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Robust Near-optimal Control for Constrained Nonlinear System via Inte-
gral Reinforcement Learning
Yu-Qing Qiu, Yan Li, and Zhong Wang* �

Abstract: This paper proposes a robust near-optimal control algorithm for uncertain nonlinear systems with state
constraints and input saturation. By incorporating a barrier function and a non-quadratic term, the robust stabiliza-
tion problem with constraints and uncertainties is converted into an unconstrained optimal control problem of the
nominal system, which requires the solution of the Hamilton-Jacobi-Bellman (HJB) equation. The proposed inte-
gral reinforcement learning (IRL)-based method can obtain the approximate solution of the HJB equation without
requiring any knowledge of system drift dynamics. An online gain-adjustable update law of the actor-critic archi-
tecture is developed to relax the persistence of excitation (PE) condition and ensure the closed-loop system stability
throughout learning. The uniform ultimate boundedness of the closed-loop system is verified using Lyapunov’s
direct method. Simulation results demonstrate the effectiveness and feasibility of the proposed method.
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1. INTRODUCTION

Various uncertainties could significantly degrade the
closed-loop system stability and performance [1,2]. Re-
cently, the robust optimal control problems for nonlinear
systems with uncertainties have received intensive atten-
tions [3-7], which can take both optimality and robust-
ness into consideration. These robust optimal controllers
are obtained by handling optimal control problems, which
frequently require solving the Hamilton-Jacobi-Bellman
(HJB) equation. However, the analytic solution of the HJB
equation is difficult to get due to the nonlinearity.

In order to address the challenge, reinforcement learn-
ing (RL) method is employed to solve the optimization
problems, and it has gained a lot of interests from inves-
tigators [8-10]. In [11-14], the approximate optimal solu-
tions are obtained by the actor-critic algorithms for nonlin-
ear optimal control problems. In [15], a novel RL-based
robust adaptive controller is presented for nonlinear sys-
tems subject to input constraints, which can remove the
condition imposed on the initial control. Whereas, the in-
formation about system drift dynamics is required either
explicitly or from an identifier in the traditional RL tech-
nique.

Integral reinforcement learning (IRL), as a variation of
the RL, is proposed in [16,17], which can relax the re-
quirement of system dynamics by introducing the inte-
gral Bellman equations. Thus, it has been utilized in the

optimal control problems for uncertain nonlinear systems
[18-21] and input-constrained systems [22]. In [23], an ap-
proximate optimal critic learning algorithm is developed
for tackling input-constrained optimal control problems.
A robust control problem is transformed into a constrained
optimal control problem in [24], which is solved utiliz-
ing the critic and actor neural networks (NNs). The study
on designing optimal controllers using the IRL frame-
work for a class of input-constrained nonlinear systems
can be tracked to the work [25]. All of the preceding
studies employ a non-quadratic penalty function to re-
move the input saturation. One property of these meth-
ods is that they require the persistence of excitation (PE)
condition to be used. To relax the PE condition, an IRL
algorithm based on the actor-critic structure is derived
in [26], which employs the experience replay (ER) tech-
nique to learn the online solution of the HJB equation for
partially-unknown input-constrained systems. The study
[27] presents a critic-only IRL controller coupled with an
ER-based identifier to solve the optimal control problem
for unknown systems with actuator constraints. Mishra
[28] proposes a novel parameter update law for tuning the
weights of critic, actor and disturbance NNs based on the
variable-gain gradient descent and ER methods.

This paper focuses on the robust optimal control prob-
lem for uncertain nonlinear systems under state con-
straints and input saturation based on the IRL technique.
Requiring both an initial admissible control input and the
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PE condition simultaneously is challenging for the tra-
ditional IRL formulations like [25]. In this paper, a bar-
rier function and a non-quadratic penalty term are intro-
duced to handle the state and input constraints. In par-
ticular, an online update law for the actor-critic architec-
ture is designed to address the aforementioned challenge.
As a result, an online IRL-based robust near-optimal con-
trol method is proposed for constrained nonlinear systems
with uncertainties. It should be noted that the proposed
scheme is in a similar spirit as [25], but the novel update
laws in this paper can relax the PE condition and ensure
the system stability throughout learning without an initial
admissible control.

The major contributions of this paper are as follows:

1) A new gain-adjustable update law of the actor-
critic structure is proposed, in which the weights are
learned by employing both historical and current data.
The benefit is that the PE condition is relaxed and the
system stability is ensured throughout learning.

2) The system drift dynamics are not required in the pro-
posed method. The stability and convergence analysis
of the closed-loop system is given, which includes the
online update laws of the critic and actor NNs.

The rest of this paper is arranged as follows: The prob-
lem formulation and preliminaries are given in Section 2.
An online IRL-based controller is designed in Section 3,
and the stability and convergence analysis of the closed-
loop system is presented in this section too. Section 4
gives simulation results to verify the proposed control al-
gorithm, followed by the conclusion in Section 5.

