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The Filtering Based Maximum Likelihood Recursive Least Squares Pa-
rameter Estimation Algorithms for a Class of Nonlinear Stochastic Sys-
tems with Colored Noise
Longjin Wang, Shun An, Yan He, and Jianping Yuan* �

Abstract: This paper focuses on the maximum likelihood estimation for bilinear systems in the presence of colored
noise. The state variables in the model is eliminated and an input-output expression is provided. The input-output
data of the system is filtered by an estimated noise transfer function, and the system is transformed into two sub-
systems. A filtering based maximum likelihood recursive least squares algorithm is proposed to strengthen the
identification accuracy and improve computational efficiency. The superior performance of the developed methods
are demonstrated by numerical simulations.

Keywords: Bilinear system, data filtering, least squares, maximum likelihood.

1. INTRODUCTION

Parameter identification is crucial for controller design,
signal processing and system analysis [1-5]. Plenty of pa-
rameter estimation approaches are presented for model-
ing linear and nonlinear systems [6-8]. Zhang and Yang
considered the identification of bilinear systems under un-
known states, where a state estimator based recursive al-
gorithm was presented by integrating the parameter es-
timation and state estimation [9]. Fan and Liu presented
a gradient-based iterative method for input variable-gain
nonlinear systems using auxiliary model [10]. Pan et al.
studied the estimation of autoregressive moving aver-
age (ARMA) systems, where a filtering based extended
stochastic gradient algorithm was proposed [11-14].

The least squares algorithm is a popular approach in
the field of parameter estimation, and can be divided into
two categories: iteration [15-19] and recursion [20-22].
In [23], a decomposed least squares based iterative (LSI)
method was proposed for dual-rate stochastic systems.
However, the LSI methods can only be applied to off-
line identification and have the high computational efforts
since the whole data is used in each iteration. Compared
with the LSI methods, the recursive least squares (RLS)
algorithms have less computational cost and they are suit-
able for online identification [24-27].

Parameter estimation accuracy is important indicator to

evaluating the estimation algorithms, and different meth-
ods have been proposed to enhance the estimation accu-
racy. Among these methods, the data filtering based es-
timation methods are effective to improve the estimation
quality for the systems in the presence of colored noise,
and have been utilized extensively in parameter estimation
[28-30]. In [31], a RLS algorithm was derived for bilinear
systems using data filtering. Another useful approach for
enhancing the estimation precision is adopting the maxi-
mum likelihood (ML) principle. The maximum likelihood
estimation approaches have wide applications in parame-
ter estimation and system modeling due to their good sta-
tistical characteristics [32, 33]. For instance, Li and Liu
presented a maximum likelihood LSI method for bilinear
systems using data filtering [34]. However, their presented
method can be only used for off-line identification.

Motivated by aforementioned analysis, this paper de-
velops a filtering based maximum likelihood recursive
least squares (F-ML-RLS) method to depress the com-
putational burden and strengthen the estimation precision.
The main contributions of this paper may be summarized
as follows:

• Because of the special model structure of bilinear
state-space systems, providing an input-output ex-
pression by eradicating the state variables is the top
priority to identify such systems.
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• By integrating the ML principle and the data filter-
ing technique, a F-ML-RLS algorithm is developed to
strengthen the estimation precision and improve the
computational efficiency.

The rest parts are provided in the following. The prob-
lem formulation are presented in Section 2. Section 3 de-
rives a RGELS method. Section 4 proposes a F-RELS
method. Section 5 presents a F-ML-RLS method by
means of data filtering and ML principle, respectively.
Comparative simulations are carried out in Section 6. Fi-
nally, general conclusions are summarized in Section 7.

2. PROBLEM FORMULATION

Considering a bilinear state-space systems as follows:

xxx(t +1) = Axxx(t)+Bxxx(t)u(t)+hhhu(t), (1)

y(t) = cccxxx(t), (2)

where y(t) ∈ R, u(t) ∈ R and xxx(t) ∈ Rn denote the system
output, input and state variables, respectively. The system
matrices A, B and the system parameter vectors hhh and ccc
are given by

A :=


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−an −an−1 −an−2 · · · −a1

 ∈ Rn×n,

hhh :=


h1

h2
...

hn−1

hn

 ∈ Rn×1, B :=
[
000
bbb

]
∈ Rn×n,

bbb := [−bn,−bn−1,−bn−2, · · · ,−b1] ∈ R1×n,

ccc := [1,0,0, · · · ,0] ∈ R1×n.

