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Chattering-free Fast Fixed-time Sliding Mode Control for Uncertain
Robotic Manipulators
Huayang Sai � , Zhenbang Xu* � , Enyang Zhang, Chunyang Han, and Yang Yu

Abstract: In this paper, we introduce a dynamic controller that dedicates fixed-time trajectory tracking for uncertain
robotic manipulators. First, a new nonlinear function is designed and applied to the fixed-time sliding mode (FSM)
surface. The derivative of the proposed nonlinear function is continuous, which can ensure the continuity and
smoothness of the control torque, and it makes the sliding surface facilitate fast convergence rates of the system
tracking error. Then, a FSM control scheme is designed using the proposed sliding mode surface. Combined the
Lyapunov stability theory, we show that the proposed controller has fixed-time convergence independent of the
initial state of the system. Moreover, the proposed control scheme is advantageous in that the control torque is
continuous without transient change. This eliminates the chattering of uncertain robotic manipulators and makes
the control torque smoother. Simulation results show that a faster error convergence rate can be obtained with a
smaller control torque range. Finally, the above-mentioned effectiveness and superiority of the proposed control
scheme are validated using simulations and experimental results.
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1. INTRODUCTION

Tracking control of robotic manipulators is attracting
increasing interest in the field of robotic manipulator con-
trol. Various control schemes have been applied exten-
sively to the trajectory-tracking control of robotic manipu-
lators, such as proportional-integral-derivative control [1],
fuzzy control [2], neural network control [3], and slid-
ing mode control (SMC) [4-6]. However, considering the
structural uncertainties and external disturbances, realiz-
ing accurate and fast-tracking control of robotic manipu-
lators remains a major challenge.

Among various advanced control technologies, SMC
has gained much attention, owing to its robustness and
ease of implementation in uncertain environments. How-
ever, one major drawback of traditional SMC applications
is chattering, which significantly affects the tracking con-
trol performance of robotic manipulators. Moreover, tra-
ditional SMC has the problem of asymptotic stability of
the system when the time approaches infinity, but the sys-
tem needs to converge in a limited time in many appli-
cations. To achieve finite-time convergence of the system

state, a terminal sliding mode control (TSMC) algorithm
has been proposed in [7]. As a finite-time control algo-
rithm, TSMC guarantees the convergence of system states
within finite time, after the states reach the manifold. In
[8], a nonsingular terminal sliding mode control scheme is
proposed to address the singularity problem of TSMC. A
nonsingular fast terminal sliding mode control (NFTSMC)
scheme has also been developed to realize rapid conver-
gence of system states far from the origin [9]. Yu et al.
[10] proposed a new form of TSMC with the advantages
of high precision and chattering suppression. Van et al.
[11] discussed finite-time fault-tolerant control of manip-
ulators based on NFTSMC. Subsequently, a fast nonsin-
gular integral TSMC scheme was designed by introducing
a power integral term including the boundary-like struc-
ture to reduce chattering [12]. To estimate the coupling
uncertainties, adaptive NFTSMC [13], adaptive second-
order TSMC [14], and adaptive second-order NFTSMC
[15] have been proposed in combination with adaptive
technology.

Despite the above advancements, the prediction of the
settling time depends on the initial state of the system.
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Thus, finite-time control has limited real-time application
because the initial system conditions are usually unknown
or difficult to obtain. In response, Polyakov [16] intro-
duced a fixed-time control technology that can guarantee
a bounded convergence time independent of initial states.
Subsequently, detailed mathematical analyses of fixed-
time stability and convergence are presented [17-19]. A
distinctive feature of fixed-time control is that the settling
time depends only on the defined parameters and is in-
dependent of the initial states. The upper bound of set-
tling time of fixed-time stable systems was enhanced in
the works of Gomez [20] and Aldana et al. [21]. In re-
cent years, several fixed-time control algorithms based on
SMC have been used for spacecraft attitude stability con-
trol [22-24] and second-order multiagent systems [25-27],
owing to its superior characteristics.

Over the years, there have been serious efforts to ex-
plore fixed-time SMC in the field of robot control. Li et
al. [28] proposed a multivariable fixed-time follower for-
mation control scheme for a group of nonholonomic mo-
bile robots. Jin [29] proposed an adaptive fixed-time con-
trol scheme using universal barrier functions to address
the problem of asymmetric output constraint of robotic
manipulators. By employing adaptive fuzzy control tech-
nique, a singularity-free fixed-time fuzzy controller was
designed for the robotic manipulator system [30]. Su et
al. [31] designed a new fixed-time sliding surface and
applied it to trajectory tracking of robotic manipulators.
However, the control torque produces transient changes,
which results in discontinuous chattering of robotic ma-
nipulators, owing to the unsmooth sliding surface. Zhang
et al. [32] designed a smooth fixed-time sliding surface for
trajectory tracking of a robotic manipulator. Sai et al. [33]
considered fixed-time convergence under saturation of the
robotic manipulator actuator. However, they achieved a
smooth sliding surface at the expense of the convergence
rate. It is worth mentioning that suitable convergence rates
are always realized at the expense of large control torque
ranges in fixed-time SMC, which is a challenge with re-
spect to actuators in robotic manipulators. Unfortunately,
although some existing fixed-time controllers have been
applied to robotic manipulators, the ranges of control
torque are always ignored [29-32].

In this paper, we focused on the problem of discontin-
uous control torque and excessive control torque ranges
in the fixed-time SMC for uncertain robotic manipula-
tors. The main contributions of this paper are a novel fast
continuous fixed-time sliding mode (FCFSM) surface and
a fast continuous fixed-time SMC scheme for trajectory
tracking of uncertain robotic manipulators. Two distinc-
tive advantages of the proposed sliding mode surface are
continuity and smoothness, which guarantee that the con-
trol torque does not change transiently, and the input con-
trol torque is chattering-free. Furthermore, the proposed
approach can ensure a rapid convergence rate with a small

control torque range, and the control scheme has good ro-
bustness and non-singularity for different initial states of
the system over a range of control moments. The results of
comparison with existing controllers via simulations and
experimental results validate these characteristics of the
proposed controller.

The remainder of this paper is organized as follows:
Certain basic symbols, definitions, and dynamic models
of the robotic manipulator are described in Section 2. The
FCFSM control (FCFSMC) scheme and its stability analy-
sis are presented in Section 3. In Section 4, the simulation
results of the two sets in comparison to existing methods
are presented and the experimental results are represented
in Section 5. Finally, Section 6 summarizes the proposed
control scheme and outlines future research directions.

2. PRELIMINARIES

2.1. Description of notations
In this paper, the norm of the matrix AAA ∈ Rn×n and vec-

tor xxx =
[
x1, x2, · · · , xn

]T are denoted as ‖AAA‖ = tr
(
AAATAAA

)
and ‖xxx‖=

√
xxxTxxx, respectively, and diag(·) denotes a diag-

onal matrix. λmin {AAA} and λmax {AAA} are the minimum and
maximum eigenvalues of the matrix AAA, respectively. The
nonlinear function sigα(x) and vector Sigα (xxx) ∈ Rn can
be written as

sigα(x) = |x|α sgn(x), (α > 0) , (1)

Sigα (xxx) =
[
|x1|α sgn(x1) · · · , |xn|α sgn(xn)

]T
,

(α > 0) , (2)

where sgn(x) is the signum function.

