

To tackle the variation of target size on the detec-
tion process, we present a multi atrous convolution mod-
ule (MAC) which is motivated by the architecture of
Inception-res and receptive field block, we use multi-
branch to get the features of different filed-of-view that
enhances the generalization ability of our model.

After getting the features from encoder module, the
extracted features would go through four bypass-branch
with different amounts of atrous convolution layers. To

Input Feature

Conv 1x1, rate=1
Conv 3x3 , rate=1

Conv 3x3 , rate=3

Conv Ix1 , rate=1

Conv 3x3, rate=1
Conv 3x3, rate=3
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Conv 1x1 , rate=1

Conv 1x1, rate=1

Conv 3x3, rate=3

Conv 1x1 , rate=1

Conv 3x3, rate=1 ‘ ’ Shortcut

Output Feature

Fig. 4. The structure of multi atrous convlution module.

capture multi-scale feature information, the kernel size
of atrous convolution is set to {3,1} with different dila-
tion rates {1,3,5}. Follow the atrous convolution layer,
the features from bypass-branch are activated by Relu and
subsequently merged by an add operation with the original
feature as the output feature as displayed in Fig. 4.

4.3. Hypercolumn-based feature fusion method

The pool operation on the feature extracting process
leads to the loss of feature information is one of the chal-
lenging problems of generative-based model. The loss of
information makes the feature map of the last layer too
coarse to make a precise localization.

To address this problem, we integrate the hypercolumn-
based feature fusion method with our model which com-
bines the complementation of features from different lay-
ers. As known to us, the previous layers on the net-
work are more precisely in localization while the lat-
ter layers preserve more semantics information. Hence,
the fusion between the features of different layer make a
good trader-off between the semantics-aware information
and the position-sensitive information. The hypercolumn-
based feature fusion method can be formulated as
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Fig. 5. The structure of coordinate attention module.

fou = Z concat (fou, U (04, f3)), 4)

where the feature map of the ith layer is denoted as f;, o is
a ratio represents the size scale between the last layer and
the ith layer. The bilinear upsampling function U takes o
and f; as input and the output feature of upsample function
will be concatenated with the feature of the last coordinate
attention module that treated as the final feature map to
predict grasp.

4.4. Coordinate attention module

The effectiveness of attention mechanism has been
proven on vision tasks, similar to the attention with human
perception system, the attention mechanism helps neural
network to focus on the important part of feature map.

Hence, we introduce the coordinate attention module
[37] that helps our model focus more on the important
message rather than unnecessary one with slight addi-
tional computational cost, as shown in Fig. 5.

In order to keep more precise position, coordinate atten-
tion module decomposes channel attention transform pro-
cess into x and y spatial direction which is accomplished
by average pool in horizontal axis and vertical axis. Along
with the following convolution layer, these feature maps
that with 2-direction information embedded will be en-
coded into a pair of attention map and subsequently multi-
ply with the original feature to enhance the representation
of the target of interest. The output feature X of the coor-
dinate attention module can be formulated as

Xnut = Ah 'Xin +Av 'Xim (5)

where A;, A, are denoted the attention map of horizontal
and vertical direction separately.

5. EXPERIMENTS

To evaluate the proposed method, we carry out experi-
ments on the Cornell dataset and the Jacquard dataset. In
the next subsections, we first present the detail of datasets.
Then, the define of grasp representation on our work will
be introduced. Further, we display the implementation de-
tails of our model.

5.1. Dataset

Cornell grasp dataset: This dataset contains 885 im-
ages that captures from 240 different objects. Each picture

has 640 x 480 pixels and three corresponding files which
are depth image, negative grasp representation file, and
positive grasp representation file. The negative grasp rep-
resentation file is not using during the training and eval-
uating phase. Some examples from the Cornell dataset is
presented in Fig. 6.

Jacquard grasp dataset: This dataset has 54485 im-
ages that captures from 11000 different objects. Each pic-
ture has 1024 x 1024 pixels and two corresponding files
which are depth image and grasp representation file. The
sample images is presented in Fig. 7.

5.2. Grasp representation

As discussed in the previous part, the grasp represen-
tation of our method on the image is defined as g; =
(pi, 6;,wi,qi), where 6,, w, correspond to the grasp angle
map and the grasp width map generated by model, mean-
while, ¢, is represented by the grasp quality map and the
pi denotes the highest grasp quality score point of ¢g,. The
example of grasp maps are illustrated in Fig. 8.

