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Composite Design of Disturbance Observer and Reentry Attitude
Controller: An Enhanced Finite-time Technique for Aeroservoelastic
Reusable Launch Vehicles
Zhenshu Yang, Qi Mao* � , Liqian Dou, Qun Zong, and Jianzhong Yang

Abstract: In this paper, we concern the reentry attitude control (RAC) scheme design for aeroservoelastic reusable
launch vehicles (RLVs). The basic problem is to derive a RAC technique such that the aeroservoelastic RLV can
achieve a robust tracking of the desired attitudes in a rapid way despite the existence of parameter uncertainties as
well as external disturbances. Following from the elastic equations and attitude dynamics of the RLV, we formulate
a control-oriented model in matched structure. Our main contribution is threefold. First, using the fast terminal
sliding mode algorithm, the disturbance observers are designed to generate the estimation of uncertainties and
disturbances, while can ensure the estimation errors converge to the origin within a timely fashion. Second, the
finite-time super-twisting sliding mode control method and cascade-loop design are developed to incorporate into
the new RAC strategy; hence it leads to a guaranteed tracking ability of the reentry attitude in a timely way. Third,
a finite-time integral sliding mode filter is proposed in the control scheme such that the virtual input signal can be
tackled well. Additionally, numerical simulations of a dynamic model for the RLV are implemented to demonstrate
the effectiveness and performance of the developed RAC strategy and furthermore its aeroservoelastic properties.

Keywords: Disturbance observer, finite-time convergence, integral sliding mode filter, reentry attitude control,
super-twisting sliding mode.

1. INTRODUCTION

The reusable launch vehicle (RLV) has gained sustained
interest over the past decades, since it provides great ad-
vantages over the traditional flight vehicle in reusability,
reliability, and lateral maneuverability [1]. The increasing
attention in this technology is principally because of the
advantages it offers. A cost-effective way of accessing the
space and the ability to prompt globally high-speed de-
livery are the two main mission objectives for RLV. The
control system design of an RLV within the reenty pro-
cess, however, is a particular challenge because of the
peculiar characteristic of the vehicle such as fast time-
varying, strongly interactive, multivariate strongly cou-
pling and highly nonlinear [2–5]. Beyond that, the vehicle
is susceptible to various parameter uncertainties and un-
known external disturbances in view of the fact that the
RLV involves attitude maneuvering through a wide range
of flight conditions during the reentry phase. As such, the

flight vehicle is likely subject to poor flight condition and
various reentry constraints. In addition to the complexity
of the dynamics of reentry flight, the aeroservoelasticity
problem, which results from the coupling impacts of the
control system, aerodynamics forces, and structural elas-
ticity, should be taken into consideration as well [6–8]. All
these factors cause difficulty for designing reentry attitude
controllers, and thus developing advanced guidance and
control technologies for RLV are significant.

Despite having the aforementioned challenges, much
effort has been concentrated on aeroelastic problems and
control methods for RLV during the past few decades.
Most early, Ricketts et al. have studied the aeroelasticity
model of National Aerospace Plane [9]. After that, an X-
30 configuration-based analytical model was proposed by
Chavez and Schmidt, where the aerodynamic equations of
the aerocraft forces and moments are computed under the
framework of Newton collision theory [10]. In the work
of [11], a hypersonic flight vehicle model was established
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via X-43A configuration by utilizing the Lagrange expres-
sion and the interaction of the rigid and elastic bodies
were both taken into account as well. Hu et al. [12] have
used the adaptive sliding mode control method for flex-
ible flight vehicles with strong flexibility effects. In re-
cent years, a dynamic surface approach was designed to
robustly track the desired commands for a hypersonic ve-
hicle in the presence of input constraints and uncertainty
[13]. In [14], the trajectory planning strategy for the en-
tire recovery process has been studied for the reusable
launch vehicle, wherein the revised trajectory correction
approach was designed to reduce the maximum normal
aerodynamic load and enhance the vehicle’s landing ac-
curacy on the influence of wind field. Wang et al. [15]
developed a sliding mode control algorithm in a high-
order form such that the expected reference signals can
be tracked well for airbreathing hypersonic vehicles. In
[16], Falcoz et al. have designed fault detection and isola-
tion systems on the basis of a robust model, where the in-
teracted impacts in vehicle dynamics and the fault effects
were considered during the design process. Fiorentini and
Serrani [17] provided a nonlinear robust controller design
for a type of hypersonic vehicle that associates with a non-
minimum phase dynamic model, where the small-gain ar-
guments were combined with adaptive control methods to
construct a state-feedback controller. Zuo et al. [18,19]
has investigated the robust fixed-time stabilization con-
trol problem for generic linear systems subject to both
matched and mismatched disturbances. This leads to a
novel observer-based fixed-time control technique, which
was invoked to deal with this robust stabilization issue.
In [20], feedback linearization was employed with distur-
bance observer to design a state-feedback control strategy
thereby regulating the velocity and altitude for flight vehi-
cles with constrained inputs.

At the same time, numerous attempts have been probed
to develop the control laws for flight vehicles. Tradition-
ally, gain scheduling is widely employed to tackle varying
aircraft dynamics [21,22]. This approach, however, can-
not be always useful when applied to the aeroservoelas-
tic RLV because it may require wide-range flight envelop
and aggressive maneuvering. As an alternative method-
ology, dynamic inversion has been extensively investi-
gated over the last few decades. Although the control al-
gorithm can avoid the tedious gain scheduling process and
achieve good tracking performance, this method is not
robust generally, especially in the case of parameter in-
accuracies and modeling errors. Another control design
method is feedback linearization with the advantage that
it offers a nonlinear flight control system with a full enve-
lope [23,24]. The main issue of this method, though, is that
it requires lots of information on the RLV model. Su and
Wang [25] have developed a robust hybrid optimization
approach on the basis of gauss pseudospectral technique
and gravitational search method to tackle the problem of

e trajectory optimization for RLVs. In [26], a data-driven
supplementary-based tracking control technique, was de-
rived by using action-dependent heuristic dynamic pro-
gramming method for air-breathing hypersonic vehicles;
this control algorithm performs well in adaptive learning
capability. To address the nonminimum phase problem,
the output redefinition approach was combined with ro-
bust backstepping in the work of [27]. Under this circum-
stance, a synthetic output was constructed by employing
the original output and the internal states to achieve stable
zero dynamics, while the robust backstepping was acted
on the new output.

Among a variety of control methods, the sliding mode
control (SMC) technique is still one of the most popular
design tools for designing a robust control law for reen-
try RLV. Shtessel et al. [28,29] have intensively explored
the feasibility of sliding mode controllers for a series of
RLVs. In the work of [30], a sliding mode flight control
algorithm was employed for launch vehicles by construct-
ing higher-order single and multiple loop controller ac-
companied with sliding mode disturbance observer. Fo-
cusing on the control problem of underactuated hyper-
sonic vehicles with nonminimum phase structure, Wang
et al. [31] have designed a second-order dynamic sliding-
mode control algorithm, where the non-minimum phase
system was separated into a minimum phase subsystem
and a nonminimum phase subsystem. Subsequently, Zong
et al. [32] have developed a quasi-continuous high-order
sliding mode technique based on full state feedback for
flexible spacecrafts. Nevertheless, the great majority of
control laws mentioned above are derived under the worst
circumstance. In the studies of [1,33–36], several intel-
ligent control techniques like fuzzy logic system, neu-
ral control systems are employed to construct guidance
strategies or attitude control schemes, which guarantees
the tracking performance for the flight vehicles. As shown
in [37–40], the systems that are able to be stabilized within
finite time exhibit more rapid convergence rate and per-
form stronger anti-disturbance ability. One main constrain
of most methods mentioned before, however, is that the
reusable launch vehicle is deemed as a rigid-body vehi-
cle. Specifically, the aeroservoelasticity factor [6], various
parameter uncertainties as well as unknown disturbances
are not considered simultaneously. Beyond that, it is note-
worthy that most studies concentrate on attitude control
method design, but the physical issues of flight dynamics
are often neglected. In these scenarios, it is not very suffi-
cient to verify the efficiency or tracking capability of the
proposed control methodologies.