2.2. Some definitions and lemmas
For the following nonlinear system

ξ̇ = f (ξ ) , ξ (0) = ξ0, (3)

where ξ ∈Rn is the system state and the function f :Rn→
Rn is nonlinear, and the origin is assumed to be an equi-
librium point of system (3). The following standard defi-
nitions and lemmas are used in this work.

Definition 1 (Global finite-time stability) [34]: The
origin of (3) is globally finite-time stable if it is glob-
ally asymptotically stable and any solution of (3) reaches
the equilibrium point at some finite time moment, i.e.,
∀t > T (ξ0) : ξ (t,ξ0) = 0, where T : Rn→ R+∪{0} is
called the settling-time function.

Definition 2 (Fixed-Time stability) [16,17]: The equi-
librium point of the system in (3) is fixed-time stable, if
it is globally finite-time stable, and the settling time is
bounded. That is, ∃Tmax > 0 : ∀ξ0 ∈Rn and T (ξ0)6 Tmax.

Lemma 1 [16, Lemma 1]: For the system in (3), if
there is a positive-definite continuous function V (ξ ) :
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U → Rn and real numbers α , β > 0, 0 < p < 1 and
q > 1 that the inequality V̇ (ξ )+αV p (ξ )+βV q (ξ ) < 0,
ξ ∈U\{0} a reality, the system is globally fixed-time sta-
ble with a settling time T bounded by

T < Tmax =
1

α (1− p)
+

1
β (q−1)

. (4)

Lemma 2 [19, Lemma 3.4]: For ξ1, ξ2, · · · , ξN > 0, the
following inequality is satisfied

N

∑
i=1

ξ
p

i ≥

(
N

∑
i=1

ξi

)p

if 0 < p≤ 1, (5)

N

∑
i=1

ξ
p

i ≥ N1−p

(
N

∑
i=1

ξi

)p

if 1 < p < ∞. (6)

Lemma 3 [35]: If f (x) and g(x) are two continuous
functions at x0 ∈ Rn, then the function f (x)+g(x) is also
continuous at x0.

Lemma 4: For a positive constant α and x ∈ R, the
following equations hold

d |x|α+1 /dx = (α +1) |x|α sgn(x), (7)

d
[
|x|α+1 sgn(x)

]
/dx = (α +1) |x|α . (8)

The proof of Lemma 4 can be easily obtained by the
limits of the derivative when x→ 0+ and x→ 0−.

2.3. Manipulator robotic dynamics model
We consider the dynamics of a general rigid robotic ma-

nipulator system with n-degrees-of-freedom given in [36],

MMM (qqq) q̈̈q̈q+CCC (qqq, q̇̇q̇q) q̇̇q̇q+GGG(qqq) = τττ +τττddd , (9)

where qqq, q̇̇q̇q, q̈̈q̈q ∈ Rn represent the generalized position, ve-
locity, and acceleration vector of the robotic manipulator,
respectively. MMM (qqq) ∈ Rn×n is the symmetric and positive-
definite inertia matrix, CCC (qqq, q̇̇q̇q) ∈ Rn×n is the centrifugal-
Coriolis matrix, and GGG(qqq) ∈ Rn is the Cartesian gravi-
tational term. τττ is the joint torque vector, and τττddd is the
bounded external disturbance. To track the trajectory of
the robotic manipulator, the position-tracking error and
speed tracking error are denoted as

eee = qqq−qqqd , ė̇ėe = q̇̇q̇q− q̇̇q̇qd , (10)

where qqqd , q̇̇q̇qd ∈ Rn denote the desired position and de-
sired velocity, respectively. It is reasonable to postulate
that the dynamics of robotic manipulators have the fol-
lowing properties:

Property 1 [37]: Generally, the matrices MMM (qqq),CCC (qqq, q̇̇q̇q)
and GGG(qqq) can be described as

MMM (qqq) =MMM0 (qqq)+∆MMM (qqq) ,
CCC (qqq, q̇̇q̇q) =CCC0 (qqq, q̇̇q̇q)+∆CCC (qqq, q̇̇q̇q) ,
GGG(qqq) =GGG0 (qqq)+∆GGG(qqq) ,

(11)

where MMM0 (qqq),CCC0 (qqq, q̇̇q̇q), and GGG0 (qqq) are the nominal parts of
the model parameters, and ∆MMM (qqq), ∆CCC (qqq, q̇̇q̇q), and ∆GGG(qqq)
represent the system uncertainties.

Assumption 1 [37]: The matrices MMM (qqq), CCC (qqq, q̇̇q̇q), and
GGG(qqq) are bounded by

Mm 6 ‖MMM (qqq)‖6MM, for ∀qqq ∈ Rn, (12)

‖CCC (qqq, q̇̇q̇q)‖6CM ‖q̇̇q̇q‖ , for ∀qqq, q̇̇q̇q ∈ Rn, (13)

‖GGG(qqq)‖6 GM, for ∀qqq ∈ Rn, (14)

where Mm, MM , CM , and GM are known positive constants.

3. DESIGN APPROACH FOR FAST
CONTINUOUS FIXED-TIME SLIDING MODE

CONTROL

3.1. FCFSM surface design
To ensure stability and transient performance of the

control system, it is essential to design the SMC effi-
ciently. We introduce a novel continuous nonlinear func-
tion sp(x) given by

sp(x) =

{
|x|p sgn(x), |x|> δ ,

l1x+ l2x2sgn(x)+ l3x3, |x|< δ ,
(15)

where x ∈ R is the variable, and p and δ are two defined
positive constants satisfying 0 < p < 1 and 0 < δ 6 1. l1,
l2, and l3 are constants defined as follows:

l1 =
( 1

2 p2− 5
2 p+3

)
δ p−1,

l2 =
(
−p2 +4p−3

)
δ p−2,

l3 =
( 1

2 p2− 3
2 p+1

)
δ p−3.

(16)

The first and second derivatives of sp(x) with respect to x
can be obtained easily by referring to Lemma 4, and we
separately represent them by f p(x) and gp(x) as

f p(x) = sp′(x) =

{
p |x|p−1 , |x|> δ ,

l1 +2l2 |x|+3l3x2, |x|< δ ,

(17)

gp(x) = sp′′(x) =

{
p(p−1) |x|p−2 sgn(x), |x|> δ ,

2l2sgn(x)+6l3x, |x|< δ .

(18)

Considering δ = 0.01 and p = 0.5, the nonlinear function
sp(x) and its first and second derivatives can be depicted
as in Fig. 1. It can be shown that the functions sp(x) and
sp′(x) are continuous for x∈R and sp′′(x) is continuous for
x ∈R\{0}. Therefore, sp(x) is continuous and smooth for
x ∈R, and sp′(x) is continuous and smooth for x ∈R\{0}.
Moreover, the nonlinear function sp(x) has a large slope
when variable x goes into small sets near zero.

For the nonlinear function sp(x), the value of p has a
strong influence on its slope. In Fig. 2, as the value of p de-
creases, the slope of function sp(x) increases rapidly when
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x goes to zero, and it can remain continuous and smooth.
In other words, the convergence rate can be accelerated by
decreasing the value of p, without any concern regarding
changing the properties of function sp(x).