Notation: Throughout this paper, | · | denotes the mag-
nitude of a scalar. ‖·‖ is the Euclidean norm of a vector
and the induced norm of a matrix. λmax(·) and λmin(·) are
the maximum eigenvalue and minimum eigenvalue of a
matrix respectively. The superscripts −1 and T represent
the inverse and transpose of a matrix respectively.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1. Problem formulation
Consider a nonlinear system described as

ẋ = f (x)+g(x)(u+d(x)), (1)

where x ∈ Rn denotes the state vector and u ∈ Rm is the
control vector. f (x) ∈ Rn and g(x) ∈ Rn×m are continu-
ous functions. The uncertainty term d(x) ∈ Rm represents
both the model parameters uncertainties and unmodeled
dynamics. The state constraint and input saturation are
considered as follows:

Dx = {x : |x j|6 β , j = 1, · · · , n} ,
Du = {u : |ui|6 η , i = 1, · · · , m} , (2)

where Dx and Du denote the state and control constraint
sets, while the bounds are represented by β and η , respec-
tively.

For convenience, the following assumptions and defini-
tion are given below.

Assumption 1: The functions f (x) and g(x) are Lips-
chitz continuous on a compact set Ω containing the origin,
such that the system (1) with (2) is controllable.

Assumption 2: It is assumed that there exist three
known positive constants b f , bg and ρ such that ‖ f (x)‖6
b f ‖x‖ with f (0) = 0, ‖g(x)‖ 6 bg, and the uncertainties
‖d(x)‖6 ρ ‖x‖ with d(0) = 0.

Definition 1 (Uniformly ultimately bounded (UUB)
stability) [29]: Consider the nonlinear system ẋ = f (x, t).
The solution of system is UUB stable if for ∀x⊂Ω, there
exists a bound B and time T (B,x0) such that ‖x(t)− x0‖6
B for all t > t0 +T .

For the nonlinear system (1), the robust optimal stabi-
lization problem investigated in this paper is to design a
robust controller u(x) ∈ Du based on the optimal control,
such that the closed-loop system is stable in the sense of
UUB under constraints (2) and uncertainties d(x).

2.2. Preliminaries
The nominal system is defined as

ẋ = f (x)+g(x)u(x), (3)

and the corresponding performance index is

J(x(0),u(x)) =
∫

∞

0

(
ρ

2‖x‖2 +Q(x)+U(u)
)
dτ, (4)

where x(0) shows the initial state, Q(x) and U(u) will be
given in the following. As a result of [24], the robust con-
trol for the system (1) with (2) can be obtained by solving
a constrained optimal control problem denoted by (3), (4)
and (2). However, the problem is difficult to solve because
the constraints are involved.

To copy with this difficulty, a non-quadratic penalty
term and a barrier function are introduced for the per-
formance index (4). For the input saturation, the non-
quadratic penalty term U(u) is defined as [26]

U(u) = 2
∫ u

0

(
η tanh−1(ξ/η)

)T
Rdξ , (5)

where tanh−1(ξ/η)= [tanh−1(ξ1/η), · · · , tanh−1(ξm/η)]T ,
tanh−1(·) = artanh(·) and R= diag(r1, · · · , rm) with ri > 0.
Note that U(u) is positive definite because tanh−1(·) is a
strictly monotonic odd function and R is positive definite.

To deal with the state constraints, the barrier function
Qs(x) is designed as follows:

Qs(x) = αs

n

∑
i=1
|xi|2 ln

(
β 2

β 2− x2
i

)
, (6)
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where αs > 0 is a small constant. It is obvious that the
cost rate Q(x) = xT Sx+Qs(x)> 0 for all |xi|< β and the
equation holds if and only if x = 0, where S is a symmetric
positive definite matrix. Moreover, Q(x)→+∞ when xi→
β .

Remark 1: Compared with [24-27], the state and input
constraints are handled simultaneously in this paper. The
constraints have been involved in the cost functions U(u)
and Q(x). The state and control will be confined as long as
the performance index J(x(0),u(x)) is finite. Given these
cost functions, the constrained optimal control problem
will be converted into an unconstrained one.

Definition 2 (Admissible control) [11]: A control pol-
icy µ(x) is said to be admissible on a compact set Ω for
(3) with respect to (4), denoted by µ ∈ Π(Ω), if µ(x) is
continuous with µ(0) = 0, u(x) = µ(x) stabilizes (3), and
V (x0) is finite for all x0.

Considering an admissible control policy u(x), the
value function is written as

V (x) =
∫

∞

t

(
ρ

2‖x‖2 +Q(x)+U(u)
)
dτ, (7)

with V (x) ∈ C1, where Cn denotes the set of n-times con-
tinuously differentiable functions. For the nominal system
(3), define the Hamiltonian function

H(x,u(x),∇xV ∗(x)) = ∇xV ∗T (x)( f (x)+g(x)u(x))

+ρ
2‖x‖2 +Q(x)+U(u), (8)

where ∇xV ∗T (x) = (∂V ∗(x)/∂x)T . V ∗(x) denotes the opti-
mal value function, which is obtained from the following
HJB equation

min
u(x)

H(x,u(x),∇xV ∗(x)) = 0, (9)

with V ∗(0) = 0, and the optimal control is derived as

u∗(x) = η tanh
(
− 1

2η
R−1gT (x)∇xV ∗(x)

)
. (10)

Then, the HJB equation (9) can be rewritten as

∇xV ∗T (x) f (x)+ρ
2‖x‖2 +Q(x)−2η

2AT R tanh(A)

+2
∫

η tanh(−A)

0

(
η tanh−1(ξ/η)

)T
Rdξ = 0, (11)

where A= 1/(2η)R−1gT (x)∇xV ∗(x).