Inspired by the above-mentioned discussion, in this pa-
per, we focus the issue of RAC scheme design for aeroser-
voelastic RLV with parameter uncertainties and external
disturbances, with the goal to generate a performance-
enhanced solution to control the RLV during the reentry
phase. Compared with the previous works, the main con-
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tributions lie in the following folds.

1) The aeroservoelastic RLV model presented in this
work integrates not only parameter uncertainties
and external disturbances but aeroservoelastic fac-
tors. With dynamics transformation, a control-oriented
model in matched structure is established.

2) A finite-time sliding mode disturbance observer
(FTSMDO) is developed via the fast terminal slid-
ing mode technique to estimate the uncertainties and
disturbances. Next, a new integral sliding mode fil-
ter with finite-time convergence is constructed to deal
with the virtual input signal. Incorporated the designed
FTSMDOs and integral sliding mode filter, a novel
finite-time RAC scheme is derived with the feature of
assuring that the attitude tracking could be achieved
within a finite time.

3) The finite-time stability is provided rigorously under
the framework of Lyapunov stability theory. Through
simulations and comparison discussions, the proposed
control scheme can efficiently improve the attitude
tracking performance, and the elastic coordinates as
well as its derivatives converge quickly.

This paper is summarized as follows: In Section 2,
we begin with several definitions and lemma. The prob-
lem formulation is provided in Section 3. After that, we
move forward to develop a finite-time RAC scheme for
finite-time reentry attitude control in Section 4. Section 5
provides the numerical simulations and some discussions
about these results. Finally, Section 6 presents the conclu-
sions in this work.

2. PROBLEM FORMULATION

2.1. Aeroservoelastic RLV dynamics
2.1.1 Elastic equations of motion

The fuselage elastic equation of motion can be con-
structed for the aeroservoelastic RLV by

η̈i +2ξiω f iη̇i +ω
2
f iηi = Ni, i = 1, 2, ..., nv, (1)

where ηi is the generalized elastic coordinate, ξi is the
structural damping ratio, w f i is the vibration frequency, Ni

is the generalized modal force, and nv denotes the number
of the retained modes. Note that nv = 3 is true due to the
system structure of a RLV.

Remark 1: It is remarkable pointing out that the major
factor causing fuselage flexibility of aerospace vehicles is
the longitudinal bending [9]. As such, this leads to that
the aerodynamic drag force and aerodynamic lift force are
both involved with the elastic factors; analogously, the roll
and pitch moments are also subject to the elastic factors.

The generalized forces Ni are described by

Ni =
1
2

ρ(h)v2Sre fCNi(Ma, h, α, ηi, δt), (2)

where Ni is indirect function of Ma, h, α , ηi, δt (which
are detailed in a minute) by a direct dependence on the
generalized force coefficients CNi , i = 1, 2, 3.

2.1.2 Translational equations of motion
In this work, we assume that the RLV within reentry

process is unpowered; it is always correct for the RLV.
Beyond that, it is assumed that the atmosphere is station-
ary, and mass variation is negligible. The forces acting
upon the aerocraft merely consider gravity and aerody-
namic forces.

The mathematical model for an aeroservoelastic RLV is
comprised of the translational equations of motion and the
rotational equations of motion. The translational dynamics
resulted from the aerodynamic forces which act upon the
vehicle are given rise to the trajectory generations of the
flight vehicles. The translational equations of motion are
stated by

ḣ = vsinγ, (3)

θ̇ =
vcosγ sin χ

re cosφ
, (4)

φ̇ =
vcosγ cos χ

re
, (5)

v̇ =−D
m
−gsinγ

+Ω
2
ere cosθ(sinγ cosθ − cosγ sinθ cos χ), (6)

χ̇ =
1

mvcosγ
(Lsin µ +Y cos µ)+

v
re

cosγ sin χ tanθ

−2Ωe(tanγ cosθ cos χ− sinθ)

+
Ω2

ere

vcosγ
sinθ cosθ sin χ, (7)

γ̇ =
1

mv
(Lcos µ−Y sin µ)− (

g
v
− v

re
)cosγ

+2Ωe cosθsinχ

+
Ω2

ere

v
cosθ(cosγ cosθ + sinγ sinθ cos χ), (8)

where h denotes the altitude; θ denotes the latitude; φ de-
notes the longitude; v is the velocity; χ is the heading an-
gle; γ is the flight path angle (FPA); m is the mass of the
vehicle; re stands for the radial distance from Earth center
to the vehicle; g is acceleration due to gravity (g = µe/r2

e
with µe being the gravity constant of the Earth); Ωe repre-
sents the Earth rotational velocity; α , µ stand for the angle
of attack (AOA), bank angle (BA). It is noteworthy that
the effect of the Earth rotation can be neglected, i.e., the
angular velocity Ωe of the earth in (6)-(8) is regarded as
zero. L,D,Y are the aerodynamic lift, drag and side forces
acting on the flight vehicle respectively; specifically, its
explicit dynamics are expressed as

L =
1
2

ρ(h)v2Sre fCL(Ma,α,β ,ηi), (9)
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D =
1
2

ρ(h)v2Sre fCD(Ma,α,β ,ηi), (10)

Y =
1
2

ρ(h)v2Sre fCY (Ma,α,β ), (11)

where ρ(h) denotes the air density, Sre f denotes the aero-
dynamic reference area of the vehicle. CL(·),CD(·) are
the lift coefficient and drag coefficient respectively, all of
which are the functions of Mach number Ma, angle of at-
tack α , sideslip angle β and generalized elastic coordi-
nates ηi (i = 1, 2, 3). CY (·) denotes the lateral coefficient
that is the function of Ma, α , β . In addition, Ma is denoted
by Ma = v/vc, in which vc denotes the nominal speed of
sound and is assumed to not vary with altitude.

2.1.3 Rotational equations of motion
The rotational dynamics resulted from the aerodynamic

moments which act upon the vehicle are utilized to de-
velop the attitude controller. The rotational equations of
motion are formulated as

α̇ = q− tanβ (pcosα + r sinα)

+
1

mvcosβ
(mgcosγ cos µ−L) , (12)

β̇ = psinα− r cosα +
1

mv
(mgcosγ sin µ +Y ) , (13)

µ̇ = secβ (pcosα + r sinα)

+
1

mv
[−mgcosγ cos µ tanβ

+L(tanγ sin µ + tanβ )+Y tanγ cos µ cosβ ],
(14)

ṗ =
1

IxxIzz− I2
xz
{Izz[L̄− (Izz− Iyy)qr+ Ixzqp]

+ Ixz[N̄ +(Ixx− Iyy)qp− Ixzqr]}, (15)

q̇ =
1
Iyy

[M̄− (Ixx− Izz)pr− Ixz(p2− r2)], (16)

ṙ =
1

IxxIzz− I2
xz
{Ixz[L̄+(Iyy− Izz)qr+ Ixzqp]

+ Ixx[N̄ +(Ixx− Iyy)qp− Ixzqr]}, (17)

where p,q and r are roll, pitch and yaw angular rates, re-
spectively; Ixx, Iyy, Izz, Ixz denote moments of inertia and
it is worth noting that the considered RLV model in this
work is symmetrical with respect to its vertical plane. L̄,
M̄ and N̄ stand for roll, pitch and yaw moments acting
upon the flight vehicle; in general, its explicit equations
can be described by

L̄ =
1
2

ρ(h)b̄v2Sre fCL̄(Ma,α,β ,ηi,δa,δ f ,δt), (18)

M̄ =
1
2

ρ(h)c̄v2Sre fCM̄(Ma,α,β ,ηi,δa,δ f ,δt), (19)

N̄ =
1
2

ρ(h)b̄v2Sre fCN̄(Ma,α,β ,δa,δ f ,δt), (20)

where b̄ denote the wing span and c̄ denote the wing mean
geometric chord. CL̄(·), CM̄(·) are the roll coefficient and
pitch coefficient respectively; in fact, all of these coeffi-
cients are the functions of Ma, α , β , ηi, deflection angle
of aileron δa, deflection angle of flap δ f , deflection angle
of tail δt . CN̄(·) stands for yaw coefficient that is the func-
tion of Ma, α , β , δa, δ f , δt .