Then, we define the nonlinear function sq(x) as

sq(x) = sigq(x), (19)

where q is a positive constant with q> 1. For the nonlinear
function sq(x), the first derivative with respect to x can be
written as

hq(x) = sq′(x) = q |x|q−1 . (20)

The graphs of functions sq(x) and sq′(x) are shown in Fig.
3, where it can be seen that sq(x) is continuous and smooth
for x ∈ R, and sq′(x) is continuous and smooth for x ∈
R\{0}. When variable x is far from the origin, the slope of

-2 0 2
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0

2
2

1

0
-2 0 2

Fig. 3. Plots of sq(x) and sq′(x) with x.

sq(x) increases rapidly and reaches zero when the variable
x is close to zero.

To simplify the design and analysis of the controller, the
following vectors are defined

SSSp (xxx) = [sp (x1) , · · · ,sp (xn)]
T , (21)

FFF p (xxx) = diag( f p (x1) , · · · , f p (xn)) , (22)

SSSq (xxx) = [sq (x1) , · · · ,sq (xn)]
T , (23)

HHHq (xxx) = diag(hq (x1) , · · · ,hq (xn)) , (24)

where the nonlinear function sp(x) is defined in (15) and
its first derivative f p(x) is denoted in (17). The nonlin-
ear function sq(x) is defined in (19) and its first derivative
hq(x) is denoted in (20). As defined in the function, p and
q are two positive constants with 0 < p < 1 and q > 1, and
n represents the dimension of the vector.

Based on the vectors SSSp (xxx) and SSSq (xxx), a novel FCFSM
surface is designed as

sss = ė̇ėe+KKK1SSSp (eee)+KKK2SSSq (eee) , (25)

where eee is the vector of the position tracking error, and
KKK1,KKK2 ∈Rn×n are two defined positive definite symmetric
matrices.

Remark 1: Since sp(x) and sq(x) are both continuous
and smooth functions, according to Lemma 3, the FCFSM
surface is also continuous and smooth.

Remark 2: When the system state is close to the ori-
gin, KKK1SSSp (eee) dominates KKK2SSSq (eee). When the system state
is far from the origin, KKK2SSSq (eee) dominates the fixed-time
convergence rate. Hence, the FCFSM surface can always
maintain fast convergence.

3.2. FCFSM surface analysis and comparison
In this section, the advantages of the proposed sliding

surface will be explained by comparison. Two similar slid-
ing surfaces have been proposed previously: fixed-time
terminal sliding mode (Fixed TSM) surface in [31] and
singularity-free fixed-time sliding mode (SFSM) surface
in [32]. To verify the fast convergence of our proposed
FCFSM surface, the error convergence rates are compared
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with those of the Fixed TSM surface and SFSM surface.
The Fixed TSM surface in [31] can be expressed as

sp
1(x) =

{
|x|p sgn(x), |x|> δ1,

δ
p−1

1 x, |x|< δ1,
(26)

s1 = ė+K1sp
1(x)+K2sigq (e) , (27)

where 0 < p < 1, q > 1, 0 < δ1 6 1, K1, K2 ∈ R are two
known positive constants.

The SFSM surface in [32] can be expressed as

sp
2(x) =


sig1−δ2(x), |x|> δ2,
−1− lnδ2

1−δ2−δ2 lnδ2
sig2−δ2(x)

+
δ
−2δ2
2

1−δ2−δ2 lnδ2
δ
|x|
2 x, |x|< δ2,

(28)

s2 = ė+K1sp
2 (e)+K2sigq (e) , (29)

where q > 1, δ2 ∈ (0,exp(−1)) , K1, K2 ∈ R are two
known positive constants.

With reference to the works of Su et al. [31] and Zhang
et al. [32], the parameters are selected as p = 0.5, q = 1.5,
δ1 = 0.01, δ2 = 0.3, K1 = K2 = 2. The initial state is de-
fined as e(0) = 5, and the simulation results with differ-
ent sliding mode surfaces are shown in Fig. 4. As shown
in Fig. 4, the convergence rate of the FCFSM surface is
faster than that of the Fixed TSM surface when e < 0.01,
and they are both faster than the SFSM surface with the
reduction of convergence error. In particular, the conver-
gence rate of the SFSM surface decreases rapidly when
e < 1.

Remark 3: Function sp
1(x) and the proposed nonlin-

ear function sp(x) have similar properties, especially when
|x| > δ , it has sp

1(x) = sp(x). Therefore, refer to the work
of Su et al. [31] and define δ1 = δ = 0.01. Function sp

2(x)
does not contain parameter p, the purpose is to distinguish
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Fig. 5. Comparison of different nonlinear functions
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2(x) and their first derivatives.

the sliding mode surface s2. When the system error is close
to zero, small δ2 hinders the rapid convergence of the sys-
tem error. Considering the work of Zhang et al. [32], we
set δ2 as 0.3.

To explain the difference in the error convergence rate,
the nonlinear functions sp(x), sp

1(x), sp
2(x) and their first

derivatives are shown in Fig. 5. As can be seen in Fig. 5,
the value of sp′

2 (x) is much smaller than that of sp′(x) and
sp′

1 (x) when |x| < 0.01. This means that the convergence
rate of SFSM surface is slower than that of the other two
sliding surfaces when x is close to the origin. The value of
sp′(x) is approximately twice that of sp′

1 (x) when x goes to
zero. Thus, the error converges to the origin faster in the
FCFSM surface than in the Fixed TSM surface. Moreover,
there are some remarks that need to be noted.

Remark 4: When the tracking error is large, the slid-
ing surface is expected to provide a small convergence rate
to ensure a small control torque of the system. When the
tracking error is small, the sliding surface is expected to
provide a large convergence rate to ensure a fast conver-
gence rate. From Fig. 5, it can be seen that the proposed
nonlinear function sp(x) can make the sliding mode sur-
face satisfy the above properties.

Remark 5: sp′
1 (x) is discontinuous at x = δ1 = 0.01,

which may lead to discontinuous acceleration and cause
the system chattering.

Remark 6: The value of sp
2(x) is larger than that of

sp(x) and sp
1(x) for the high value of |x|, which may lead to

a large initial control torque when the initial convergence
error is large.

3.3. FCFSMC design
Based on the FCFSM surface, the FCFSMC scheme is

designed as

τττ = τττ0 +τττ1 +τττ2, (30)

τττ0 =MMM0 (qqq) q̈̈q̈qd +CCC0 (qqq, q̇̇q̇q) q̇̇q̇q+GGG0 (qqq) , (31)

τττ1 =−KKK0Sigr (sss)
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−MMM0 (qqq)(KKK1FFF p (eee)+KKK2HHHq (eee)) ė̇ėe, (32)

τττ2 =−
sss
‖sss‖

u, (33)

u =
1

1− γ

(
k+b0 +b1 ‖q‖+b2 ‖q̇‖2 + γ ‖τττ0 +τττ1‖

)
,

(34)

where KKK0 ∈ Rn×n is a known positive-definite symmetric
matrix, r > 1 and k > 0 are two positive gains. b0, b1, b2

and γ are positive constants, and γ is given by

γ =
m2−m1

m2 +m1
, (35)

where m1 and m2 are two known positive constants satis-
fying

m1 6
∥∥MMM−1 (qqq)

∥∥6 m2. (36)

Remark 7: According to the above discussion, both
f p(x) and hq(x) are continuous functions. Combined with
Lemma 3, KKK1FFF p (eee)+KKK2HHHq (eee) in (32) is also continuous.
Then, it can be concluded that the control torque τττ in (30)
is continuous.