Theorem 1: Let Assumptions 1 and 2 hold. Consider
the nominal system (3) with the value function (7) and the
HJB equation (11). If dT (x)Rd(x)6 ρ2‖x‖2,

1) the optimal control u∗(x) in (10) ensures the state of
system (1) to be UUB, and

2) the relationship (2) is satisfied.

Proof: For 1), since the additional cost rate Qs(x) has
no impact on the proof, the details can be found in [24].
Based on 1), we can find that the optimal value function
V ∗(x) is finite. Thus, the state and input constraints are
guaranteed. This completes the proof. �

Remark 2: The resulting robust control u∗(x) of sys-
tem (1) is optimal with respect to the predefined cost func-
tion. Therefore, u∗(x) is also called the robust optimal con-
troller in this paper.

Obviously, the robust optimal control u∗(x) can be ob-
tained by solving the optimal value function V ∗(x). How-
ever, it is intractable to solve the HJB equation analyti-
cally for general nonlinear systems. In order to conquer
this challenge, an online IRL-based algorithm is proposed
to find the approximate solution of the HJB equation in
the subsequent sections.

3. NEAR-OPTIMAL CONTROLLER DESIGN

In this section, an online partially model-free method is
presented to obtain the near-optimal controller. An actor-
critic structure is constructed to approximate the optimal
value function and optimal control firstly. Next, an online
update law with adjustable gain for the actor-critic scheme
is presented. Finally, the stability and convergence analy-
sis for the closed-loop system is provided.

3.1. Actor-critic structure
According to the Bellman’s principle of optimality, for

any time t > T and time interval T > 0, when control u(x)
is admissible, the value function V (x) satisfies the follow-
ing integral Bellman equation

V (x(t)) =V (x(t +T ))

+
∫ t+T

t

(
ρ

2‖x‖2 +Q(x)+U(u)
)

dτ. (12)

Note that the system dynamics f (x) and g(x) are not in-
cluded in (12). The corresponding Lyapunov equation that
is used to design the learning algorithm is as follows:

V (x(t +T ))−V (x(t))

+
∫ t+T

t

(
ρ

2‖x‖2 +Q(x)+U(u)
)

dτ = 0. (13)

To approximate the optimal value function and optimal
control policy, an actor-critic structure is employed in this
paper. Based on the Weierstrass high-order approximation
theorem [30], there exists a single-layer NN such that the
optimal value function can be expressed as

V ∗(x) = w∗Tc Θc(x)+ εc(x), (14)

where Θc(x) ∈ RNc is a vector of polynomial basis func-
tions, Nc is the number of neurons, w∗c ∈ RNc is the ideal
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weights and εc(x) is the approximation error. Since the op-
timal critic weights w∗c are unknown in general, the current
weights estimation ŵc will be used. As a result, the critic
NN can be obtained as follows:

V̂ (x) = ŵT
c Θc(x), (15)

where V̂ (x) is the estimation of the optimal value function
V ∗(x).

Similarly, the optimal control is approximated by

u∗(x) = η tanh
(
Θ

T
a (x)w

∗
a/η

)
+ εa(x), (16)

where the notions of Θa(x) ∈ RNa×m, Na, w∗a ∈ RNa and
εa(x) ∈ Rm are same as critic NN. Then, the actor NN is
denoted as

û(x) = η tanh
(
Θ

T
a (x)ŵa/η

)
, (17)

where ŵa and û(x) show the estimations of the ideal actor
weights w∗a and the optimal control u∗(x), respectively.

Remark 3: This paper considers the continuous opti-
mal value function V ∗(x) and the continuous optimal con-
trol u∗(x). Therefore, the last term εc(x) and εa(x) in (14)
and (16) will converge uniformly to zero as Nc → ∞ and
Na→ ∞. In addition, for fixed Nc and Na, the approxima-
tion errors εc(x) and εa(x) are bounded by constants on a
compact set.

The following assumption is supplied to analyze the
system stability conveniently, which is necessary in many
studies such as [15,25,26].

Assumption 3: The assumptions are given as follows:

1) The basis functions and their gradients are bounded
for all x ∈ Ω, i.e., ‖Θc(x)‖ 6 bc, ‖∇xΘc(x)‖ 6 bcx,
‖Θa(x)‖6 ba and ‖∇xΘa(x)‖6 bax.

2) The approximation errors and their gradients are
bounded for all x ∈ Ω, i.e., ‖εc(x)‖ 6 bεc, ‖εa(x)‖ 6
bεa, ‖∇xεc(x)‖6 bεcx and ‖∇xεa(x)‖6 bεax.

3) The ideal weights and their estimations are bounded,
i.e., ‖w∗c‖6 b∗wc, ‖w∗a‖6 b∗wa, ‖ŵc‖6 bwc and ‖ŵa‖6
bwa.

3.2. Update laws design
In order to make the weight estimations ŵc and ŵa con-

verge to ideal values w∗c and w∗a, an online update law is
developed for actor-critic scheme to tune the critic and ac-
tor weights simultaneously.