5.3. Training implementation details

In the phase of preprocessing, we resize the input im-
age from the Jacquard dataset and the Cornell dataset to
400 x 400 pixel and 300 x 300, respectively. Meanwhile,
we split 90% of the Cornell dataset as training set and the
remaining 10% of Cornell dataset as testing set. Addition-
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Fig. 6. The sample images from Cornell dataset.
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Fig. 7. The sample images from Jacquard dataset.
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Fig. 8. The feature maps of grasp representation, which
are grasp quality, grasp angle, grasp width, and the
results on RGB-D images.
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ally, the image from the Cornell dataset is augmented by
image crop, random zoom, and rotation operation, cause
of the limited quantity of the Cornell dataset.

The weights of encoder and decoder modules were all
initialized using xavier uniform and the adaptive moment
estimation algorithms (Adam) is employed as optimizer
with an fixed initial learning rate of 0.0001. At the same
time, we set the batch size of data to 64 and train our
model for 50 epochs. Further, the Huber loss is adopted
on our method as loss function, which is presented below

lOSS ypredvygt ZZH (6)

where the predict values and the ground truth values of
grasp set G, which are represented by (®,W,Q), are de-
noted by y,.q and J,,. While z; is given by

= {O.S(ypred —ﬁg,)z if |ypred —)’]\gt‘ <1, D

|Vprea — $or| —0.5  otherwise.

The total loss is defined as a value that add the loss of g,
0, w together, which can be formulated as follows:

Loss, a1 = losse 4 lossw + lossg. ®)

5.4. Evaluation

To better evaluate the performance of our model, fol-
lowing the previous wrok [36], the rectangle metric is im-
plemented to assess the validity of the result. Based on the

| |
I
|
Quality -
I
| |
Angle ~ - "N
I I
v v v

Grasp @ @ &,

(a)

definition of rectangle metric, we consider a grasp rep-
resentation that generated by our model as a successful
grasp only if the offset of angle between the predict grasp
rectangle and the ground truth rectangle is lower than 30°
while the score of intersection over union between the pre-
dicted grasp representation and the ground truth represen-
tation higher than 25%.

Further, we employ the Gaussian kernel filter with the
output images of our model before evaluation, which is
helpful to clean up the outlier of output map while making
the result more robust. Specifically, different ¢ setting of
gaussian function is adopted on different feature map. {8,
2, 1} corresponded to the o of quality map, angle map,
and width map, respectively.

6. EXPERIMENTAL RESULT

6.1. Experimental setup

As illustrated in Fig. 9, we present the experimental
results of our method. Following the setup of previous
works, we apply the image-wise (IW) data split method
and the object-wise (OW) data split method to deal with
data, the detail is presented below.

Image wise split: This method evaluates the general-
ization ability of network on orientation change and size
variation of objects, we randomly shuffle the data from
dataset to train and evaluate our model.

Object wise split: This method focus on evaluate the
generalization ability of model to new objects and divided
dataset based on the object sets.

(b) (c)

Fig. 9. Experimental results. Width, quality, and angle are the output of our model to infer the grasp configuration.
(a) The results on the unknown objects of the Cornell dataset. (b) The results on the unknown objects of the
Jacquard dataset. (c) The results on unknown objects in clutter.
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In addition, we perform ablation experiments on the
Cornell dataset to assess the impact of each module on our
model. The training and evaluating process of our model
are based on the Linux 16.04 system with single graphics
card (Tesla V100, 32GB) and all experiments is imple-
mented by Pytorch.

6.2. Ablation experiments on the Cornell dataset

To improve the generalization ability of our method
on unknown objects, we integrate the multi atrous con-
volution module (MAC) , the coordinate attention module
(CA) and the hypercolumn-based feature fusion method
(HC) into our model. To validate the performance of pre-
sented modules, we conduct experiments with different
setting of our model, the results are summarized in Table
1.

Compared with the GGCNN, our generative residual
network with attention module and symmetrical skip con-
nection makes a great improvement which takes 19.3%
accuracy promotion on the Cornell dataset. Further, we
adopt the hypercolumn-based fusion method and multi
atrous convolution module on our model separately that
both achieve 2.3% accuracy improvement compare to
the original RANET. These results show that our model
benefits from the abundant information of feature fusion
method while the multi-scale receptive fields and atrous
convolution greatly enhance the feature description abil-
ity of RANET. Further, we combine all these methods
with our model, we obtain the 4.6% promotion of accu-
racy while reaching the state-of-the-art performance. To
evaluate the performance of coordinate attention module,
we combine the multi atrous convolution module and the
hypercolumn-based feature fusion method with RANET
separately that without integrate the attention module. Our
experimental result shows that by combining the attention
module to enhance the representation of the target of in-
terest, other methods take 2.3% and 1.1% accuracy pro-
motion, respectively.