Remark 8: For the sliding mode control method, it
forces the tracking error to approach the sliding mode sur-
face, and then reaches the origin along the sliding mode
surface.

3.4. Stability analysis of the control system
Before demonstration of the convergence time of the

control system, one important theorem is to be explained.

Theorem 1: In view of (9) and (11), the coupled uncer-
tainty includes the external disturbance and system uncer-
tainties. Thus, the coupled uncertainty ρρρ(t) can be written
as

ρρρ(t) =−∆MMM (qqq) q̈̈q̈q−∆CCC (qqq, q̇̇q̇q) q̇̇q̇q−∆GGG(qqq)+τττddd , (37)

which can be bounded as

‖ρρρ(t)‖< b0 +b1 ‖qqq(t)‖+b2 ‖q̇̇q̇q(t)‖2 + γ ‖τττ‖ . (38)

Proof: According to (9) and (11), ∆MMM (qqq) q̈̈q̈q can be
written as

∆MMM (qqq) q̈̈q̈q =EEE (τττ−CCC (qqq, q̇̇q̇q)−GGG(qqq)+τττddd) , (39)

where EEE ∈ Rn×n can be denoted as

EEE , IIInnn−MMM0 (qqq)MMM−1 (qqq) . (40)

Then, MMM0 (qqq) can be chosen as [38-40]

MMM0 (qqq) =
2

m1 +m2
IIInnn, (41)

where m1 and m2 are two positive constants in (36).

Then, EEE can be derived as

‖EEE‖=
∥∥∥∥ (m1 +m2)IIInnn−2MMM−1 (qqq)

m1 +m2

∥∥∥∥
=

∥∥(m2IIInnn−MMM−1 (qqq)
)
−
(
MMM−1 (qqq)−m1IIInnn

)∥∥
m1 +m2

6

∥∥(m2IIInnn−MMM−1 (qqq)
)
+
(
MMM−1 (qqq)−m1IIInnn

)∥∥
m1 +m2

=
m2−m1

m1 +m2
, γ < 1. (42)

Therefore, the upper bound of the coupled uncertainty
ρρρ(t) can be calculated as

‖ρρρ(t)‖=‖∆MMM (qqq) q̈̈q̈q+∆CCC (qqq, q̇̇q̇q) q̇̇q̇q+∆GGG(qqq)−τττddd‖
=‖EEE (τττ−CCC (qqq, q̇̇q̇q)−GGG(qqq)+τττddd)

+∆CCC (qqq, q̇̇q̇q) q̇̇q̇q+∆GGG(qqq)−τττddd‖

<b0 +b1 ‖qqq(t)‖+b2 ‖q̇̇q̇q(t)‖2 + γ ‖τττ‖ . (43)

The proof is completed. �

Remark 9: Different from the upper bound of manipu-
lator coupling uncertainty in [31], the proof in Theorem 1
is more rigorous due to the influence of manipulator joint
angle is considered.

Theorem 2: Given the uncertain robotic manipulator
system by (9) and the FCFSMC scheme proposed in (30)-
(34), the trajectory tracking error of the manipulator sys-
tem globally converges to an arbitrary small set δ of the
origin with the settling time T and then goes to zero ex-
ponentially. The upper bound of the settling time Tmax in-
cludes the reaching time Tr and the sliding time Ts. The
reaching time Tr denotes the period in which the tracking
trajectory converges globally to the sliding mode surface,
and the sliding time Ts denotes the period in which the
tracking trajectory error converges to an arbitrarily small
domain of the origin. T , Tr and Ts are given by

T 6 Tmax = Tr +Ts, (44)

Tr 6
2

k (m1 +m2)
1
2

+
2

n
1−r

2 λmin (KKK0)(m1 +m2)
r+1

2 (r−1)
, (45)

Ts 6
2

1−p
2

(1− p)λmin (KKK1)
+

( 2
n

) 1−q
2

(q−1)λmin (KKK2)
. (46)

Proof: The stability analysis of the proposed FCFSMC
can be divided into the reaching phase and the sliding
phase.

Step 1 (Stability and settling time analysis in reaching
phase):

Considering the sliding mode surface (25) and (9), (11),
and (37), we can obtain

MMM0 (qqq) ṡ̇ṡs
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=MMM0 (qqq)(ë̈ëe+(KKK1FFF p (eee)+KKK2HHHq (eee)) ė̇ėe)

=MMM0 (qqq)(q̈̈q̈q− q̈̈q̈qd)

+MMM0 (qqq) [KKK1FFF p (eee)+KKK2HHHqqq (eee)] ė̇ėe

= τττ +τττddd−∆M∆M∆M0 (qqq) q̈̈q̈q−∆C∆C∆C (qqq, q̇̇q̇q) q̇̇q̇q

−∆G∆G∆G(qqq)−CCC0 (qqq, q̇̇q̇q) q̇̇q̇q−GGG0 (qqq)−MMM0 (qqq) q̈̈q̈qd

+MMM0 (qqq) [KKK1FFF p (eee)+KKK2HHHqqq (eee)] ė̇ėe

= τττ +ρρρ−CCC0 (qqq, q̇̇q̇q) q̇̇q̇q−GGG0 (qqq)−MMM0 (qqq) q̈̈q̈qd

+MMM0 (qqq) [KKK1FFF p (eee)+KKK2HHHqqq (eee)] ė̇ėe

=− sss
‖sss‖

1
1− γ

(
k+b0 +b1 ‖qqq‖+b2 ‖q̇̇q̇q‖2

+ γ ‖τττ0 +τττ1‖
)
+ρρρ−KKK0Sigr (sss) . (47)

We define the following Lyapunov function as

V1 =
1
2

sssTMMM0 (qqq)sss. (48)

Differentiating V1 with respect to time yields

V̇1 = sssTMMM0 (qqq) ṡ̇ṡs

=sssT

− sss
‖sss‖

1
1−γ

(
k+b0 +b1 ‖qqq‖+b2 ‖q̇̇q̇q‖2

+γ ‖τττ0 +τττ1‖

)
+ρρρ−KKK0Sigr (sss)


=− ‖s

ss‖
1− γ

(
k+b0+b1‖qqq‖+b2‖q̇̇q̇q‖2+γ‖τττ0+τττ1‖

)
+sssT

ρρρ−sssTKKK0Sigr (sss) . (49)

Substituting (34) into (49) leads to

V̇1 6− γ ‖sss‖u−‖sss‖
(

k+b0 +b1 ‖qqq‖
+b2 ‖q̇̇q̇q‖2 + γ ‖τττ0 +τττ1‖

)
+sssT

ρρρ−sssTKKK0Sigr (sss)

6− γ ‖sss‖u−‖sss‖
(

k+b0 +b1 ‖qqq‖
+b2 ‖q̇̇q̇q‖2 + γ ‖τττ0 +τττ1‖

)
+‖sss‖‖ρρρ‖−sssTKKK0Sigr (sss) . (50)