Referring to the work in [35], from (1) and (2), the input-
output form can be derived by eliminating the state vari-
ables

[A(z)+u(t−n)B(z)]y(t)

= [C(z)u(t)+D(z)u(t−n)]u(t), (3)

A(z) := 1+a1z−1 +a2z−2 + · · ·+anz−n,

B(z) := b1z−1 +b2z−2 + · · ·+bnz−n,

C(z) := c1z−1 + c2z−2 + · · ·+ cnz−n,

D(z) := d2z−2 +d3z−3 + · · ·+dnz−n.

The relations between parameters ai, bi, hi and coefficients
ci, di are

[cn, · · · ,c2,c1] := [hn+an−1h1+an−2h2+· · ·+a1hn−1,

· · · ,h2 +a1h1,h1] ∈ R1×n,

[dn, · · · ,d3,d2] := [bn−1h1 +bn−2h2 + · · ·+b1hn−1,

· · · ,b1h1] ∈ R1×(n−1).

In practice, the bilinear system are usually subject to var-
ious disturbances, such as stochastic noise. Therefore, in-
troducing w(t) ∈ R to (3) yields

[A(z)+u(t−n)B(z)]y(t)

= [C(z)u(t)+D(z)u(t−n)]u(t)+w(t). (4)

In general, the colored noise is more difficult to deal with.
Therefore, an ARMA noise is taken as the stochastic noise
in this paper, which can be expressed as

E(z)w(t) = F(z)ν(t), (5)

where ν(t) ∈ R denotes the white noise sequence, E(z)
and F(z) are given by

E(z) := 1+ e1z−1 + · · ·+ ene z
−ne , ei ∈ R,

F(z) := 1+ f1z−1 + · · ·+ fn f z
−n f , fi ∈ R.

To derive the identification model, the parameter vector θθθ

is defined as

θθθ :=
[

θθθ s

θθθ n

]
∈ Rn0 , n0 := 4n+ne +n f −1,

θθθ s := [a1, · · · ,an,b1, · · · ,bn,

c1, · · · ,cn,d2, · · · ,dn]
T ∈ Rn1 ,

θθθ n := [e1, · · · ,ene , f1, · · · , fn f ]
T ∈ Rn2 ,

n1 := 4n−1, n2 := ne +n f ,

and the information vector ϕϕϕ(t) is defined as

ϕϕϕ(t) :=
[

ϕϕϕ s(t)
ϕϕϕn(t)

]
∈ Rn0 ,

ϕϕϕ s(t) := [−y(t−1), · · · ,−y(t−n),−u(t−n)y(t−1),

· · · ,−u(t−n)y(t−n),u(t−1), · · · ,
u(t−n),u(t−n)u(t−2),

· · · ,u(t−n)u(t−n)]T ∈ Rn1 ,

ϕϕϕn(t) := [−w(t−1), · · · ,−w(t−ne),

ν(t−1), · · · ,ν(t−n f )]
T ∈ Rn2 .

Thus, the identification model of the bilinear system in (4)
is rewritten as

y(t) =ϕϕϕ
T (t)θθθ +ν(t). (6)

In this paper, the proposed algorithms are found on this
identification model. Various estimation approaches are
proposed on the basis of the identification models [36-42]
and these methods can be employed to identify other sys-
tems [43-47] and can be used in other areas [48-52] like
ocean engineering systems. This paper is aiming at de-
veloping new methods to estimate θθθ based the obtained
input-output data.
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3. THE RGELS ALGORITHM

To show the superiority of the developed F-ML-RLS
method in Section 5, this section provides a RGELS algo-
rithm for comparison.