Substituting (15) into (13), the Bellman error ec is given
by

ec = ŵT
c σ(x)+

∫ t+T

t

(
ρ

2‖x‖2 +Q(x)+U(u)
)

dτ,

(18)

where σ(x) = Θc(x(t +T ))−Θc(x(t)) with ‖σ(x)‖6 bσ ,
and define σ , σ(x). The error ea ∈ Rm between the esti-
mated control input and the optimal control policy is cal-
culated by

ea = û(x)−u∗(x). (19)

In [25], the critic and actor weights can be adjusted
using the gradient descent method to minimize the goal
functions Ec = 1

2 eT
c ec and Ea = 1

2 eT
a ea. However, this

learning algorithm requires the PE condition and an ini-
tial admissible control policy throughout learning, both of
which are difficult to achieve for general nonlinear sys-
tems. To remedy these, the following update laws are pro-
posed.

The update law for the critic NN, employing the gra-
dient descent method and ER technology, is designed as
follows:

˙̂wc =−αc
σ

(σ T σ +1)2 eT
c

−αc

q0

∑
j=1

σ j

(σ T
j σ j +1)2

(
σ

T
j ŵc +K j

)
, (20)

where αc > 0 is the adjustable gain, σ j = Θc(x(t j +T ))−
Θc(x(t j)), K j =

∫ t j+T
t j

(
ρ2‖x‖2 +Q(x)+U(û)

)
dτ and j

( j = 1, · · · , q0) denotes the jth sample data stored in the
history stack L. It is shown that the critic weights are up-
dated using the historical and current data to ensure the
convergence of ŵc.

Remark 4: Let L = [σ̄1, . . ., σ̄q0 ] be the history stack,
where σ̄ = σ/(σ T σ +1) and q0 is the number of samples.
If rank(L) = Nc, the history stack L in the recorded data
contains as many linearly independent elements as the
number of neurons in (15) [26]. As presented in [31,32],
the summation term in (20) can guarantee that the critic
weight estimations ŵc converge to the ideal value within a
residual set provided that rank(L) = Nc.

Remark 5: In order to satisfy the condition rank(L) =
Nc, the number of stored samples q0 must be a fixed value
with q0 > Nc, and the data in L is updated periodically
in simulations. Note that Nc is commonly carried out by
computer simulations. Thus, the condition rank(L) = Nc

is equivalent to a PE-like condition, guaranteeing that the
Lyapunov derivative is negative definite.

The following tuning law is developed for the actor NN,
with the first term minimizing Ea and the second term
(i.e., the stabilization term) ensuring the system stability
throughout learning.

˙̂wa =−αaΘa(x) tanh′(Â)eT
a

−ϒ αaΘa(x) tanh′(Â)gT (x)x, (21)

ϒ =

{
0, if xT (t +T )x(t +T )− xT (t)x(t)6 0,

1, otherwise,
(22)
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where αa > 0 is the adjustable gain and Â = ΘT
a (x)ŵa/η .

Furthermore, unlike the update laws with constant
learning rate in [20,25,26], the adjustable gains αc and αa

are updated in the following way:

α̇c =

{
2αckc(|ec|− eζ c), |ec|> eζ c,

0, |ec|< eζ c,
(23)

α̇a =

{
2αaka(‖ea‖− eζ a), ‖ea‖> eζ a,

0, |ea|< eζ a,
(24)

where kc > 0 and ka > 0 are constants and eζ c and eζ a are
predefined values.

Remark 6: Compared with constant gains, the advan-
tage of the update laws in (20)-(24) is that the critic and
actor NNs can modify their learning rate to increase con-
vergence speed based on ec and ea. It can also guarantee
that the approximation errors will converge to within the
prescribed values as fast as possible.

A pseudocode (with inline comments to provide guid-
ance after the symbol .) that describes the proposed robust
near-optimal control method has the form shown in Algo-
rithm 1.

Remark 7: Since the optimal control u∗(x) is un-
known, u∗(x) in (19) can be computed using (10) and (15)
in practice. The system drift dynamics f (x) are not re-
quired in the proposed method.

Lemma 1: Suppose Assumption 3 holds. Consider the
critic NN (15) and its update law (20) with (23) for an ad-
missible control policy u(x). If the history stack L satisfies
the condition rank(L) = Nc, the weight estimation error
w̃c = w∗c− ŵc is UUB.

Proof: The Bellman error εB is

εB = w∗Tc σ +
∫ t+T

t

(
ρ

2‖x‖2 +Q(x)+U(u)
)

dτ. (25)

There exists a bound bεB under Assumption 3 such that
‖εB‖6 bεB. Based on the definition of εB, it follows that

ec =−w̃T
c σ + εB,

ec j =−w̃T
c σ j + εB j. (26)

Thus, we obtain

˙̃wc =−αcD̄w̃c +αcD1, (27)

where D̄ = σ̄ σ̄ T + ∑
q0
j=1 σ̄ jσ̄

T
j , D1 = (σ̄/ms)εB +

∑
q0
j=1(σ̄ j/ms j)εB j, σ̄ = σ/(σ T σ + 1), ms = σ T σ + 1,

σ̄ j = σ j/(σ
T
j σ j + 1) and ms j = σ T

j σ j + 1. Note that, if
Assumption 3 holds and rank(L) = Nc, D̄ is positive and
‖D1‖6 (1+q0)bεB.