Combining the upper bound of the coupled uncertainty in
(38) yields

V̇1 6− γ ‖sss‖u−‖sss‖
(

k+b0 +b1 ‖qqq‖
+b2 ‖q̇̇q̇q‖2 + γ ‖τττ0 +τττ1‖

)
+‖sss‖

(
b0 +b1 ‖qqq(t)‖

+b2 ‖q̇̇q̇q(t)‖2 + γ ‖τττ‖

)
−sssTKKK0Sigr (sss)

=− γ ‖sss‖u− k‖sss‖− γ ‖sss‖‖τττ0 +τττ1‖
+ γ ‖sss‖‖τττ‖−sssTKKK0Sigr (sss) . (51)

It can be clearly seen that

‖τττ‖6 ‖τττ0 +τττ1‖+‖τττ2‖ . (52)

Substituting (52) into (51), we have

V̇1 6−γ ‖sss‖u+ γ ‖sss‖‖τττ2‖− k‖sss‖−sssTKKK0Sigr (sss)

=−k‖sss‖−sssTKKK0Sigr (sss)

=−
n

∑
i=1

k0i |si|r+1− k‖sss‖

=−λmin (KKK0)
n

∑
i=1
|si|r+1− k‖sss‖

=−λmin (KKK0)

(
n

∑
i=1
|si|2

) r+1
2

− k‖sss‖ . (53)

According to Lemma 2, (53) can be written as

V̇1 6−n
1−r

2 λmin (KKK0)‖sss‖r+1− k‖sss‖

⇒ V̇1 +n
1−r

2 λmin (KKK0)(m1 +m2)
r+1

2 V
r+1

2

+ kV
1
2 (m1 +m2)

1
2 6 0. (54)

As described in Lemma 1 and Definition 2, V1 is globally
fixed-time stable, with the reaching time Tr bounded by
(45).

Step 2 (Stability and settling time analysis in the sliding
phase):

The error convergence enters the sliding phase once the
sliding surface reaches s = 0, and (25) can be written as
follows:

ė̇ėe =−KKK1SSSp (eee)−KKK2SSSq (eee) . (55)

Since sp (e) is a piecewise function of e, there are two
cases for discussion.

Case 1: If ‖eee‖> δ , (55) can be expressed as

ė̇ėe =−KKK1Sigp (eee)−KKK2Sigq (eee) . (56)

The following Lyapunov function is considered:

V2 =
1
2

eeeTeee. (57)

Taking the first derivative of (57), we have

V̇2 = eeeT ė̇ėe

=−eeeTKKK1Sigp (eee)−eeeTKKK2Sigq (eee)

=−
n

∑
i=1

k1i |ei|p+1−
n

∑
i=1

k2i |ei|q+1

=−
n

∑
i=1

k1i

(
‖eee‖2

) p+1
2 −

n

∑
i=1

k2i

(
‖eee‖2

) q+1
2
. (58)

Because of 0 < p < 1, q > 1, we have 0 < p+1
2 < 1 and

q+1
2 > 1. From Lemma 2, (58) can be verified as

V̇2 6−λmin (KKK1)‖eee‖p+1−λmin (KKK2)n
1−q

2 ‖eee‖q+1 .
(59)

Substituting (57) into (59) yields

V̇2+2
p+1

2 λmin(KKK1)V
p+1

2
2 +2

q+1
2 λmin(KKK2)n

1−q
2 V

q+1
2

2 6 0.
(60)
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By using Lemma 1, the bound of sliding time Ts can be
given by (46).

Case 2: If ‖eee‖< δ , (55) can be rewritten as

ė̇ėe =−l1KKK1eee− l2KKK1Sig2 (eee)− l3KKK1eee3−KKK2Sigq (eee) .
(61)

Similarly, differentiating V2 with respect to time and sub-
stituting (61) leads to

V̇2 = eeeT
(
−l1KKK1eee− l2KKK1Sig2 (eee)
−l3KKK1eee3−KKK2Sigq (eee)

)
=−KKK1

(
1
2

p2− 5
2

p+3
)

δ
p−1eeeTeee

−KKK1
(
−p2 +4p−3

)
δ

p−2eeeT Sig2 (eee)

−KKK1

(
1
2

p2−3
2

p+1
)

δ
p−3eeeTeee3−KKK2eeeT Sigq (eee)

=−KKK1V2δ
p−1

·


p2−5p+6+2

3
2 V

1
2

2

(
−p2 +4p−3

)
δ−1︸ ︷︷ ︸

ϕ1(p)

+V2
(
2p2−6p+4

)
δ
−2︸ ︷︷ ︸

ϕ2(p)


−KKK2eeeT Sigq (eee) . (62)

According to V2 =
1
2eeeTeee and ‖eee‖ < δ , it is easy to obtain

that 06 2
3
2 V2

1
2 δ−1 < 2. Since ‖eee‖< δ and 0 < p < 1, we

have

ϕ1 (p)> p2−5p+6+2
(
−p2 +4p−3

)
=−p2 +3p > 0, (63)

ϕ2 (p) = 2V2
(

p2−3p+2
)

δ
−2 > 0. (64)

Further simplification of V̇2 yields

V̇2 <−KKK2eeeT Sigq (eee) =−
n

∑
i=1

k2i |ei|q+1

6−n
1−q

2 λmin (KKK2)‖eee‖q+1 . (65)

Substituting the Lyapunov function given by (57) into
(65), we have

V̇2 +2
q+1

2 n
1−q

2 λmin (KKK2)V
1+q

2
2 6 0. (66)

According to Lyapunov stability theory [41], the trajectory
tracking error can converge to zero exponentially when
‖eee‖< δ .

This completes our proof. �

Remark 10: The proposed controller parameters
should be carefully chosen by the following principles.
First, constants m1 and m2 should be chosen to satisfy the
inequality (36); otherwise, it can lead to chattering of the
control torque. Then, based on m1 and m2, we can obtain γ

by (35). Further, depending on the amplitude of the model
uncertainty and bounded external disturbances, we can
choose the constants b0, b1 and b2 such that the coupling
uncertainty satisfies the upper bound (38). For the other
control parameters KKK0, KKK1, KKK2, r > 1, k > 0, 0 < p < 1,
0 < δ 6 1 and q > 1, they should be chosen by trial-
and-error for a good tracking performance. Generally, δ

should be chosen as small as possible to ensure the con-
vergence accuracy of the system. Smaller p contributes to
fast transient response, and q should be chosen as small as
possible, they can have a significant effect on the control
torque and should be modified carefully. Larger control
gains KKK0, KKK1, KKK2, and k contribute to faster convergence of
the system; hence they can be selected as large as possible
within the range required to satisfy the system torque.

Remark 11: It is worth noting that the discontinuous
term τττ2 in (33) can induce chattering in practical applica-
tion. Generally, the boundary layer method is applied to
reduce the chattering of the system [42], i.e., (33) is mod-
ified to

τττ2 =−
sss

‖sss‖+ s0
u, (67)

where s0 is a small positive constant and it can be defined
as 5×10−3.

4. SIMULATION RESULTS

To verify the effectiveness of the proposed FCFSMC
scheme, a two-link robotic manipulator in the configura-
tion shown in Fig. 6 is used.