From (6), define a performance index as follows:

J1(θθθ) :=
t

∑
i=1
‖y(i)−ϕϕϕ

T (t)θθθ‖2. (7)

Minimizing J1(θθθ) and let its partial derivative be zero,
then the RGELS method for identifying the parameter
vector θ̂θθ(t) can be summarized as

θ̂θθ(t) = θ̂θθ(t−1)+L(t)[y(t)− ϕ̂ϕϕ
T (t)θ̂θθ(t−1)], (8)

L(t) =
P(t−1)ϕ̂ϕϕ(t)

1+ ϕ̂ϕϕ
T (t)P(t−1)ϕ̂ϕϕ(t)

, (9)

P(t) = [IIIn0 −L(t)ϕ̂ϕϕT (t)]P(t−1), (10)

θ̂θθ(t) :=
[

θ̂θθ s(t)
θ̂θθ n(t)

]
, ϕ̂ϕϕ(t) :=

[
ϕϕϕ s(t)
ϕ̂ϕϕn(t)

]
, (11)

ŵ(t) = y(t)−ϕϕϕ
T
s (t)θ̂θθ s(t), (12)

ν̂(t) = y(t)− ϕ̂ϕϕ
T (t)θ̂θθ(t). (13)

4. THE F-RELS ALGORITHM

The RGELS method is often adopted to estimate the
model parameters. However, the estimation precision is
reduced because of the stochastic noise. The data filter
technique is an effective way to handle the stochastic noise
through filtering the input-output data. Based on the data
filtering method, this section derives a F-RELS algorithm
to improve the identification accuracy.

Before giving the F-RELS algorithm, some variables
are firstly defined as

y1(t) := E(z)y(t), u1(t) := E(z)u(t),

θθθ 1 :=
[
θθθ

T
s ,θθθ

T
n f

]T
∈ Rn3 , n3 := 4n+n f −1,

ϕϕϕ1(t) :=
[
ϕϕϕ

T
s1(t),ϕϕϕ

T
n f
(t)
]T
∈ Rn3 ,

ϕϕϕ s1(t) := [−y1(t−1), · · · ,−y1(t−n),

−u(t−n)y1(t−1),−u(t−n)y1(t−2),

· · · ,−u(t−n)y1(t−n),u1(t−1),

· · · ,u1(t−n),u(t−n)u1(t−2),

u(t−n)u1(t−3), · · · ,
u(t−n)u1(t−n)]T ∈ Rn1 ,

ϕϕϕn f (t) := [ν(t−1), · · · ,ν(t−n f )]
T ∈ Rn f ,

ϕϕϕne(t) := [−w(t−1), · · · ,−w(t−ne)]
T ∈ Rne ,

θθθ ne := [e1, · · · ,ene ]
T ∈ Rne ,

θθθ n f := [ f1, · · · , fn f ]
T ∈ Rn f .

Multiplying both sides of (3) by E(z) yields

[A(z)+u(t−n)B(z)]y1(t)

= [C(z)+u(t−n)D(z)]u1(t)+F(z)ν(t). (14)

Then we have the following identification model

y1(t) =−
n

∑
i=1

aiy1(t− i)−u(t−n)
n

∑
i=1

biy1(t− i)

+
n

∑
i=1

ciu1(t− i)+u(t−n)
n

∑
i=2

diu1(t− i)

+
n f

∑
i=1

fiν(t− i)+ν(t)

=ϕϕϕ
T
1 (t)θθθ 1 +ν(t). (15)

According to (5), we have

w(t) =ϕϕϕ
T
ne
(t)θθθ ne +ϕϕϕ

T
n f
(t)θθθ n f +ν(t) (16)

= y(t)−ϕϕϕ
T
s (t)θθθ s. (17)

For the identification model in (15) and (16), we can ob-
tain the F-RELS algorithm

θ̂θθ 1(t) = θ̂θθ 1(t−1)

+L1(t)[ŷ1(t)− ϕ̂ϕϕ
T
1 (t)θ̂θθ 1(t−1)], (18)

L1(t) =
P1(t−1)ϕ̂ϕϕ1(t)

1+ ϕ̂ϕϕ
T
1 (t)P1(t−1)ϕ̂ϕϕ1(t)

, (19)

P1(t) = [IIIn3 −L1(t)ϕ̂ϕϕ
T
1 (t)]P(t−1), (20)

ŷ1(t) = y(t)+
ne

∑
i=1

êi(t−1)y(t− i), (21)