2.2. Control-oriented model
The attitude dynamics for an aeroservoelastic RLV dur-

ing reentry phase are able to be converted into a cascade
system, described by

Ω̇ = GΩw+FΩ +dΩ, (21)

ẇ = Gww+Fwu+dw, (22)

where Ω = [α , β , µ]T and w = [p, q, r]T denote the at-
titude angle vector and angular rate vector; u = [L̄, M̄,
N̄]T is the control input vector; y = Ω is the system output
vector; dΩ = [dΩ1 , dΩ2 , dΩ3 ]

T ∈ ℜ3×1 denotes the param-
eter uncertainties induced by the perturbation of aerody-
namic coefficients; dw = [dw1 , dw2 , dw3 ]

T ∈ ℜ3×1 denotes
synthetic disturbances and dw = I−1(d0 − ∆Iẇ−M∆Iw)
in which ∆I stands for the model parameter uncertainties
and d0 ∈ ℜ3×1 for the external disturbances; GΩ ∈ ℜ3×3,
FΩ = [ fα , fβ , fµ ]

T ∈ ℜ3×1, Gw = −I−1MI ∈ ℜ3×3 and
Fw = I−1 ∈ℜ3×3 represent the known system function ma-
trices provided as follows:

GΩ =

−cosα tanβ 1 −sinα tanβ

sinα 0 −cosα

cosα secβ 0 sinα secβ

 , (23)

I =

 Ixx −Ixy −Ixz

−Ixy Iyy −Iyz

−Izx −Izy Izz

 , M =

 0 −r q
r 0 −p
−q p 0

 ,
(24)

FΩ =


1

mvcosβ
(mgcosγ cos µ−L)

1
mv (mgcosγ sin µ +Y )

1
mv

[
−mgcosγ cos µ tanβ +L(tanβ

+ tanγ sin µ)+Y tanγ cos µ cosβ

]
 .

(25)

Assumption 1: The uncertainty dΩ and disturbance dw

are assumed to be unknown but bounded and differen-
tiable, i.e., there exist positive constants d̄i and dU

i such
that ‖di‖ ≤ d̄i, ‖di‖∞

≤ d̄i, and
∥∥ḋi
∥∥ ≤ dU

i ,
∥∥ḋi
∥∥

∞
≤ dU

i ,
i = Ω, w.

Remark 2: It should be noted that the sideslip angle
β is assumed to be in the interval of (−90, 90) degrees.
Considering the practical significance of (21) and (22), it
is of great importance to note that the function matrixes
GΩ, Gw and Fw are nonsingular as long as the system is
not at equilibrium, and bounded in this paper (which is
typically correct).
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2.3. Control objective
The goal is to derive a reentry attitude control strategy

such that the RLV system is able to fulfill

1) The guidance commands Ωd = [αd , βd , µd ]
T are

tracked by system output within a finite amount of time
and then

lim
t→t f
‖α−αd‖= 0, lim

t→t f
‖β −βd‖= 0,

lim
t→t f
‖µ−µd‖= 0, (26)

where t f is a finite time.
2) A cascade-loop design of reentry attitude control for

aeroservoelastic RLV is constructed despite having un-
certainties and disturbances even if dΩ and dw are not
known.

3) The convergence of generalized elastic coordinate ηi

and its derivative η̇i can be guaranteed.

3. FINITE-TIME RAC SCHEME DESIGN

The finite-time RAC scheme is the main concern of our
work. It aims at outputting the actual attitude angles that
is necessary to track the desired attitude angles and ad-
ditionally dealing with the system uncertainties and dis-
turbances. As a consequence, two main issues are inves-
tigated in the subsequent sections. The first problem is to
design FTSMDO, in other words, we seek to derive distur-
bance observers based on the fast terminal sliding mode
technique to counteract uncertainties and disturbances.
On the other hand, the subsequent focus is constructing
the reentry attitude controller: determine the outer-loop
controller and inner-loop controller, using the finite-time
super-twisting sliding mode algorithm.

3.1. The design of FTSMDO
In this section, the system uncertainty dΩ and distur-

bance dw will be estimated via the designed FTSMDO in
finite time. Towards this goal, the theorem is provided as
follows.

Theorem 1: Consider the RLV system described by
(21), (22) under Assumption 1, and define the distur-
bance observer estimation errors as AΩ = ZΩ −Ω and
Aw =Zw−w, where ZΩ, Zw denote the estimation states of
Ω, w. If the disturbance observers based on fast terminal
sliding mode method are constructed as

d̂Ω =−αΩ

AΩ

‖AΩ‖
− kΩ1sigpΩ/qΩ (AΩ)

− kΩ2sigqΩ/pΩ (AΩ) , (27)

d̂w =−αw
Aw

‖Aw‖
− kw1sigpw/qw (Aw)

− kw2sigqw/pw (Aw) , (28)

under the condition{
αΩ ≥ d̄Ω, kΩ1 > 0, kΩ2 > 0, pΩ > qΩ > 0,

αw ≥ d̄w, kw1 > 0, kw2 > 0, pw > qw > 0,
(29)

where the states ZΩ and Zw are determined as

ŻΩ =−αΩ

AΩ

‖AΩ‖
− kΩ1sigpΩ/qΩ (AΩ)

− kΩ2sigqΩ/pΩ (AΩ)+GΩw+FΩ, (30)

Żw =−αw
Aw

‖Aw‖
− kw1sigpw/qw (Aw)

− kw2sigqw/pw (Aw)+Gww+Fwu, (31)

then the estimated values d̂Ω and d̂w can both converge to
real uncertainty dΩ and disturbance dw within finite time.

Proof: Taking the derivative of AΩ, we are led to

ȦΩ = ŻΩ− Ω̇

=−αΩ

AΩ

‖AΩ‖
− kΩ1sigpΩ/qΩ (AΩ)

− kΩ2sigqΩ/pΩ (AΩ)−dΩ. (32)

Choose the Lyapunov function candidate as

VΩ =
1
2

AT
ΩAΩ. (33)

Clearly VΩ in (33) denotes a positive definite and un-
bounded function. After that, the derivative of VΩ for
AΩ 6= 0 is described by

V̇Ω =−
3

∑
j=1

(
kΩ1|AΩ j|pΩ/qΩ+1 + kΩ2|AΩ j|qΩ/pΩ+1

)
−αΩ ‖AΩ‖−AT

ΩdΩ. (34)

Invoking the Cauchy-Schwarz inequality to deal with the
inner-product terms, it gives

V̇Ω ≤−
3

∑
j=1

(
kΩ1|AΩ j|pΩ/qΩ+1 + kΩ2|AΩ j|qΩ/pΩ+1

)
−αΩ ‖AΩ‖+

∥∥AT
Ω

∥∥‖dΩ‖

≤−
3

∑
j=1

(
kΩ1|AΩ j|pΩ/qΩ+1 + kΩ2|AΩ j|qΩ/pΩ+1

)
≤− kΩ2

3

∑
j=1
|AΩ j|qΩ/pΩ+1. (35)

In view of Lemma 2 in [41] and 0 < qΩ/pΩ + 1 < 2, the
derivative of the Lyapunov function can be transformed
into