To compare the performance of the proposed control
scheme fairly with existing control schemes, the dynamic
model of the two-link manipulator is chosen to be the
same as that in the works of Yang et al. [9], Su et al. [31]
and Zhang et al. [32]. The dynamics of the robotic manip-
ulator are denoted as[

M11 (q) M12 (q)
M21 (q) M22 (q)

][
q̈1

q̈2

]
+

[
C11 (q) C12 (q)
C21 (q) C22 (q)

][
q̇1

q̇2

]
+

[
G1 (q)
G2 (q)

]
=

[
τ1

τ2

]
, (68)

Fig. 6. Architecture of the two-link robotic manipulator.
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Table 1. Controller parameters of the FCFSMC.

Parameter Value
Positive constant δ 0.01
Positive constant q 1.5
Lower bound m1 0.09
Upper bound m2 0.2
Gain constant k 1

Gain matrices KKK0, KKK1, KKK2 2I2

Positive constant p 0.5
Positive constant r 1.2
Positive constant b0 12
Positive constant b1 2.2
Positive constant b2 2.8

where

M11(q) = (m1+m2)l2
1+m2l2

2+2m2l1l2 cos(q2)+I1,

M12(q) = M21(q) = m2l2
2 +m2l1l2 cos(q2) ,

M22(q) = m2l2
2 + I2,

C11 (q, q̇) =−2m2l1l2 sin(q2) q̇2,

C12 (q, q̇) =−m2l1l2 sin(q2) q̇2,

C21 (q, q̇) = m2l1l2 sin(q2) q̇1,

C22 (q, q̇) = 0,

G1(q) = (m1+m2)gl1 cos(q1)+m2gl2 cos(q1+q2),

G2(q) = m2l2gcos(q1 +q2) .

The dynamic model parameters of the robotic manip-
ulator are set as: l1 = 1 m, l2 = 0.8 m, m1 = 0.5 kg,
m2 = 1.5 kg, I1 = I2 = 5 kg ·m2, where li, mi, and Ii

are the length, mass, and inertia of link i, respectively
with i = 1, 2, and g = 9.81 m/s2 is the acceleration due
to gravity. The nominal values of m1, m2 are defined as
m0

1 = 0.6 kg, m0
2 = 1.8 kg, and the nominal values of I1, I2

are I0
1 = 6 kg ·m2, I0

2 = 6 kg ·m2.
The reference trajectories of the robotic manipulator

qd = [qd1, qd2]
T are set the same as those in [9,31,32], with

qd1 = 1.25− 7
5

exp(−t)+
7
20

exp(−4t) ,

qd2 = 1.25+ exp(−t)− 1
4

exp(−4t) . (69)

Simultaneously, the initial conditions of the robotic ma-
nipulator system are set as q1(0) = 1, q2(0) = 1.5, q̇1(0) =
0, q̇2(0)= 0. The parameters of the proposed controller are
listed in Table 1.

To fully reflect the performance of different control
schemes, all the simulations in this paper are assumed
that the control torque output by the controller is achiev-
able, that is, the output control torque does not exceed the
upper bound of the allowable control torque of the joint.
Two sets of comparative simulation results are described

in this section to illustrate the effectiveness and superi-
ority of the proposed approach compared to the Fixed
TSMC, singularity-free fixed-time sliding mode control
(SFSMC), and TSMC schemes. All the simulations are
conducted using the Simulink of Matlab 2018b, with a
time step size of 1×10−5.

4.1. Comparison of control performance with Fixed
TSMC

The Fixed TSMC scheme, proposed in the work of Su et
al. [31], can be described as

τττ = τττ0 +τττ1 +τττ2,

τττ0 =MMM0 (qqq) q̈̈q̈qd +CCC0 (qqq, q̇̇q̇q) q̇̇q̇q+GGG0 (qqq) ,

τττ1 =−KKK0Sigr (sss1)

−MMM0 (qqq)(KKK1FFF p (eee)+KKK2HHHq (eee)) ė̇ėe

τττ2 =−
sss1

‖sss1‖+ s0

1
1− γ

(
k+b0 +b2 ‖q̇‖2

+γ ‖τττ0 +τττ1‖

)
, (70)

where the sliding mode surface sss1 is described in (27), and
the other parameters are denoted by (32)-(34). A faster
convergence rate is always desired in tracking control, and
a smaller p is helpful to accelerate the convergence; thus,
p = 0.2 is chosen for this comparison. Defining the pa-
rameter δ1 = 0.01 and the other system parameters of the
Fixed TSMC are the same as shown in Table 1. Except for
the parameter p, the other parameters are also the same as
those in [31]. Figs. 7 and 8 display the simulation results
of trajectory tracking under controllers (30)-(34) and (70),
respectively.

Fig. 7 represents the trajectory-tracking response of
FCFSMC and Fixed TSMC with p = 0.2. It can be seen
that the tracking response driven by FCFSMC provides
a faster convergence rate than that of Fixed TSMC. This
is because the proposed sliding mode surface has a faster
error convergence rate when the tracking error is close
to zero. Fig. 8 shows the control torque, where we can
see that there are two saltations in the control torque of
Fixed TSMC at t1 = 0.6407 s and t2 = 0.7736 s. This is
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Fig. 7. Position-tracking trajectories and position tracking
errors of FCFSMC and Fixed TSMC with p = 0.2.
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Fig. 8. Control input torque of FCFSMC and Fixed TSMC
with p = 0.2.

Table 2. Different initial positions and errors.

[q1(0),q2(0)] Initial error [q1(0),q2(0)] Initial error
I1 [0.20, 2.00] [0, 0] I5 [1.25, 1.25] [-1.05, 0.75]
I2 [0.50, 1.80] [-0.30, 0.20] I6 [1.50, 1.00] [-1.30, 1.00]
I3 [0.75, 1.65] [-0.55, 0.35] I7 [1.75, 0.75] [-1.55, 1.25]
I4 [1.00, 1.50] [-0.80, 0.50] I8 [2.00, 0.50] [-1.80, 1.50]

due to the discontinuity of sp′
1 (x), as explained in Remark

5. The maximin transient control torque variable quanti-
ties are ∆τb = 409.45 Nm in q1, and ∆τc = 556.4 Nm in
q2. In contrast, the control torque of FCFSMC is contin-
uous, which implies that the proposed controller will not
cause chattering of the robotic manipulator. Moreover, it
can also obtain that FCFSMC is less prone to actuator sat-
uration and more acceptable for engineering applications.

A stable control torque range means that the system can
maintain similar maximum and minimum control torques
in different initial states. To compare the influence of the
initial condition on the control torque, the robotic ma-
nipulator in different initial states are set, and the con-
trol torque is simulated with FCFSMC and Fixed TSMC.
Eight different initial joint angles are listed in Table 2.
Fig. 9 shows the maximum control torque of joint 1 and
the minimum control torque of joint 2 in FCFSMC and
Fixed TSMC with different initial conditions I2− I8. From
Fig. 9, we can calculate the maximum absolute value of
the control torque q1 in FCFSMC as 70.53 % of that in
Fixed TSMC, and q2 is approximately 45.07 %. For q1,
the change in the maximum control torque in FCFSMC is
9.37 %, and the change in the maximum control torque in
Fixed TSMC is 23.37 %, and the changes in FCFSMC and
Fixed TSMC for q2 are 0.73 % and 31.6 %, respectively. It
can be concluded from the comparisons that the proposed
control scheme is more robust under different initial con-
ditions.
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Fig. 9. Comparison of the maximum torque of q1 and
the minimum torque of q2 of FCFSMC and Fixed
TSMC with p = 0.2.