û1(t) = u(t)+
ne

∑
i=1

êi(t−1)u(t− i), (22)

ν̂(t) = ŷ1(t)− ϕ̂ϕϕ
T
1 (t)θ̂θθ 1(t), (23)

θ̂θθ ne(t) = θ̂θθ ne(t−1)+Le(t)[ω̂(t)

− ϕ̂ϕϕ
T
n f
(t)θ̂θθ n f (t)− ϕ̂ϕϕ

T
ne
(t)θ̂θθ ne(t−1)], (24)

Le(t) =
Pe(t−1)ϕ̂ϕϕne

(t)

1+ ϕ̂ϕϕ
T
ne
(t)Pe(t−1)ϕ̂ϕϕne

(t)
, (25)

Pe(t) = [IIIne −Le(t)ϕ̂ϕϕ
T
ne
(t)]Pe(t−1), (26)

ŵ(t) = y(t)−ϕϕϕ
T
s (t)θ̂θθ s(t). (27)

In order to derive the F-RELS algorithm, a new identifi-
cation model in (15) is obtained. From (21) and (22), the
input and output data is filtered. Thus, the identification
accuracy is enhanced. Meanwhile, the original system (8)
is decomposed into two subsystems (18) and (24) to iden-
tify, which the computational efficiency is improved.

5. THE F-ML-RLS ALGORITHM

In this section, a F-ML-RLS algorithm is developed to
further strengthen the parameter estimation precision.
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For identification model (15), the ML identification for
θθθ 1 can be achieved through maximizing the likelihood
function, or the probability distribution function of the
observation yN := {y1(1), y2(2), · · · , y1(N)} and uN :=
{u1(1), u2(2), · · · , u1(N)}, that is

θ̂θθ 1 =argmax
θθθ 1

L(yN |uN−1,θθθ 1). (28)

Because v(t) is uncorrelated with yN and uN , the ML func-
tion is obtained as

L(yN |uN−1,θθθ 1) =(2πσ
2)−

N
2 exp

(
− 1

2σ 2

N

∑
t=1

ν
2(t)

)
+ k, (29)

where k denote constant term which is determined by the
previous data.

Taking the natural logarithm of both sides of (29) and
maximizing the logarithm likelihood function, we can ob-
tain the following equivalent performance index

J2(θθθ 1) :=
1
2

N

∑
t=1

ν
2(t)
∣∣∣∣
θ̂θθ 1

= min, (30)

ν(t) =
1

F(z)
{[A(z)+u(t−n)B(z)]y1(t)

− [C(z)+u(t−n)D(z)]u1(t)}. (31)

Using θ̂θθ n f (t) and θ̂θθ ne(t) to establish the estimates of F(z)
and E(z) at time t as follows:

F̂(t,z) := 1+ f̂1(t)z−1 + · · ·+ f̂n f (t)z
−n f , (32)

Ê(t,z) := 1+ ê1(t)z−1 + · · ·+ êne(t)z
−ne . (33)

Calculating the partial derivative of ν(t),
(

∂ν(t)
∂θθθ 1

)
, in (31)

yields

∂ν(t)
∂a j

∣∣∣∣
θ̂θθ 1(t−1)

=
z− j ŷ1(t)

F̂(t−1,z)
=: z− j ŷ f (t), (34)

∂ν(t)
∂b j

∣∣∣∣
θ̂θθ 1(t−1)

= u(t−n)
z− j ŷ1(t)

F̂(t−1,z)

=: u(t−n)z− j ŷ f (t), (35)

∂ν(t)
∂c j

∣∣∣∣
θ̂θθ 1(t−1)

=− z− jû1(t)
F̂(t−1,z)

=:−z− jû f (t), (36)

∂ν(t)
∂d j

∣∣∣∣
θ̂θθ 1(t−1)

=−u(t−n)
z− jû1(t)

F̂(t−1,z)

=:−u(t−1)z− jû f (t), (37)

∂ν(t)
∂ f j

∣∣∣∣
θ̂θθ 1(t−1)

=− z− jν̂(t)
F̂(t−1,z)

=:−z− j
ν̂ f (t), (38)

where the filtered data ŷ f (t), û f (t) and ν f (t) are deter-
mined by

ŷ f (t) : =
1

F̂(t−1,z)
ŷ1(t)