Consider the Lyapunov function

L2 =
1
2

α
−1
c w̃T

c w̃c, (28)

Algorithm 1: Robust near-optimal control algorithm
based on IRL.

1: Start with initial state x(0), initial weights ŵc(0),
ŵa(0)

2: procedure
3: Propagate t, x(t) using system (1) and u(t) = û(x)
. {x(t) is from integrating the system (1) with Runge-
Kutta method, and t is from the integral interval [ti, ti+
T ], i ∈ Nit where T ∈ R+ is the step size}

4: if length(L) < q0 or rand(L) 6= Nc . {the history
stack L = [σ̄1, . . . , σ̄q0 ] must have Nc linearly indepen-
dent element} then

5: Select an arbitrary data point to be included in
the history stack L . {periodically update data in L
(c.f. Remarks 4-5)}

6: end if
7: Update αc and αa . {integrate α̇c as in (23) and

α̇a as in (24) using Runge-Kutta method}
8: Propagate ŵc and ŵa . {integrate ˙̂wc as in (20) and

˙̂wa as in (21) with Runge-Kutta method}
9: Compute V̂ (x) using (15) . output of the critic NN

10: Compute û(x) using (17) . output of the actor NN
11: end procedure

its time derivative is given by

L̇2 =−
1
2

α
−2
c α̇cw̃T

c w̃c +α
−1
c w̃T

c
˙̃wc

=− 1
2

α
−2
c α̇cw̃T

c w̃c− w̃T
c D̄w̃c + w̃T

c D1

6−
(

λmin(D̄)+
1
2

α
−2
c α̇c

)
‖w̃c‖2

+(1+q0)bεB ‖w̃c‖ .

Therefore, L̇2 < 0 provided that

‖w̃c‖>
(1+q0)bεB

λmin(D̄)+ 1
2 α−2

c α̇c
. (29)

It is shown that the critic weight estimation error w̃c is
UUB. This completes the proof. �

3.3. Stability and convergence analysis
The main result of this paper is presented by the follow-

ing theorem.

Theorem 2: Suppose Assumptions 1-3 hold. The his-
tory stack L satisfies the condition rank(L) = Nc. Consider
the system (3) and control policy (17). The update laws
of the critic and actor NNs are described as (20) and (21).
The critic and actor weight estimate errors are defined as
w̃c = w∗c− ŵc and w̃a = w∗a− ŵa, respectively. Then,

1) the system state x and the weight estimate errors w̃c,
w̃a are UUB with the proper parameters and suffi-
ciently large Na,
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2) the approximate value function V̂ (x) and the approx-
imate optimal control û(x) converge to the optimal
values within finite bounds, and

3) the adjustable gains αc and αa are bounded.

Proof: Note that the system (3) with control (17) con-
stitutes the closed-loop system. Thus, the closed-loop sys-
tem involves x, w̃c and w̃a. The Lyapunov function candi-
date is given as follows:

L4 =
∫ t+T

t
V ∗(x)dτ +

1
2

α
−1
c w̃T

c w̃c +
1
2

α
−1
a w̃T

a w̃a

+
1
2

xT x, (30)

where V ∗(x) is the optimal value function, x is the sys-
tem states, αc and αa are adjustable gains, w̃c and w̃a are
weight estimation errors. Note that the terms of the Lya-
punov function candidate L4 are relevant to the optimal
value function, weight errors and system states.

Firstly, consider L1 =
∫ t+T

t V ∗dτ . The time derivative of
L1 is

L̇1 =
∫ t+T

t
V̇ ∗dτ

=
∫ t+T

t
(∇xΘ

T
c w∗c +∇xεc)

T ( f +gû)dτ. (31)

Define HJB approximation error as

εH = w∗Tc ∇xΘc( f +gu∗)+ρ
2 ‖x‖2 +Q(x)+U(u∗),

(32)

with ‖εH‖6 bH .
Together with (31), (32), and the relationship∥∥∇xε

T
c ( f +gû)

∥∥6 bεcxb f ‖x‖+bεcxbgbû,

the L̇1 can be written as

L̇1 =
∫ t+T

t

(
w∗Tc ∇xΘcg(û−u∗)−ρ

2 ‖x‖2−Q(x)
)

dτ

+
∫ t+T

t

(
−U(u∗)+ εH +∇xε

T
c ( f +gû)

)
dτ

6
∫ t+T

t

(
−ρ

2 ‖x‖2− xT Sx+b11 ‖x‖+b12

)
dτ

6
∫ t+T

t

(
−b10 ‖x‖2 +b11 ‖x‖+b12

)
dτ,

where b10 = ρ2 + λmin(S), b11 = bεcxb f and b12 =
b∗wcbcxbg(bû +bu∗)+bH +bεcxbgbû.

Secondly, consider L2 = 1/2α−1
c w̃T

c w̃c. The result of L̇2

can be written as

L̇2 6−b20 ‖w̃c‖2 +b21 ‖w̃c‖ , (33)

where b20 = λmin(D̄)+(1/2)α−2
c α̇c and b21 = (1+q0)bεB.