V̇Ω ≤−kΩ2

(
3

∑
j=1

A2
Ω j

) qΩ/pΩ+1
2
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=−2
qΩ/pΩ+1

2 kΩ2V
qΩ/pΩ+1

2
Ω

. (36)

Consequently, it follows from Lemma 1 and (36) that
the estimation error AΩ converges to zero within finite

time, where t f Ω ≤ V
1−qΩ/pΩ

2
Ω

2
qΩ/pΩ+1

2 kΩ2

(
1−qΩ/pΩ

2

) , and then VΩ = 0

when AΩ = 0. After that, it has ȦΩ = ŻΩ− Ω̇ = 0, which
implicates that the disturbance observer d̂Ω can estimate
real uncertainty dΩ in finite time. Applying the similar
proof for angular rate subsystem, it can be concluded that
the disturbance observer d̂w can estimate real disturbance

dw within finite time, where t f w ≤ V
1−qw/pw

2
w

2
qw/pw+1

2 kw2( 1−qw/pw
2 )

. This

completes the proof. �
Remark 3: The fast terminal sliding mode technique

incorporated to the design of FTSMDO assures that the
disturbance observer converges to equilibrium point in a
fast speed. Compared with the existing sliding mode dis-
turbance observers [42], the developed FTSMDO can in-
sure the finite time convergence of disturbance estimation
error.

3.2. The design of reentry attitude controller
3.2.1 Control law for attitude angle subsystem

With respect to (21), denote the attitude tracking error
as EΩ = [EΩ1, EΩ2, EΩ3]

T =Ω−Ωd , and a new fast sliding
mode surface is defined as

SΩ = lΩ0EΩ + lΩ1sig
mΩ+nΩ

nΩ (EΩ)+ lΩ2sig
nΩ+mΩ

mΩ (EΩ) ,
(37)

where lΩ0, lΩ1, lΩ2 > 0 and mΩ > nΩ > 0 are the user-
designed constants.

A multivariable super-twisting algorithm is employed
to construct the reaching law for (37) as{

ṠΩ =−λΩ1SΩ−λΩ2SΩ/‖SΩ‖1/2 + zΩ,

żΩ =−λΩ3SΩ−λΩ4SΩ/‖SΩ‖ ,
(38)

where λΩ1, λΩ2, λΩ3, λΩ4 are positive constants.
Theorem 2: Consider attitude angle subsystem (21)

satisfying Assumption 1. If the virtual control law is de-
veloped as

w̄d =
1

lΩ0
G−1

Ω


−mΩ

nΩ
lΩ1diag

[
|EΩi|

mΩ

nΩ

]
3×3

ĖΩ

− nΩ

mΩ
lΩ2diag

[
|EΩi|

nΩ

mΩ

]
3×3

ĖΩ

−λΩ1SΩ−λΩ2SΩ/‖SΩ‖1/2

+zΩ− lΩ0
(
FΩ + d̂Ω− Ω̇d

)

,

żΩ =−λΩ3SΩ−λΩ4SΩ/‖SΩ‖,
(39)

under the condition



λΩ1 > 0,λΩ2 > (2BΩ)
1/2,

λΩ3 >

(
3λΩ1λ 2

Ω2 +6λΩ1BΩ

)2

λ 2
Ω2λΩ4−3BΩλ 2

Ω2−2B2
Ω

+2λ
2
Ω1,

λΩ4 > max
{

3BΩ +
2B2

Ω

λ 2
Ω2

,
−2λΩ1λ 2

Ω2 +λΩ1BΩ

λΩ1

}
,

(40)

where d̂Ω is obtained using FTSMDO proposed in The-
orem 1, then the developed control law guarantees that
tracking error EΩ is steered to zero in finite time.

Proof: Taking the derivative of (37) and invoking (21)
yields

ṠΩ =−λΩ1SΩ−λΩ2SΩ/‖SΩ‖1/2 + zΩ + d̃Ω,

żΩ =−λΩ3SΩ−λΩ4SΩ/‖SΩ‖ , (41)

where d̃Ω = dΩ − d̂Ω. Denote the auxiliary variable as
ϖΩ=zΩ + d̃Ω, then (41) can be rewritten as

ṠΩ =−λΩ1SΩ−λΩ2SΩ/‖SΩ‖1/2 +ϖΩ,

ϖ̇Ω =−λΩ3SΩ−λΩ4SΩ/‖SΩ‖+ ˙̃dΩ. (42)

It follows from Theorem 1 and Assumption 1 that dΩ,
ḋΩ and d̂Ω, ˙̂dΩ are bounded. Consequently, it is rational
to assume that d̃Ω and its derivative ˙̃dΩ are bounded as
well by using Cauchy-Schwarz inequality, and suppose
that

∥∥d̃Ω

∥∥≤ d̄U
Ω

with the scalar bound d̄U
Ω
> 0 and υΩ = ˙̃dΩ

satisfying ‖υ‖ ≤ BΩ with the scalar bound BΩ. In a simi-
lar way, it is available to assume that

∥∥d̃w
∥∥≤ d̄U

w with the
scalar bound d̄U

w > 0 and υw = ˙̃dw satisfying ‖υ‖ ≤ Bw

with the scalar bound Bw.
The proof of Theorem 2 is equivalent to validating that

EΩ can converge to zero in a limited time. Towards this
aim, the Lyapunov function candidate is selected as fol-
lows:

WΩ=λΩ3ST
ΩSΩ +2λΩ4 ‖SΩ‖+

1
2

ϖ
T
ΩϖΩ +

1
2

τ
T
ΩτΩ,

(43)

where τΩ = λΩ1SΩ +λΩ2SΩ/‖SΩ‖1/2−ϖΩ.
Taking the derivative of WΩ in (43), and substituting

(42) into it, ẆΩ can be rewritten as

ẆΩ =−
(

1
2

λ
3
Ω2 +λΩ2λΩ4

)
‖SΩ‖1/2−λΩ2

ST
Ω

υΩ

‖SΩ‖1/2

−
(
2λΩ1λ

2
Ω2 +λΩ1λΩ4

)
‖SΩ‖+λ

2
Ω2

ϖT
Ω

SΩ

‖SΩ‖

−λΩ1ST
ΩυΩ−

(
5
2

λ
2
Ω1λΩ2 +λΩ2λΩ3

)
‖SΩ‖3/2

−λΩ2
‖ϖΩ‖2

‖SΩ‖1/2 +2ϖ
T
ΩυΩ−

(
λ

3
Ω1+λΩ1λΩ3

)
‖SΩ‖2

+3λΩ1λΩ2
ST

Ω
ϖΩ

‖SΩ‖1/2 +
1
2

λΩ2
ϖT

Ω
SΩST

Ω
ϖΩ

‖SΩ‖5/2
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+2λ
2
Ω1ST

ΩϖΩ−λΩ1‖ϖΩ‖2. (44)

Applying the Cauchy-Schwarz inequality on the inner
product terms associated with the υΩ bounds, ẆΩ satisfies

ẆΩ ≤−
(

1
2

λ
3
Ω2 +λΩ2λΩ4

)
‖SΩ‖1/2 +

λΩ2‖ϖΩ‖2

2‖SΩ‖1/2

−
(
2λΩ1λ

2
Ω2+λΩ1λΩ4

)
‖SΩ‖+2λ

2
Ω1 ‖ϖΩ‖‖SΩ‖

−
(

5
2

λ
2
Ω1λΩ2 +λΩ2λΩ3

)
‖SΩ‖3/2

+λΩ2BΩ‖SΩ‖1/2 +3λΩ1λΩ2 ‖ϖΩ‖‖SΩ‖1/2

−λΩ1‖ϖΩ‖2 +λ
2
Ω2 ‖ϖΩ‖

−
(
λ

3
Ω1 +λΩ1λΩ3

)
‖SΩ‖2

+λΩ1BΩ ‖SΩ‖+2BΩ ‖ϖΩ‖ . (45)