= ŷ1(t)−
n f

∑
i=1

f̂i(t−1)ŷ f (t− i), (39)

û f (t) : =
1

F̂(t−1,z)
û1(t)

= û1(t)−
n f

∑
i=1

f̂i(t−1)û f (t− i), (40)

ν̂ f (t) : =
1

F̂(t−1,z)
ν̂1(t)

= ν̂(t)−
n f

∑
i=1

f̂i(t−1)ν̂ f (t− i). (41)

Filtering u(t) and y(t) using Ê(t − 1,z), then we can ac-
quire the estimates of u1(t) and y1(t)

û1(t) : = Ê(t−1,z)u(t)

= u(t)+
ne

∑
i=1

êi(t−1)u(t− i), (42)

ŷ1(t) : = Ê(t−1,z)y(t)

= y(t)+
ne

∑
i=1

êi(t−1)y(t− i). (43)

Let the filtered information vector be defined as

ϕϕϕ1 f (t) :=−∂ν(t)
∂θθθ 1

∣∣∣∣
θ̂θθ 1(t−1)

=−
[

∂ν(t)
∂a1

, · · · , ∂ν(t)
∂an

,
∂ν(t)
∂b1

, · · · ,

∂ν(t)
∂bn

,
∂ν(t)
∂cn

,
∂ν(t)
∂d2

,
∂ν(t)
∂c1

, · · · ,

∂ν(t)
∂d3

, · · · , ∂ν(t)
∂dn

,
∂ν(t)
∂ f1

,

∂ν(t)
∂ f2

, · · · , ∂ν(t)
∂ fn f

]T

θ̂θθ 1(t−1)

. (44)

Then, the F-ML-RLS algorithm for estimating θθθ 1 can be
summarized as

θ̂θθ 1(t) = θ̂θθ 1(t−1)+L1(t)[ŷ1(t)

− ϕ̂ϕϕ
T
1 (t)θ̂θθ 1(t−1)], (45)

L1(t) =
P1(t−1)ϕ̂ϕϕ1 f (t)

1+ ϕ̂ϕϕ
T
1 f (t)P1(t−1)ϕ̂ϕϕ1 f (t)

, (46)

P1(t) = [IIIn3 −L1(t)ϕ̂ϕϕ
T
1 f (t)]P1(t−1), (47)

ŷ f (t) = ŷ1(t)−
n f

∑
i=1

f̂i(t−1)ŷ f (t− i), (48)

û f (t) = û1(t)−
n f

∑
i=1

f̂i(t−1)û f (t− i), (49)

ν̂ f (t) = ν̂(t)−
n f

∑
i=1

f̂i(t−1)ν̂ f (t− i), (50)

ν̂(t) = ŷ1(t)− ϕ̂
T
1 (t)θ̂1(t), (51)
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Table 1. Computational efficiency of the algorithms.

Algorithms Multiplications Additions Flops
RGELS 2n2

0 +5n0 +n1 2n2
0 +3n0 +n1 N1 := 4n2

0 +8n0 +2n1

F-RELS 2n2
3 +2n2

e +6n0 2n2
3 +2n2

e +4n0 +n3 N2 := 4n2
3 +4n2

e +10n0 +n3

F-ML-RLS 2n2
3 +2n2

e +3n0 +n2 +3n3 2n2
3 +2n2

e +n0 +3n2 +3n3 N3 := 4n2
3 +4n2

e +4n0 +4n2 +6n3

θ̂θθ ne(t) = θ̂θθ ne(t−1)+Le(t)[ŵ(t)

− ϕ̂ϕϕ
T
n f
(t)θ̂θθ n f (t)− ϕ̂ϕϕ

T
ne
(t)θ̂θθ ne(t−1)], (52)

Le(t) =
Pe(t−1)ϕ̂ϕϕne

(t)

1+ ϕ̂ϕϕ
T
ne
(t)Pe(t−1)ϕ̂ϕϕne

(t)
, (53)

Pe(t) = [IIIne −Le(t)ϕ̂ϕϕ
T
ne
(t)]Pe(t−1), (54)