Thirdly, consider L3 = (1/2)α−1
a w̃T

a w̃a. The time
derivative of L3 is

L̇3 =−
1
2

α
−2
a α̇aw̃T

a w̃a +α
−1
a w̃T

a
˙̃wa

=− 1
2

α
−2
a α̇aw̃T

a w̃a + w̃T
a Θa tanh′(Â)ea︸ ︷︷ ︸

C1

+ϒ w̃T
a Θa tanh′(Â)gT x︸ ︷︷ ︸

C2

. (34)

According to the results in [25], we have

C1 =−η
2ÂT tanh′(Â) tanh(Â)− w̃T

a Θa tanh′(Â)εa

−η
2A∗T tanh′(Â) tanh(A∗), (35)

where A∗ = ΘT
a (x)w

∗
a/η and Â = ΘT

a (x)ŵa/η . Since
tanh(0) = 0, tanh′(·) > 0, vT tanh(v) > 0 and tanh(·) is a
strictly monotonic odd function, C1 is negative for suffi-
ciently large number of basis functions in (17). Thus, the
following inequality holds

L̇3 6−
1
2

α
−2
a α̇aw̃T

a w̃a +C2. (36)

Finally, the time derivative of Lyapunov function L4 can
be given by

L̇4 6
∫ t+T

t

(
−b10 ‖x‖2 +b11 ‖x‖+b12

)
dτ

−b20 ‖w̃c‖2 +b21 ‖w̃c‖

− 1
2

α
−2
a α̇aw̃T

a w̃a +C2

+ xT ( f +gû). (37)

(i) When ϒ = 0, that is C2 = 0 and xT (t +T )x(t +T )−
xT (t)x(t) 6 0. For t > T , we obtain 1/2(xT (t + T )x(t +
T )− xT (t)x(t)) =

∫ t+T
t xT ẋdτ =

∫ t+T
t xT ( f + gû)dτ 6 0

which implies that xT ( f +gû)< 0 for ‖x‖> 0. Then, (37)
satisfies the following relationship

L̇4 6
∫ t+T

t

(
−b10 ‖x‖2 +b11 ‖x‖+b12

)
dτ

−b20 ‖w̃c‖2 +b21 ‖w̃c‖

− 1
2

α
−2
a α̇aw̃T

a w̃a. (38)

It is observed that L̇4 < 0 provided that

‖x‖> b11

2b10
+

√
b2

11 +4b10b12

4b2
10

, (39)

‖w̃c‖>
b21

b20
. (40)

Inspired by [26], the upper and lower bounds on the
Lyapunov function candidate L4 can be found, i.e., there
exist class k functions k1 and k2 such that

k1(‖z‖)6 L4 6 k2(‖z‖), (41)
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where z= [xT , w̃T
c , w̃T

a ]
T . Moreover, based on this notation,

the first line in (38) is negative if (39) holds. The second
line in (38) will be negative if (40) holds. And the last line
in (38) is also negative. Thus, it is concluded that L̇4 < 0
if ‖z‖> z1 for some z1. Because L4 in (30) is positive and
L̇4 is negative for sufficiently large ‖z‖, it follows that z is
UUB.

(ii) When ϒ = 1, that is xT ( f +gû)> 0. Let W =C2 +
xT ( f +gû), we have

W = xT g tanh′(Â)ΘT
a w̃a + xT f + xT gû. (42)

Based on Taylor series, the following equality holds.

û−u∗ = η tanh(Â)−η tanh(A∗)− εa

=−η tanh′(Â)(A∗− Â)−O((A∗− Â)2)− εa

=− tanh′(Â)ΘT
a w̃a−O

(
(ΘT

a w̃a/η)2)− εa,

where O
(
(ΘT

a w̃a/η)2
)

is the high order term in Taylor se-
ries with

∥∥O
(
(ΘT

a w̃a/η)2
)∥∥6 bT 1 +bT 2 ‖w̃a‖.

According to the assumptions in [15], for the sys-
tem (3) and the optimal control policy u∗(x), there ex-
ists a symmetric positive definite matrix Γ (x) such that
xT ( f +gu∗) =−xT Γ (x)x. Hence, W can be written as

W = xT f + xT g
(
u∗−O

(
(ΘT

a w̃a/η)2)− εa
)

= xT ( f +gu∗)− xT gO
(
(ΘT

a w̃a/η)2)− xT gεa

=− xT
Γ (x)x− xT gO

(
(ΘT

a w̃a/η)2)− xT gεa

6 −b30 ‖x‖2 +b31 ‖x‖+b32 ‖w̃a‖‖x‖

= − ι1b30 ‖x‖2 +b32 ‖w̃a‖‖x‖

− ι2b30 ‖x‖2 +b31 ‖x‖

= − ι1b30

(
‖x‖− b32

2ι1b30
‖w̃a‖

)2

+
b2

32

4ι1b30
‖w̃a‖2

− ι2b30 ‖x‖2 +b31 ‖x‖

6 b33 ‖w̃a‖2− ι2b30 ‖x‖2 +b31 ‖x‖ , (43)

where b30 = λmin(Γ ), b31 = bg(bT 1+bεa), b32 = bgbT 2 and
b33 = b2

32/(4ι1b30). The notations ι1 and ι2 satisfy 0< ι1 <
1, 0< ι2 < 1 and ι1 + ι2 = 1.