6.3. Results on the Cornell dataset

For the Cornell dataset, We evaluate our model with the
object-wise (OW) data split method and the image-wise
(IW) data split method. Table 2 compares the accuracy and
speed results of several previous works and our model on

Table 1. Ablation experiments on the Cornell dataset.

Model HC MAC CA Accuracy (%)
GGCNN 75
RANET 4 94.3
RANET 4 4 96.6
RANET 4 4 96.6
RANET 4 4 4 98.9
RANET 4 94.3
RANET 4 95.5

Cornell dataset. Our method employs multiple modalities
data as input.

As shown in Table 2, our model achieves state-of-the-
art accuracy performance of 98.9% from multi-modal in-
put images with real-time grasp detection speed (~ 17
ms), which represents that our model has the better gen-
eralization ability to unknown object than previous work
while displaying the ability to be applied in real-time envi-
ronment. Additionally, the same object could have differ-
ent efficient grasp configuration to define a grasp pose in
the practical application environment, our approach also
displays the ability to directly generate multiple grasp con-
figuration candidates without adding others complex pro-
cedures.

6.4. Results on the Jacquard dataset

We further compare our work with the existing algo-
rithm on the Jacquard dataset. The data augment meth-
ods are not applied on the Jacquard dataset, cause of the
data size of Jacquard dataset is far bigger than Cornell
dataset. Our method splits 95% of the Jacquard dataset
as training set and the remaining as testing set. The results
are listed in Table 3. Compare with the GGCNN, our ap-
proach achieves 9.9% accuracy promotion on the Jacquard
dataset.

6.5. Objects in clutter

As shown in Fig. 9, multi-object scene is common in
the practical application environment. Hence, the model
that trained on the Cornell dataset is employed to predict
the grasp of objects in clutter. Our model demonstrates
the generalization ability on objects in clutter, despite each
training image of the training set only contains single ob-
ject. To obtain the more robust and less redundancy grasps
in the multi-objects scene, we set the min-distance be-
tween each potential grasp to 10 and grasp quality thresh-
old to 0.3.

Table 2. Results on the Cornell dataset.

Author Algorithm Speed |Accuracy (%)
(ms) | TW | OW
Jiang et al. [36] Fast Search 5000 | 60.5 | 58.3
Morrison et al. [23] GGCNN 19 | 73.0 | 69.0
Lenz et al. [10] SAE, struce. reg. | 1350 | 73.9 | 75.6
Redmon et al. [19] AlexNet 76 88.0 | 87.1
Kumra et al. [21] ResNet-50 103 | 89.2 | 88.9
ROIGD,
Zhang et al. [38] ResNet-101 25 | 923 | 91.7
Wang et al. [34] Efficient FC 21 942 | 91.0
Chu et al. [13] VGG16 18 | 95.5 | 96.1
Kumra et al. [33] GR-ConvNet 20 97.7 | 96.6
RANET - D 17 | 944 | 96.6
Ours RANET - RGB 17 |97.7 | 96.6
RANET - RGBD 18 98.9 | 97.7
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Table 3. Results on the Jacquard dataset.

Author Algorithm Accuracy (%)
Morrison et al. [24] GGCNN 84
Depierre et al. [25] Jacquard 72.42

Wang et al. [34] Efficient FC 92.83
Zhang et al. [38] ROIGD, ResNet-101 93.5
Ours RANET 93.9

7. CONCLUSION

This paper addresses the problem of robotics grasping
detection for unknown objects. A grasp generative resid-
ual attention network with coordinate attention mecha-
nism and symmetrical skip connection is newly proposed
to directly generate pixel-wise grasp configuration. To fur-
ther strengthen the generalization ability of our model for
unknown objects, a multi atrous convolution module is
presented while a hypercolumn feature fusion method is
novelly embedded in the structure to get the best from the
complementation between the feature of different layers.
Furthermore, by taking advantages of the newly designed
architecture, our method achieves the state-of-the-art per-
formance on Cornell dataset with real-time speed.

In the next stage, there are still lots of challenging work,
for instance, the field of multi-modal feature fusion meth-
ods. It is worthy to further exploit the complementation
between multiple modalities data. Meanwhile, it would be
more valuable to further extend our work to different types
of grasping, like suction grasping, multi-fingers grasping.
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