4.2. Comparison of control performance with SFSMC
and NFTSMC

The SFSMC scheme was designed in the work of Zhang
et al. [32] as

FFF (eee) = [ f (e1) , · · · , f (en)]
T ,

BBB(eee) = diag
{

sp′
2 (ei)

}
, i = 1, · · · , n,

DDDrrr (xxx) = diag{|ei|r} , i = 1, · · · , n,

τττ =−ηηη +τττ0 +τττ1,

ηηη =KKK1MMM0 (qqq)BBB(eee) ė̇ėe+KKK2MMM0 (qqq)DDDβ−1 (eee) ė̇ėe

−CCC0 (qqq, q̇̇q̇q) q̇̇q̇q−GGG0 (qqq)−MMM0 (qqq) q̈̈q̈qddd ,

τττ0 =−KKK3Sigv1 (sss2)−KKK4Sigv2 (sss2) ,

τττ1 =−sgn(sss2)
1

1− γ

(
b0 +b1 ‖q̇̇q̇q‖2 + γ ‖τττ0−ηηη‖

)
,

(71)

where β , v1, v2 are some known positive constants, with
β > 1, v1 > 1, 0 < v2 < 1. KKK3, KKK4 ∈ Rn×n denote two
positive-definite diagonal matrices, and the sliding mode
surface sss2 is defined in (29). KKK1, KKK2, γ , b0, b1 can be con-
sidered the same as in the proposed control scheme. In
accordance with [32], the parameters of SFSMC are de-
fined as KKK3, KKK4 = 5III2, v1 = 2.5, v2 = 0.5, δ2 = 0.3 and
β = 1.9, and the other parameters are the same as those
listed in Table 1.

As described in the work of Yang et al. [9], the
NFTSMC is given as

sss3 = eee+SigΓΓΓ 1 (eee)+SigΓΓΓ 2 (ė̇ėe) ,

ζ =
∥∥MMM−1

0 (qqq)
∥∥(b0 +b1 ‖qqq‖+b2 ‖q̇̇q̇q‖2

)
,

FFF2 =−MMM−1
0 (qqq)(CCC (qqq, q̇̇q̇q)+GGG000 (qqq))− q̈̈q̈qddd ,
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Fig. 10. Position tracking trajectories and position track-
ing errors.

τττ =−MMM000 (qqq)

M2sss3 +(ζ +M1)
sss3
‖sss3‖ +FFF2

+ΓΓΓ
−1
2

(
III2 +ΓΓΓ 1DΓΓΓ 1−III2 (eee)

)
·Sig2III2−ΓΓΓ 2 (ė̇ėe)

 , (72)

where M1, M2 ∈ R are two positive constants, ΓΓΓ 1 and ΓΓΓ 2

are two positive-definite diagonal matrices, DΓΓΓ 1−III2 (eee) is
denoted as diag

{
|ei|Γi−1

}
, and b0, b1, b2 are the same

as those in (34). In accordance with Yang et al. [9], the
parameters of NFTSMC are defined as ΓΓΓ 1 = diag{2, 2},
ΓΓΓ 2 = diag

{ 5
3 , 5

3

}
, and M1 = M2 = 2. For a fair compari-

son, the parameters of both of the above control schemes
are the same as those given in [9,32].

To evaluate the control performance of the proposed
controller with external disturbances, the disturbances
are set the same as in [32], with τττddd =

[
2sin(t) +

0.5sin(200πt) cos(2t)+0.5sin(200πt)
]T .

The position-tracking trajectories and tracking errors
are shown in Fig. 10. It can be observed that the pro-
posed controller has a faster convergence rate than that
of the SFSMC and NFTSMC. Moreover, the SFSMC has
a fast convergence rate with a large position error, but the
convergence rate decreases rapidly as the tracking errors
converge. This arises from the properties of the nonlinear
function sp

2(x), as described previously.
As shown in Fig. 11, it can be seen that the control

torque curve of FCFSMC remains smooth without chat-
tering, and SFSMC and NFTSMC have strong chatter-
ing caused by the discontinuous term in the controller.
In essence, chattering in SFSMC and NFTSMC is caused
by the signum function. In addition, the range of the con-
trol torque of the SFSMC scheme is larger than that of
the proposed control scheme. In the SFSMC scheme, both
the maximum control torque and the minimum control
torque significantly exceed the torque value in the pro-
posed control scheme. This is because the SFSMC scheme

Fig. 11. Control input torque.

has a large initial control torque, as described in Remark
6. Thus, the proposed controller is less likely to cause ac-
tuator saturation and is easier to be applied in robotic ma-
nipulators.

4.3. Comparative study
For an obvious comparison, the performance of the con-

trol torque change can be evaluated by the total variation
(TV), which can be expressed as [43]

TV =
N−1

∑
i=1
|τi+1− τi|. (73)

In addition, the position tracking error index of the manip-
ulator can be evaluated by the mean absolute error (MAE).
The energy consumption index of the controller can be
evaluated by the function related to torque, i.e., [44]

E =
∫ t

0
τ

T
τdt. (74)

A thorough comparison of the numerical simulations
with the above-mentioned methods is given in Table 3.
It reveals that, compared with the Fixed TSMC scheme,
the proposed control scheme has a faster convergence rate,
a smaller control torque range, less chattering and bet-
ter tracking performance, and they consume almost the
same amount of energy. In particular, the proposed con-
trol scheme has an obvious advantage when p decreases.
Compared with the SFSMC and NFTSMC schemes, the
proposed control scheme has a significantly faster con-
vergence rate. In addition, SFSMC has the largest con-
trol torque range, owing to the large initial torque. The
control torque range of the NFTSMC can be attributed to
the chattering. Due to the chattering of the control system,
the value of TV and the energy consumption of the SF-
SMC and NFTSMC schemes are much larger than that
of the proposed control scheme. The value of MAE of
the NFTSMC is the largest, while the other three control
schemes have approximate tracking errors. It is worth not-
ing that external disturbances have little effect on the con-
vergence time and control torque range of the proposed
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Table 3. Comparison results of the three control schemes.

Disturbance p Controller
Setting time T
(s, e < 10−4)

Control torque (Nm)
TV MAE E

q1 q2 q1 q2

N

0.2 FCFSMC 0.754 0.615 [-39.2 369.0] [-303.8 33.0] 1572.4 0.0663 3.59×108

0.2 Fixed TSMC 0.832 0.686 [-59.9 499.6] [-674.1 50.8] 2631.5 0.0712 3.86×108

0.5 FCFSMC 1.056 0.908 [-22.6 25.8] [-26.7 2.3] 164.9 0.0722 8.30×107

0.5 Fixed TSMC 1.186 1.043 [-19.2 24.5] [-32.0 -0.1] 206.8 0.0777 7.58×107

Y

0.5 FCFSMC 1.057 0.902 [-22.9 25.4] [-27.2 3.7] 1.16×103 0.0718 8.33×107

0.5 Fixed TSMC 1.194 1.038 [-19.6 23.7] [-32.3 1.3] 1.30×103 0.0772 7.59×107

- SFSMC 2.541 2.390 [-108.9 61.1] [-66.1 29.3] 2.31×107 0.0694 3.47×108

- NFTSMC 2.094 1.835 [-49.9 35.0] [-42.0 14.7] 1.51×107 0.1000 3.35×108

control scheme, which implies that the proposed control
scheme has good anti-interference performance.