Considering (37) and (43), we obtain

L̇4 6
∫ t+T

t

(
−b10 ‖x‖2 +b11 ‖x‖+b12

)
dτ

− ι2b30 ‖x‖2 +b31 ‖x‖

−b20 ‖w̃c‖2 +b21 ‖w̃c‖

+(−1
2

α
−2
a α̇a +b33)‖w̃a‖2 . (44)

When ϒ = 1, it is obvious that the control policy
û(x) does not converge to the optimal value u∗(x), and
the inequality ‖ea‖ > eζ a holds, i.e., α̇a > 0. As a re-
sult, by choosing the parameters appropriately, the term

− 1
2 α−2

a α̇a + b33 can be negative. Then, L̇4 < 0 provided
that

‖x‖>max

{
b11

2b10
+

√
b2

11 +4b10b12

4b2
10

,
b31

ι2b30

}
, (45)

‖w̃c‖>
b21

b20
, (46)

− 1
2

α
−2
a α̇a +b33 < 0. (47)

Similarly, let z= [xT , w̃T
c , w̃T

a ]
T and the relationship (41)

holds. Then, both the first line and second line in (44) are
negative if (45) holds. The third line is negative if (46)
holds. And the last line will be also negative if (47) holds.
Thus, it is clear that L̇4 < 0 if ‖z‖ > z2 for some z2. Be-
cause L4 in (30) is positive and L̇4 is negative for suffi-
ciently large ‖z‖, it follows that z is UUB.

Combining (i) and (ii) and using the standard Lyapunov
extension theorem [33], it is concluded that the system
state x and weight estimation errors w̃c, w̃a are UUB with
ultimate bounds.

Based on the analysis above, the following condition
holds:

∥∥V̂ −V ∗
∥∥6 (1+q0)bεBbc

λmin(D̄)+ 1
2 α−2

c α̇c
+bεc = γV . On the other

hand, the term with regard to w̃a is negative for sufficiently
large Na and relationship (47), thus ‖û−u∗‖ 6 γu, where
γu is a small positive constant. This indicates that the ap-
proximate value function and approximate optimal control
can converge to the optimal values within finite bounds.

Furthermore, if |ec|> eζ c and ‖ea‖> eζ a, the state x and
weight estimate errors w̃c, w̃a will approach the residual
set. Therefore, the adjustable gains αc and αa are bounded
based on (23) and (24). This completes the proof. �

Remark 8: According to Theorems 1 and 2, the control
law in (17) can guarantee the state of the system (1) to be
UUB under constraints and uncertainties.

4. SIMULATION RESULTS

In this section, the effectiveness of the proposed algo-
rithm is validated by using two numerical cases. The first
case is used to show that the proposed method obtains the
near-optimal controller for a nominal nonlinear system.
The second case is carried out to demonstrate the feasi-
bility for a nonlinear system in the presence of constraints
and uncertainties. In the simulations below, since the his-
tory stack is empty at the beginning, a small probing noise
in the form of ne(t) = 0.1∗ (sin(0.3πt)+cos(0.3πt)) will
be added to the control input for the first second.

Consider a torsional pendulum system, the dynamics
are described as follows [34]:

dθ

dt
= ω,

J
dω

dt
= τ−Mgl sinθ − fd

dθ

dt
,
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where the pendulum’s mass M = (1/3) kg, its length
l = (2/3) m, the rotary inertia J = (4/3) kg·m2, the gravi-
tational acceleration g = 9.8 m/s2 and the frictional factor
fd = 0.2. The system state is x = [θ , ω]T = [x1, x2]

T de-
noted by the angle and angular velocity, and the control
input is u = τ . Then the nonlinear system is given by

ẋ =
[

x2

− 1
J (Mgl sin(x1)+ fdx2)

]
+

[
0
1
J

]
u. (48)

In simulations, the initial state x(0) = [0.8, −0.8]T , S =
I2, R = 1, eζ c = eζ a = 10−4, kc = 10, ka = 5, T = 0.01s,
and the initial adjustable gains αc(0) = 150, αa(0) = 10.
The basis functions of critic and actor NNs are chosen as
Θc(x) = [x2

1, x1x2, x2
2]

T and Θa(x) = [x1, x2, x2
1, x1x2, x2

2]
T ,

respectively.

4.1. Case 1
The first case is intended to show that the proposed

method can obtain a near-optimal controller for nonlinear
system without constraints and uncertainties. For (48), the
constraint bounds are chosen large enough to make sure
that the states and control do not exceed these bounds.
Thus, the following performance index is given

J =
∫

∞

0

(
xT Sx+Qs +U

)
dτ, (49)

where Qs = αs ∑
2
i=1 |xi|2 ln

(
β 2

β 2−x2
i

)
with αs = 10−5, β =

10 and U = 2
∫ u

0

(
η tanh−1(ξ/η)

)T
Rdξ with η = 10.

The simulation results throughout learning using the
proposed method are shown in Figs. 1-3. Fig 1 depicts
the phase portrait of state evolution and the control in-
put, demonstrating that the system states are conver-
gent. The critic and actor NNs weights converge to ŵc =
[2.5560,0.2904,1.5331]T and ŵa = [−0.0556, −1.0389,
−0.1594, 0.1563, 0.1205]T respectively, as shown in Figs.
2 and 3.