ŵ(t) = y(t)−ϕϕϕ
T
s (t)θ̂θθ s(t). (55)

The computational efficiency can be evaluated by the
flop. Either an addition (including the subtraction) or a
multiplication (including the division) is a flop. The flop
amounts of these three methods are listed in Table 1,
where n0 = n1 +n2, n1 = 4n−1, n2 = ne +n f , n3 = 4n+
n f − 1, and we have N1−N3 = 3n1 + n2 + 3n3(ne− 1)+
n3ne > 0. Therefore, the developed F-ML-RLS method
can depress the computational burden. The proposed es-
timation algorithms in this paper can joint some adaptive
estimation algorithms [53-56] to investigate new identi-
fication methods for various systems [57-60] and can be
applied to control and schedule areas [61-65].

Remark 1: Different from the LSI methods, the pro-
posed methods are recursive and suitable for online iden-
tification, which can be applied in practice easily.

Remark 2: By utilizing the data filtering method, the
original complex model is transformed into two sub-
models and the dimension of identified parameter vector is
reduced. Thus, the computational efficiency is improved.

Remark 3: By deriving the ML cost function (30),
the F-ML-RLS method is developed for the identification
model in (15) and (16). From (44), the information vector
is obtained using the ML principle. Thus, the identifica-
tion accuracy is strengthened.

6. SIMULATION STUDY

Considering a bilinear system such as in (4) and (5),

A(z) = 1+a1z−1 +a2z−2 = 1+0.91z−1 +0.63z−2,

B(z) = b1z−1 +b2z−2 = 0.2z−1−0.18z−2,

C(z) = c1z−1 + c2z−2 = 0.8z−1−2.3z−2,

D(z) = d2z−2 = 0.16z−2,

E(z) = 1+ e1z−1 = 1−0.17z−1,

F(z) = 1+ f1z−1 = 1+0.1z−1.

In simulations, {u(t)} is chosen as a persistent excitation
signal, and {ν(t)} as a white noise signal with zero mean
and variance σ 2 = 2.02.

The simulation results are given in Tables 2-4 and
Figs. 1-2, where the estimation error is computed by
δ (t) := ‖θ̂θθ(t)−θθθ‖

‖θθθ‖ × 100%. From Tables 2-4 and Figs. 1
and 2, it can be seen that these three algorithms are ef-
fective for identifying the bilinear system subject to the
colored noise, and the estimation errors becomes smaller
as t increase. Compared with the RGELS algorithm, the
F-RELS and F-ML-RLS methods can engender more pre-
cise estimates, which indicates that the data filtering tech-
nique can strengthen the identification precision. In addi-
tion, the F-ML-RLS method using the ML principle can
also improve the estimation precision.

For model validation, the residual data from t = 4001
to t = 4100 and estimated models are used to calculate the
predicted value ŷi. The real value y, predicted value ŷi and
error ỹi are plotted in Figs. 3-5 for these three algorithms.
It can be observed that the estimated models are effective
for predicting the system output and the developed F-ML-
RLS method has smaller prediction error since more accu-
rate model parameters contribute to the more accurate es-

Table 2. RGELS estimates and errors under σ 2 = 2.02.

t a1 a2 b1 b2 c1 c2 d2 e1 f1 δ (%)

100 0.87151 0.54553 0.21767 -0.19614 0.71698 -1.89078 0.16703 -0.07135 0.10725 16.28465
200 0.90381 0.64407 0.25461 -0.13887 0.83960 -2.01620 0.20104 -0.06286 0.16536 11.96890
500 0.91184 0.60867 0.22560 -0.16334 0.83212 -2.14372 0.19786 -0.07595 0.20724 8.16613

1000 0.89381 0.62183 0.22423 -0.17408 0.78631 -2.20656 0.18103 -0.06778 0.18966 6.28449
2000 0.89636 0.61329 0.20467 -0.18231 0.74278 -2.24673 0.15223 -0.07031 0.17741 5.56649
3000 0.90537 0.61349 0.20257 -0.18152 0.73460 -2.30385 0.15396 -0.06910 0.20526 5.95887
4000 0.90726 0.61859 0.20723 -0.17838 0.71565 -2.33390 0.15331 -0.07339 0.21256 6.46790