In summary, through the above comparative analysis of
the data in Table 3, compared with the existing finite-time
SMC scheme and fixed-time SMC schemes, the advan-
tages of the proposed control scheme can be emphasized
as follows:

1) Compared with the finite-time SMC, such as
NFTSMC, the proposed fixed-time SMC scheme
has a significant advantage in that the upper bound
of the settling time is independent of the initial state
of the system. This feature makes the proposed con-
trol scheme more suitable for manipulator systems
with error convergence time constraints. In addition,
a faster error convergence rate and higher precision
tracking error are also advantaging over the finite-
time SMC.

2) Compared with the existing fixed-time SMC
schemes, such as SFSMC and Fixed TSMC, the pro-
posed control scheme has a smoother control torque
that can reduce the chattering of the robotic ma-
nipulator. With the boundary-layer technology, the
chattering and energy consumption of the proposed
control scheme is far less than those of SFSMC. Con-
sidering the same boundary-layer technology, it has
higher tracking accuracy and a more stable control
torque range at different initial positions than those
of the Fixed TSMC.

It is worth mentioning that in addition to the above dis-
cussion, the advantage of the proposed controller over the
traditional proportional-integral-differential (PID) control
as well as neural network control is its strong robustness to
external disturbances and the convergence error bound in-
dependent of the initial state of the system. The proposed
control scheme is more suitable for scenarios requiring
higher performance for robotic manipulators tracking con-
trol, and is also more easily applied than intelligent control
algorithms.

5. EXPERIMENTAL RESULTS

In this section, the proposed FCFSMC scheme is further
validated with several experimental results on a collabora-
tive robotic manipulator. The robotic manipulator system
is shown in Fig. 12 and the experiment platform consisted
of a monitoring computer, a power supply, a cSPACE
control platform with a digital signal processor (DSP,
TMS320F28335) running as the controller and a 6-DOF
collaborative robotic manipulator. The torque applied to
the robotic manipulator is obtained by proportional con-
version through the current generated by the controller.
The feedback position of the joint is detected by a 17-
bit absolute encoder with an accuracy of ±0.015◦, and
the joint velocity is obtained by differential measurement
of position. The robotic manipulator joint module uses a
101:1 gearbox with a maximum allowable load of 157 N
and 54 N for joints 2 and 3, respectively. The control pro-
gram can be written with the Simulink of Matlab 2018b,
and the control schemes are applied to the robotic manipu-
lator by the following steps. First, the proposed control al-
gorithm is offline programmed using MATLAB/Simulink
(MATLAB R2018a or a higher version). Then, through the
cSPACE control platform, the MATLAB/Simulink pro-
gram is directly converted into C codes. Next, in the Code
Composer Studio (CCS) software environment, the con-
verted C codes are downloaded to the DSP control board
of the controller through the simulator. Finally, the pro-

Fig. 12. Diagram of robotic manipulator system
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posed control algorithm is employed by a DSP processor
in the form of C codes in real-time, while the sample time
is set as 5 ms.

In the experiment, joint 2 and joint 3 are used to verify
the effectiveness of the proposed control scheme. Accord-
ing to the motor characteristics of the joints, the ranges
of control torques are limited to τττmax = [157, 54]T Nm.
The desired trajectories given in the above simulation
will converge to constants in a short time, so it is dif-
ficult to observe the tracking performance as the ideal
trajectory changes. To compare the performance of con-
trol schemes more clearly, the desired trajectory is set as
qqqddd =

[
π

4 sin(0.5t+0.1), 1.2−exp(−0.1t)
]T (rad) and both

the initial joint positions and velocities are set to zero. In
order to illustrate the application value of the proposed
control scheme, considering the above simulation results,
we compare the proposed control method with the Fixed
TSMC scheme [31] and the SFSMC scheme [32]. Based
on the properties of the robotic manipulator, the upper
bound parameters of the robotic manipulator are defined
as b0 = 18, b1 = 5, b2 = 8, m1 = 1.3, and m2 = 2.1.
The gain parameters are chosen as KKK0, KKK1, KKK2 = 1.2III2

and k = 1 for the FCSMC and the Fixed TSMC. The pa-
rameters of SFSMC scheme are defined as KKK3, KKK4 = 2III2,
v1 = 2.5, v2 = 0.5 and β = 1.9, and the other parameters
are selected as shown in Table 1.

As a comparison, a PD controller based on gravity com-
pensation is used as a comparator, whose control torque
can be expressed as

τττ = kkkdddė̇ėe+kkkpppeee+GGG0 (qqq) , (75)

where kkkddd , kkkppp are chosen as kkkppp = [200 0; 0 200], kkkddd = [100
0; 0 80].

Remark 12: In the SFSMC scheme, the sign function
in the control torque τ1 can cause strong chattering of the
robotic manipulator, which may damage the manipulator.
To eliminate the chattering caused by the discontinuous
control in the SFSMC scheme [32], and to have a fair com-
parison with the proposed control scheme and the Fixed
TSMC, the boundary-layer technology similar to the pro-
posed control scheme was used in the experiment.

Fig. 13 shows the position-tracking trajectories and
position-tracking errors comparisons. The experimental
control inputs are shown in Fig. 14. Similar to the above
simulation results, the SFSMC scheme [32] has a slightly
slower convergence rate for tracking errors than the other
two control schemes. For joint 2, the convergence time
of tracking error of FCFSMC and Fixed-time TMSC
schemes is about 1.4 s and about 1.2 s for joint 3. The
convergence time of the SFSMC scheme is about twice of
them. Compared to the SMC schemes, the PD controller
has significantly worse tracking performance. The initial
control torque in SFSMC scheme is larger than that in
FCFSMC and Fixed-time TMSC scheme, which is consis-

Fig. 13. Position-tracking trajectories and position-
tracking errors.

Fig. 14. Experimental control input torque.

tent with the simulation results. Moreover, compared with
the Fixed TSMC scheme [31], the Fixed TSMC scheme
has two obvious torque chattering of about 3.06 N and
6.50 N at 0.74 s, and the control input torque of the pro-
posed control scheme is smoother than others. It is worth
mentioning that the control torque of the experimental re-
sults has chattering mainly due to the sensor of the robotic
manipulator.

6. CONCLUSION

In this work, a novel fast continuous fixed-time slid-
ing mode surface and a fixed-time sliding mode control
scheme are presented for an uncertain constrained n-link
robotic manipulator. Combined with the Lyapunov stabil-
ity technique, the proposed control scheme is analyzed
and it is demonstrated that it can guarantee the conver-
gence of position-tracking errors in a fixed time, irrespec-
tive of the initial conditions. Numerical simulations and
experimental results show that transient changes in the
control torque of robotic manipulators are eliminated us-
ing the proposed nonlinear function and the sliding mode
surface. Compared with the existing fixed-time SMC and
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finite-time SMC schemes, the proposed control scheme
can provide a faster convergence rate with a smaller con-
trol torque range and higher trajectory tracking accuracy.
Meanwhile, the extreme value of the control torque does
not change greatly in different initial states of the manip-
ulator system, which is beneficial to the application of the
controller. In future work, the focus will be placed on find-
ing a fixed-time control for uncertain robotic manipulators
with a user-defined control torque range.
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