For ease of Lyapunov analysis, the vector ξ = [ξ1, ξ2,
ξ3]

T with ξ1 = ‖SΩ‖1/2, ξ2 = ‖SΩ‖, ξ3 = ‖ϖΩ‖ is intro-
duced. Then the derivative of the Lyapunov function in
(43) can be further transformed into

ẆΩ ≤−

(
λΩ1ξ

T
ΞΩ1ξ +λΩ2

1

‖SΩ‖1/2 ξ
T

ΞΩ2ξ

)
,

(46)

with

ΞΩ1 =

2λ 2
Ω2 +λΩ4−BΩ 0 0

0 λ 2
Ω1 +λΩ3 −λΩ1

0 −λΩ1 −1

 ,
ΞΩ2 =

1
2 λ 2

Ω2+λΩ4−BΩ 0 −1
2 λΩ2− BΩ

λΩ2

0 5
2 λ 2

Ω1+λΩ3 −3
2 λΩ1

−1
2 λΩ2− BΩ

λΩ2
−3

2 λΩ1
1
2

 .
It follows from Theorem 2 that symmetric matrices ΞΩ1

and ΞΩ2 are positive definite under condition (40). Us-
ing the positive matrices ΞΩ1, ΞΩ2 provided above and
Rayleigh’s inequality, ẆΩ satisfies the inequality

ẆΩ ≤−λΩ2
ξ T Ξ2ξ

‖SΩ‖1/2 ≤−λΩ2λmin(Ξ2)
‖ξ‖2

‖SΩ‖1/2 . (47)

A new vector is defined as ϑ = [SΩ/‖SΩ‖1/2, SΩ,
ϖΩ]

T , where it is noted that ∀SΩ, ϖΩ ∈ ℜ3×1, ‖ϑ‖ =
‖ξ‖. Then, ẆΩ in (47) can be expressed as ẆΩ ≤
−λΩ2λmin (Ξ2)

‖ϑ‖2

‖SΩ‖1/2 . On the basis of the result in [43],

the Lyapunov function (43) can be stated as WΩ = ϑ T Qϑ ,
where Q ∈ ℜ3×3 is a symmetric positive definite ma-
trix. Similarly, by using Rayleigh’s inequality, we have
WΩ ≤ λmax (Q)‖ϑ‖2. As such, the following inequality
holds

ẆΩ ≤−
λΩ2λmin (Ξ2)

λmax (Q)

1

‖SΩ‖1/2 WΩ. (48)

Since W 1/2
Ω

> (λmin (Q))1/2‖SΩ‖1/2, it yields that

ẆΩ ≤−ρΩW 1/2
Ω

, (49)

where ρΩ = λΩ2λmin(Ξ2)(λmin(Q))1/2

λmax(Q) . In view of Lemma 1, it
can be observed that SΩ and its derivative ṠΩ can con-
verge to zero in finite time tΩ if the positive parameters
λΩi (i = 1, 2, 3, 4) fulfilling the condition (40) are chosen

appropriately, where tΩ ≤ 2W 1/2
Ω

(0)
ρΩ

.
After that, the convergence property of the tracking er-

ror EΩ will be discussed. When SΩ and its derivative ṠΩ

converge to zero, it follows from the fast sliding mode sur-
face designed in (37) that

0 = lΩ0EΩ + lΩ1sig
mΩ+nΩ

nΩ (EΩ)+ lΩ2sig
nΩ+mΩ

mΩ (EΩ) ,

0 = lΩ0ĖΩ+
mΩ

nΩ

lΩ1diag
[
|EΩi|

mΩ

nΩ

]
3×3

ĖΩ

+
nΩ

mΩ

lΩ2diag
[
|EΩi|

nΩ

mΩ

]
3×3

ĖΩ.

(50)

Since lΩ0, lΩ1, lΩ2,mΩ,nΩ are the positve parameters, thus
it can be concluded that EΩ, ĖΩ are equal to zero as seen in
(50) if SΩ, ṠΩ converge to zero. Finally, the tracking error
EΩ converges to zero within finite time tΩ. This completes
the proof. �

3.2.2 Finite-time integral sliding mode filter
The control law in (39) is regarded as a virtual control

signal to the angular rate (inner-loop) subsystem. How-
ever, it is not easy to obtain its accurate derivative due
to the parameter uncertainties. Meanwhile, the problem
of over-parameterization may occur as the steps increase.
Accordingly, a finite-time integral sliding mode filter is
proposed to deal with the derivative signal ˙̄wd .

Assumption 2: Due to the physical limitations for
aeroservoelastic RLVs, it is rational to assume that w̄d and
˙̄wd , ψ̇w1 and ψ̈w1 are bounded, i.e., there exist positive con-
stants ϖU , ϖU

d , ψU , ψU
d such that ‖w̄d‖ ≤ ‖w̄d‖max ≤ ϖU ,

‖ ˙̄wd‖ ≤ ‖ ˙̄wd‖max ≤ ϖU
d , ‖ψ̇w1‖ ≤ ψU ,‖ψ̈w1‖ ≤ ψU

d hold.
Theorem 3: Consider the virtual control law w̄d satis-

fying Assumption 2. If the integral sliding mode filter is
designed as

ψ̇w1 =−
κw1 (ψw1− w̄d)

‖ψw1− w̄d‖1/2 +σw1
− ψw1− w̄d

µ f 1
,

ψ̇w2 =−
κw2 (ψw2−ψw1)

‖ψw2−ψw1‖1/2 +σw2
− ψw2−ψw1

µ f 2
,

(51)

under the condition
µ f 1 > 0, σw1 > 0, κw1 = βw1ϖ

U
d > 0,

µ f 2 > 0, σw2 > 0, κw2 = βw2ψ
U
d > 0,

1− σw1 +1/βw1

‖e f 1‖1/2/βw1
> 0, 1− σw2 +1/βw2

‖e f 2‖1/2/βw2
> 0,

(52)
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where w̄d = [pd , qd , dr]T is the desired angular rate, µ f 1,
µ f 2 denote the time constants of the filter, σw1, σw2 are
the very small constants, and βw1, βw2 > 0 are the user-
designed constants, then the filter output ψw1 is able to
converge to w̄d in finite time.

Proof: Define the filter estimation errors as e f 1 =ψw1−
w̄d , e f 2 = ψw1− ψ̇w1. And the derivatives of filter estima-
tion errors are stated as

ė f 1 =−
κw1e f 1

‖e f 1‖1/2 +σw1
−

e f 1

µ f 1
− ˙̄wd ,

ė f 2 =−
κw2e f 2

‖e f 2‖1/2 +σw2
−

e f 2

µ f 2
− ψ̈w1. (53)

The Lyapunov function candidate for the subsystem (21)
is selected as

VF =Vf 1 +Vf 2, (54)

with Vf 1 =
1
2 eT

f 1e f 1,Vf 2 =
1
2 eT

f 2e f 2.
Calculating the time derivative of Vf 1 gives

V̇f 1 =−κw1
eT

f 1e f 1

‖e f 1‖1/2 +σw1
−

eT
f 1e f 1

µ f 1
− eT

f 1 ˙̄wd

=−κw1
eT

f 1e f 1−σ 4
w1 +σ 4

w1

‖e f 1‖1/2 +σw1
−

eT
f 1e f 1

µ f 1
− eT

f 1 ˙̄wd

≤−κw1
(
‖e f 1‖+σ

2
w1

)(
‖e f 1‖1/2−σw1

)
− eT

f 1 ˙̄wd

≤−κw1‖e f 1‖3/2 +κw1σw1 ‖e f 1‖+κw1σ
3
w1

+‖e f 1‖‖ ˙̄wd‖ . (55)

It is noted that the parameter 0 < σw1� 1 thereby leading
to κw1σ 3

w1, and then it has

V̇f 1 ≤−κw1‖e f 1‖3/2 +κw1σw1 ‖e f 1‖+‖e f 1‖‖ ˙̄wd‖ .
(56)

Note the fact that Assumption 2 and condition (52).
Thus, the derivative of Vf 1 satisfies the inequality as fol-
lows:

V̇f 1 ≤−ϖ
U
d βw1

(
‖e f 1‖3/2−σw1 ‖e f 1‖−‖e f 1‖/βw1

)
≤−m f 1V

3/4
f 1 , (57)

where m f 1 = ϖU
d βw1

(
1− σw1+1/βw1

V 1/4
f 1 /βw1

)
> 0. Similarly, fol-

lowing the same arguments yields

V̇f 2 ≤−ψ
U
d βw2

(
1− σw2 +1/βw2

V 1/4
f 2 /βw2

)
V 3/4

f 2 , (58)

where m f 2 = ψU
d βw2

(
1− σw2+1/βw2

V 1/4
f 2 /βw2

)
> 0.