Since there is no known analytic optimal solution for
(48) with (49), the hp-pseudospectral method [35], which
is known as an accurate numerical method for nonlinear
optimal control problems, is utilized to obtain the optimal
controller.

The performance of the final controller found at the end
of learning process with the proposed method is compared
with the performance of the optimal controller obtained by
the hp-pseudospectral method. Fig. 4 and Table 1 show the
system states, control input and optimal value functions
for the two controllers.

From Fig. 4, we can see that the performance of the fi-
nal controller obtained by the proposed algorithm is very
close to that of the hp-pseudospectral method. The state
and control trajectories almost overlap all the time. The
difference between the optimal value functions given by
the proposed approach and the hp-pseudospectral method

Fig. 1. Evolution of the phase plot of states (Top) and
the control input (Bottom) throughout learning for
Case 1.

Fig. 2. Convergence of critic NN weights for Case 1.

Fig. 3. Convergence of actor NN weights for Case 1.
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Fig. 4. System states x1, x2 and control u calculated by
the proposed method and the hp-pseudospectral
method for Case 1.

Table 1. The optimal value functions for Case 1.

Method Optimal value function
Proposed method 2.1607

hp-pseudospectral method 2.1545

is about 6.2× 10−3, which confirms that the proposed
method obtains a near-optimal controller for nonlinear
system without constraints and uncertainties.

4.2. Case 2
In this scenario, the effectiveness of the proposed

method is illustrated for constrained nonlinear system in
the presence of uncertainties. The nonlinear system with
constraints and uncertainties is given by

ẋ =
[

x2

− 1
J (Mgl sin(x1)+ fdx2)

]
+

[
0
1
J

]
(u+d(x)),

(50)

with |x1| 6 1, |x2| 6 1.5 and |u| 6 0.1, where the uncer-
tainty term d(x) = 2x1 sin2(x2

2) and ‖d‖ 6 2‖x‖. The ap-
propriate performance index is given by

J =
∫

∞

0

(
4‖x‖2 + xT Sx+Qs +U

)
dτ, (51)

where Qs = αs ∑
2
i=1 |xi|2 ln

(
β 2

i
β 2

i −x2
i

)
with αs = 10−5, β1 =

1, β2 = 1.5 and U = 2
∫ u

0

(
η tanh−1(ξ/η)

)T
Rdξ with η =

0.1.
Figs. 5-7 show the simulation results throughout learn-

ing using the proposed method. Fig. 5 presents the phase
portrait of states and the control. The evolution of the

Fig. 5. Evolution of the phase plot of states (Top) and the
control input (Bottom) using the proposed method
throughout learning for Case 2.

Fig. 6. Convergence of critic NN weights using the pro-
posed method for Case 2.

states and control does not exceed the boundary of pre-
scribed region, and the states converge to the origin. Figs.
6 and 7 indicate that the critic NN weights converge to
ŵc = [7.7512, 1.1064, 4.6441]T and the convergence of
the actor NN weights are denoted by ŵa = [−0.5200,
−4.5739, −0.0686, 0.3075, 0.2913]T . The initial control
(i.e., u(0) = 0.1) cannot bring the states to zero. The pro-
posed method ensures that the system is stable throughout
learning, which verifies the effect of the second term in
(21).

The update laws (20) and (21) without the second terms
(classical update laws), as described in [25], are imple-
mented to compare with our results. Only the probing
noise ne is considered for the first second in simulation.
The convergence of the critic and actor weights using the
classical update laws is shown in Fig. 8. It is obvious that
the critic and actor weights get stuck in a local minimum
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Fig. 7. Convergence of actor NN weights using the pro-
posed method for Case 2.

Fig. 8. Convergence of critic (Top) and actor (Bottom)
NNs weights using the classical update laws for
Case 2.

using the classical update laws. This happens since the PE
condition is violated. The proposed method with the his-
torical data and the stabilization term avoids this issue.

Furthermore, for system (50), the performance of the
final robust near-optimal controller found at the end of
learning process with the proposed method is compared
with the performance of the final controller obtained by
the classical update laws. Figs. 9 and 10 present the system
states and control inputs under the two final controllers.
It is clear that the performance of the final robust near-
optimal controller obtained by the proposed method is su-
perior to that of the controller acquired using the classi-
cal update laws, since both the states and control for the
proposed method converge to zero faster under uncertain-
ties. As a result, the developed robust near-optimal control

Fig. 9. System states x1 and x2 calculated by the proposed
method and the classical update laws for Case 2.

Fig. 10. Control input u calculated by the proposed
method and the classical update laws for Case 2.

method is effective for nonlinear systems subject to state
constraints, input saturation and uncertainties.

5. CONCLUSION

A robust near-optimal controller for a class of partially-
unknown nonlinear systems with both constraints and un-
certainties is proposed in this paper. The state constraints
and input saturation are handled by a barrier function and
a non-quadratic penalty term. To approximate the optimal
value function and control policy online, an actor-critic
architecture is adopted. The novel gain-adjustable update
law is developed, in which the critic weights are updated
with the historical and current data to relax the PE condi-
tion, and the actor weights with a stabilization term ensure
the system stability throughout learning without an initial
admissible control. The stability and convergence analy-
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sis of the proposed method is conducted. Numerical stud-
ies verify the effectiveness and feasibility of the proposed
control scheme.
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