True values 0.91000 0.63000 0.20000 -0.18000 0.80000 -2.30000 0.16000 -0.17000 0.10000
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Table 3. F-RELS estimates and errors under σ 2 = 2.02.

t a1 a2 b1 b2 c1 c2 d2 e1 f1 δ (%)

100 0.89597 0.57609 0.24036 -0.00330 0.46419 -2.50611 0.22362 -0.12751 -0.02839 17.11281
200 0.93893 0.63711 0.24117 -0.08076 0.63614 -2.39795 0.21273 -0.25261 0.05444 9.11294
500 0.93828 0.65077 0.21492 -0.09479 0.67758 -2.34722 0.20893 -0.21519 0.05489 6.66603

1000 0.94561 0.64882 0.19589 -0.11023 0.64686 -2.27520 0.14423 -0.19965 0.06256 6.73774
2000 0.94323 0.64580 0.20328 -0.09981 0.74716 -2.26391 0.11919 -0.20760 0.05948 4.77273
3000 0.94089 0.64552 0.20363 -0.10310 0.78455 -2.23289 0.13597 -0.21174 0.06259 4.62309
4000 0.94337 0.65100 0.20956 -0.10425 0.79991 -2.22400 0.16645 -0.20697 0.05696 4.74549

True values 0.91000 0.63000 0.20000 -0.18000 0.80000 -2.30000 0.16000 -0.17000 0.10000

Table 4. F-ML-RLS estimates and errors under σ 2 = 2.02

t a1 a2 b1 b2 c1 c2 d2 e1 f1 δ (%)

100 0.92979 0.68694 0.27398 -0.18973 0.49455 -2.58667 0.33366 -0.02131 0.08579 18.03398
200 0.88282 0.63258 0.23277 -0.17401 0.74672 -2.47652 0.20397 -0.05988 0.09446 8.27601
500 0.90729 0.62238 0.22722 -0.14681 0.96072 -2.32500 0.15883 -0.11993 0.12562 6.57557

1000 0.91906 0.63219 0.20950 -0.15689 0.84981 -2.22719 0.16954 -0.10944 0.12548 4.20633
2000 0.90990 0.62020 0.21186 -0.14832 0.83060 -2.30668 0.15881 -0.11851 0.11432 2.63932
3000 0.91334 0.62077 0.20893 -0.14561 0.82635 -2.31709 0.17570 -0.13396 0.12552 2.49570
4000 0.91614 0.62472 0.21321 -0.14080 0.83280 -2.27892 0.16519 -0.13918 0.13380 2.72540

True values 0.91000 0.63000 0.20000 -0.18000 0.80000 -2.30000 0.16000 -0.17000 0.10000
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Fig. 1. Parameter estimation errors δ under σ 2 = 2.02.
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Fig. 2. Parameter estimation errors δ under σ 2 = 5.02.
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Fig. 3. Predicted value ŷ1, real value y and error ỹ1 under
RGELS estimates.
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Fig. 4. Predicted value ŷ2, real value y and error ỹ2 under
F-RELS estimates.
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Fig. 5. Predicted value ŷ3, real value y and error ỹ3 under
F-ML-RLS estimates.

timation model. This also illustrates that the data filtering
technique and ML principle can offer higher identification
accuracy. From Tables 2-4 and Figs. 1-5, some conclu-
sions are drawn as follows: Compared with the RGELS
and F-RELS methods, the developed F-ML-RLS method
can strengthen the identification accuracy - see Tables 2-4
and Figs. 1 and 2. The estimation errors of these three al-
gorithms become smaller and smaller as t increases – see
Tables 2-4. It is clear that the predicted outputs ŷ1(t), ŷ2(t)
and ŷ3(t) are close to the actual output- see Figs. 3-5.

7. CONCLUSIONS

A F-ML-RLS parameter estimation algorithm is pro-
posed to depress the computational cost and strengthen
the identification accuracy by employing the data filtering
technique and the ML principle, and a RGELS method and
a F-RELS method are provided for comparison. The pro-
posed algorithms in this article can integrate other identi-
fication algorithms [66-69] to study new estimation meth-
ods [70-77] and can be employed to other literature like
signal processing and aerospace engineering.
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