Finally, it can be obtained that

V̇F ≤−mF(Vf 1 +Vf 2)
1/2 =−mFV 1/2

F , (59)

where mF =min{m f 1,m f 2}. Applying Lemma 1, it is eas-
ily found that filter output ψw1 can converge to virtual con-
trol signal w̄d in finite time tF (where tF ≤ 2V 1/2

F (x)/mF ).
This completes the proof. �

Remark 4: It is worth pointing out that the designed
filter for virtual input signal can guarantee that the noise or
chatter is not directly brought in the propagation channel
to its derivative, and the computation of the derivative of
the virtual input signal can be facilitated. Compared with
the existing results, the developed integral sliding mode
filter makes the estimation error converge to zero within
finite time.

3.2.3 Control law for angular rate subsystem
For the angular rate subsystem (22), the angular rate

tracking error is defined as Ew = [Ew1,Ew2,Ew3]
T = w−

ψw1. A new fast sliding mode surface of this subsystem is
given as

Sw = lw0Ew + lw1sig
mw+nw

nw (Ew)+ lw2sig
nw+mw

mw (Ew) ,
(60)

where lw0, lw1, lw2 > 0, and mw > nw > 0 denote the user-
designed constants.

Similarly, a multivariable super-twisting method is in-
corporated to develop the sliding mode reaching law for
(60) as{

Ṡw =−λw1Sw−λw2Sw/‖Sw‖1/2 + zw,

żw =−λw3Sw−λw4Sw/‖Sw‖,
(61)

where λw1, λw2, λw3, λw4 are positive constants. The fol-
lowing theorem is available for the angular rate subsys-
tem.

Theorem 4: Consider angular rate subsystem (22) ful-
filling Assumptions 1 and 2. If the actual control law is
presented as

u =
1

lw0
F−1

w


−mw

nw
lw1diag

[
|Ewi|

mw
nw

]
3×3

Ėw

− nw
mw

lw2diag
[
|Ewi|

nw
mw

]
3×3

Ėw

−λw1Sw−λw2Sw/‖Sw‖1/2

+zw− lw0
(
Gww+ d̂w− ψ̇w1

)

 ,

żw =−λw3Sw−λw4Sw/‖Sw‖ ,
(62)

under the condition

λw1 > 0,λw2 > (2Bw)
1/2,

λw3 >

(
3λw1λ 2

w2 +6λw1Bw
)2

λ 2
w2λw4−3Bwλ 2

w2−2B2
w
+2λ

2
w1,

λw4 > max
{

3Bw +
2B2

w

λ 2
w2

,
−2λw1λ 2

w2 +λw1Bw

λw1

}
,

(63)
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where d̂w is derived based on FTSMDO technique, then
the proposed control law can assure that tracking error Ew

converges to zero in finite time.
Following the analogous proof in Theorem 2, we can

conclude that Sw and its derivative Ṡw are able to converge
to zero in a timely fashion and further enforce Ew, Ėw con-
verge to zero within a timely manner as well.

Remark 5: In the light of the multiple-timescale sepa-
ration principle, it is noted that the controllers of the atti-
tude angle and angular rate subsystems can be constructed
separately, where the finite-time stability of the overall
control system is then guaranteed.

4. NUMERICAL SIMULATIONS

4.1. Parameter setting
The RLV parameters used in the numerical simula-

tions are provided as follows: Ixx = 434,270 slug·ft2, Ixz =
17,880 slug·ft2, Iyy = 961,220 slug·ft2, Izz = 1,131,541
slug·ft2 and Ixy = Iyz = 0 slug·ft2. The initial flight con-
ditions of the reentry RLV is given as: α0 = 5.62 deg,
β0 = 28.65 deg, µ0 = −5.46 deg and p0 = q0 = r0 = 0
deg/s. For the sake of better illustrating the efficiency of
the developed algorithm, the desired command signals are
chosen as Sine function, which is typically rational. In ad-
dition, the parameter uncertainty dΩ and synthetic distur-
bance dw is taken into consideration as well to demon-
strate the attitude tracking performance of the proposed
method, as seen in [2]. The uncertainty dΩ is attributed to
the perturbation of the nominal nonlinear function FΩ, i.e.,
dΩ=±10%FΩ, while the disturbances is set as

dw = 106×

(1+sin(πt/100)+sin(πt/125))/Ixx

(1+sin(πt/100)+cos(πt/125))/Iyy

(1+cos(πt/100)+sin(πt/125))/Izz

 .
The designed controller parameters are selected as fol-

lows: lΩ0 = 0.95, lΩ1 = 2, lΩ2 = 1, mΩ = 1.5, nΩ = 0.6,
λΩ1 = 3.6, λΩ2 = 2, λΩ3 = 0.4, λΩ4 = 0.75 and lw0 = 1,
lw1 = 3, lw2 = 1.2, mw = 1.5, nw = 0.75, λw1 = 4.5, λw2 =
3, λw3 = 0.2, λw4 = 0.15. The parameters with respect
to the disturbance observers are αΩ = αw = 3.5, kΩ1 =
kw1 = 80, kΩ2 = kw2 = 0.2, pΩ = pw = 3, qΩ = qw = 2.
The parameters of integral sliding mode filter are set as
κw1 = κw2 = 10, σw1 = σw2 = 0.001, µ f 1 = µ f 2 = 0.01.
For brevity, we only present the first 40 seconds simula-
tion results here and assume that just the control output
y = Ω is feasible during the simulation process. Further-
more, the numerical simulations are conducted in MAT-
LAB environment associated with a fixed sampling time 1
ms.

4.2. Results discussions
The simulation results for the aeroservoelastic RLV dur-

ing reentry phase are provided in Figs. 1-8.
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Fig. 1. Tracking curves of attitude angles: AOA, Sideslip
Angle and BA.

The tracking curves of attitude angles are presented in
Fig. 1. It can be observed clearly that the reentry attitude
angles converge to their desired commands quickly within
finite-time and the proposed Finite-time RAC scheme
shows an favorable tracking performance despite the pres-
ence of parameter uncertainties and external disturbances.
Similarly, the tracking error curves of attitude angles are
shown in Fig. 2. which indicates that the designed control
law has higher tracking accuracy than traditional sliding
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Fig. 2. Tracking error curves of attitude angles: AOA,
Sideslip Angle and BA.

mode control (SMC) approach mainly based on [28].
Figs. 3 and 6 give the responses of angular rates and

control moments. The results in Figs. 3 and 6 imply that
the angular rates and control moments vary dramatically
at the beginning in order to enforce the RLV attitude an-
gles track the desired values in finite time. After that, the
angular rates and control moments maintain within the ap-
propriate range. Besides, the estimation values for uncer-
tainty dΩ and disturbance dw are shown in Figs. 4 and 5.
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Fig. 3. Responses of angular rates: roll, pitch and yaw
rates.

Obviously, it can be observed that the estimated values of
the uncertainty dΩ and disturbance dw are effective, while
the finite-time convergence of the developed FTSMDO is
guaranteed.

Meanwhile, the detailed variations of the elastic coor-
dinates η1, η2, η3 and their derivatives η̇1, η̇2, η̇3 are de-
picted by Figs. 7 and 8. Following from the graphical data
in Figs. 7 and 8, it can be obtained that the elastic co-
ordinate derivatives are able to converge rapidly, while the
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Fig. 4. Curves for uncertainty estimations.

elastic coordinate derivatives perform well with rapid con-
vergence. In fact, it is noteworthy that one of main fac-
tors of elastic vibration comes from the deflection angles.
Thus, Figs. 7 and 8 illustrate that the values of η1, η2, η3

and η̇1, η̇2, η̇3 are large and change quickly at the begin-
ning due to the sudden change of the deflection angles.
However, the elastic vibration can decrease evidently in
finite time under the developed attitude control strategy.
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Fig. 5. Curves for disturbance estimations.

5. CONCLUSION

A finite-fame design of disturbance observer and reen-
try attitude controller is developed for aeroservoelastic
RLV with parameter uncertainties and external distur-
bances. The FTSMDO is proposed to provide estima-
tions for the uncertainties and disturbances, where the fi-
nite time convergence of estimation errors is guaranteed.
And then the finite-time super-twisting sliding mode con-
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Fig. 6. Responses of control moments.

trol algorithm is employed to construct reentry attitude
controller, which assures that the desired command can
be tracked in finite time. Additionally, an integral sliding
mode filter with finite time convergence is introduced to
deal with the virtual input. Finally, the efficiency of the
designed finite-time RAC scheme is verified via numeri-
cal simulations.

0 5 10 15 20 25 30 35 40

Time (s)

-10

-5

0

5

10

15

0 5 10 15 20 25 30 35 40

Time (s)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

0 5 10 15 20 25 30 35 40

Time (s)

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 7. Responses of elastic coordinates.

REFERENCES

[1] Q. Mao, L. Dou, B. Tian, and Q. Zong, “Reentry attitude
control for a reusable launch vehicle with aeroservoelas-
tic model using type-2 adaptive fuzzy sliding mode con-
trol,” International Journal of Robust and Nonlinear Con-
trol, vol. 28, no. 18, pp. 5858-5875, 2018.

[2] B. Tian, W. Fan, R. Su, and Q. Zong, “Real-time trajec-
tory and attitude coordination control for reusable launch

https://doi.org/10.1002/rnc.4349
https://doi.org/10.1002/rnc.4349
https://doi.org/10.1002/rnc.4349
https://doi.org/10.1002/rnc.4349
https://doi.org/10.1002/rnc.4349
https://doi.org/10.1109/TIE.2014.2341553
https://doi.org/10.1109/TIE.2014.2341553
https://doi.org/10.1109/TIE.2014.2341553


Composite Design of Disturbance Observer and Reentry Attitude Controller: An Enhanced Finite-time ... 2471

0 5 10 15 20 25 30 35 40

Time (s)

-200

-150

-100

-50

0

50

100

150

0 5 10 15 20 25 30 35 40

Time (s)

-80

-60

-40

-20

0

20

40

60

0 5 10 15 20 25 30 35 40

Time (s)

-30

-20

-10

0

10

20

30

40

Fig. 8. Responses of elastic coordinate derivatives.

vehicle in reentry phase,” IEEE Transactions on Industrial
Electronics, vol. 62, no. 3, pp. 1639-1650, 2014.

[3] Q. Mao, L. Dou, Z. Yang, B. Tian, and Q. Zong, “Fuzzy
disturbance observer-based adaptive sliding mode control
for reusable launch vehicles with aeroservoelastic charac-
teristic,” IEEE Transactions on Industrial Informatics, vol.
16, no. 2, pp. 1214-1223, 2019.

[4] B.-W. Chen and L.-G. Tan, “Adaptive anti-saturation track-
ing control with prescribed performance for hypersonic ve-

hicle,” International Journal of Control, Automation, and
Systems, vol. 18, no. 2, pp. 394-404, 2020.

[5] X. Lv, Y. Fang, Z. Mao, B. Jiang, and R. Qi, “Fault detec-
tion for a class of closed-loop hypersonic vehicle system
via hypothesis test method,” International Journal of Con-
trol, Automation, and Systems, vol. 19, no. 1, pp. 350-362,
2021.

[6] J. J. McNamara and P. P. Friedmann, “Aeroelastic
and aerothermoelastic analysis in hypersonic flow: Past,
present, and future,” AIAA Journal, vol. 49, no. 6, pp. 1089-
1122, 2011.

[7] D. Zhang, S. Tang, Q. Zhu, and R. Wang, “Analysis of dy-
namic characteristics of the rigid body/elastic body cou-
pling of air-breathing hypersonic vehicles,” Aerospace Sci-
ence and Technology, vol. 48, pp. 328-341, 2016.

[8] Y. Peng, H. Yang, Y. Cheng, and B. Jiang, “Largest recov-
erable component based fault recoverability of UAV swarm
with removal of faulty individuals,” Aerospace Science and
Technology, vol. 118, p. 107059, 2021.

[9] R. Ricketts, T. Noll, W. Whitlow Jr., and L. Huttsell, “An
overview of aeroelasticity studies for the national aero-
space plane,” Proc. of 34th Structures, Structural Dynamics
and Materials Conference, p. 1313, 1993.

[10] F. R. Chavez and D. K. Schmidt, “Analytical
aeropropulsive-aeroelastic hypersonic-vehicle model
with dynamic analysis,” Journal of Guidance, Control,
and Dynamics, vol. 17, no. 6, pp. 1308-1319, 1994.

[11] M. A. Bolender and D. B. Doman, “Nonlinear longitudinal
dynamical model of an air-breathing hypersonic vehicle,”
Journal of Spacecraft and Rockets, vol. 44, no. 2, pp. 374-
387, 2007.

[12] X. Hu, L. Wu, C. Hu, and H. Gao, “Adaptive sliding mode
tracking control for a flexible air-breathing hypersonic ve-
hicle,” Journal of the Franklin Institute, vol. 349, no. 2, pp.
559-577, 2012.

[13] Q. Zong, F. Wang, B. Tian, and R. Su, “Robust adaptive
dynamic surface control design for a flexible air-breathing
hypersonic vehicle with input constraints and uncertainty,”
Nonlinear Dynamics, vol. 78, no. 1, pp. 289-315, 2014.

[14] G. Cheng, W. Jing, and C. Gao, “Recovery trajectory plan-
ning for the reusable launch vehicle,” Aerospace Science
and Technology, vol. 117, p. 106965, 2021.

[15] J. Wang, Q. Zong, R. Su, and B. Tian, “Continuous high
order sliding mode controller design for a flexible air-
breathing hypersonic vehicle,” ISA Transactions, vol. 53,
no. 3, pp. 690-698, 2014.

[16] A. Falcoz, D. Henry, and A. Zolghadri, “Robust fault di-
agnosis for atmospheric reentry vehicles: A case study,”
IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, vol. 40, no. 5, pp. 886-899, 2010.

[17] L. Fiorentini and A. Serrani, “Adaptive restricted trajec-
tory tracking for a non-minimum phase hypersonic vehicle
model,” Automatica, vol. 48, no. 7, pp. 1248-1261, 2012.

https://doi.org/10.1109/TIE.2014.2341553
https://doi.org/10.1109/TIE.2014.2341553
https://doi.org/10.1109/TII.2019.2924731
https://doi.org/10.1109/TII.2019.2924731
https://doi.org/10.1109/TII.2019.2924731
https://doi.org/10.1109/TII.2019.2924731
https://doi.org/10.1109/TII.2019.2924731
https://doi.org/10.1007/s12555-019-0007-7
https://doi.org/10.1007/s12555-019-0007-7
https://doi.org/10.1007/s12555-019-0007-7
https://doi.org/10.1007/s12555-019-0007-7
https://doi.org/10.1007/s12555-019-0906-7
https://doi.org/10.1007/s12555-019-0906-7
https://doi.org/10.1007/s12555-019-0906-7
https://doi.org/10.1007/s12555-019-0906-7
https://doi.org/10.1007/s12555-019-0906-7
https://doi.org/10.2514/1.J050882
https://doi.org/10.2514/1.J050882
https://doi.org/10.2514/1.J050882
https://doi.org/10.2514/1.J050882
https://doi.org/10.1016/j.ast.2015.11.027
https://doi.org/10.1016/j.ast.2015.11.027
https://doi.org/10.1016/j.ast.2015.11.027
https://doi.org/10.1016/j.ast.2015.11.027
https://doi.org/10.1016/j.ast.2021.107059
https://doi.org/10.1016/j.ast.2021.107059
https://doi.org/10.1016/j.ast.2021.107059
https://doi.org/10.1016/j.ast.2021.107059
https://doi.org/10.2514/6.1993-1313
https://doi.org/10.2514/6.1993-1313
https://doi.org/10.2514/6.1993-1313
https://doi.org/10.2514/6.1993-1313
https://doi.org/10.2514/3.21349
https://doi.org/10.2514/3.21349
https://doi.org/10.2514/3.21349
https://doi.org/10.2514/3.21349
https://doi.org/10.2514/1.23370
https://doi.org/10.2514/1.23370
https://doi.org/10.2514/1.23370
https://doi.org/10.2514/1.23370
https://doi.org/10.1016/j.jfranklin.2011.08.007
https://doi.org/10.1016/j.jfranklin.2011.08.007
https://doi.org/10.1016/j.jfranklin.2011.08.007
https://doi.org/10.1016/j.jfranklin.2011.08.007
https://doi.org/10.1007/s11071-014-1440-z
https://doi.org/10.1007/s11071-014-1440-z
https://doi.org/10.1007/s11071-014-1440-z
https://doi.org/10.1007/s11071-014-1440-z
https://doi.org/10.1016/j.ast.2021.106965
https://doi.org/10.1016/j.ast.2021.106965
https://doi.org/10.1016/j.ast.2021.106965
https://doi.org/10.1016/j.isatra.2014.01.002
https://doi.org/10.1016/j.isatra.2014.01.002
https://doi.org/10.1016/j.isatra.2014.01.002
https://doi.org/10.1016/j.isatra.2014.01.002
https://doi.org/10.1109/TSMCA.2010.2063022
https://doi.org/10.1109/TSMCA.2010.2063022
https://doi.org/10.1109/TSMCA.2010.2063022
https://doi.org/10.1109/TSMCA.2010.2063022
https://doi.org/10.1016/j.automatica.2012.04.006
https://doi.org/10.1016/j.automatica.2012.04.006
https://doi.org/10.1016/j.automatica.2012.04.006


2472 Zhenshu Yang, Qi Mao, Liqian Dou, Qun Zong, and Jianzhong Yang

[18] Z. Zuo, J. Song, B. Tian, and M. Basin, “Robust fixed-
time stabilization control of generic linear systems with
mismatched disturbances,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 52, no. 2, pp. 759-768,
2022.

[19] B. Tian, L. Liu, H. Lu, Z. Zuo, Q. Zong, and Y. Zhang,
“Multivariable finite time attitude control for quadrotor
UAV: Theory and experimentation,” IEEE Transactions on
Industrial Electronics, vol. 65, no. 3, pp. 2567-2577, 2017.

[20] H. An, J. Liu, C. Wang, and L. Wu, “Disturbance observer-
based antiwindup control for air-breathing hypersonic ve-
hicles,” IEEE Transactions on Industrial Electronics, vol.
63, no. 5, pp. 3038-3049, 2016.

[21] M. Sato, “Robust gain-scheduled flight controller using in-
exact scheduling parameters,” Proc. of American Control
Conference, pp. 6829-6834, IEEE, 2013.

[22] D. Saussié, L. Saydy, O. Akhrif, and C. Bérard, “Gain
scheduling with guardian maps for longitudinal flight con-
trol,” Journal of Guidance, Control, and Dynamics, vol. 34,
no. 4, pp. 1045-1059, 2011.

[23] W. van Soest, Q. Chu, and J. Mulder, “Combined feedback
linearization and constrained model predictive control for
entry flight,” Journal of Guidance, Control, and Dynamics,
vol. 29, no. 2, pp. 427-434, 2006.

[24] O. Ur Rehman, I. R. Petersen, and B. Fidan, “Feedback
linearization-based robust nonlinear control design for hy-
personic flight vehicles,” Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and Con-
trol Engineering, vol. 227, no. 1, pp. 3-11, 2013.

[25] Z. Su and H. Wang, “A novel robust hybrid gravitational
search algorithm for reusable launch vehicle approach
and landing trajectory optimization,” Neurocomputing, vol.
162, pp. 116-127, 2015.

[26] C. Mu, Z. Ni, C. Sun, and H. He, “Air-breathing hypersonic
vehicle tracking control based on adaptive dynamic pro-
gramming,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 28, no. 3, pp. 584-598, 2016.

[27] L. Ye, B. Tian, H. Liu, Q. Zong, B. Liang, and B. Yuan,
“Anti-windup robust backstepping control for an underac-
tuated reusable launch vehicle,” IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, vol. 52, no. 3, pp.
1492-1502, 2022.

[28] Y. Shtessel, C. Hall, and M. Jackson, “Reusable launch ve-
hicle control in multiple-time-scale sliding modes,” Jour-
nal of Guidance, Control, and Dynamics, vol. 23, no. 6,
pp. 1013-1020, 2000.

[29] C. E. Hall and Y. B. Shtessel, “Sliding mode disturbance
observer-based control for a reusable launch vehicle,” Jour-
nal of Guidance, Control, and Dynamics, vol. 29, no. 6, pp.
1315-1328, 2006.

[30] J. E. Stott and Y. B. Shtessel, “Launch vehicle attitude
control using sliding mode control and observation tech-
niques,” Journal of the Franklin Institute, vol. 349, no. 2,
pp. 397-412, 2012.

[31] Z. Wang, W. Bao, and H. Li, “Second-order dynamic
sliding-mode control for nonminimum phase underactu-
ated hypersonic vehicles,” IEEE Transactions on Industrial
Electronics, vol. 64, no. 4, pp. 3105-3112, 2016.

[32] Q. Zong, J. Wang, B. Tian, and Y. Tao, “Quasi-continuous
high-order sliding mode controller and observer design for
flexible hypersonic vehicle,” Aerospace Science and Tech-
nology, vol. 27, no. 1, pp. 127-137, 2013.

[33] Q. Mao, L. Dou, Q. Zong, and Z. Ding, “Attitude con-
troller design for reusable launch vehicles during reentry
phase via compound adaptive fuzzy H-infinity control,”
Aerospace Science and Technology, vol. 72, pp. 36-48,
2018.

[34] B. Xu, X. Wang, and Z. Shi, “Robust adaptive neural
control of nonminimum phase hypersonic vehicle model,”
IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 51, no. 2, pp. 1107-1115, 2021.

[35] L. Dou, M. Du, Q. Mao, and Q. Zong, “Finite-time nonsin-
gular terminal sliding mode control-based fuzzy smooth-
switching coordinate strategy for AHV-VGI,” Aerospace
Science and Technology, vol. 106, p. 106080, 2020.

[36] W. Yang, D. Xu, B. Jiang, and P. Shi, “A novel dual-mode
robust model predictive control approach via alternating
optimizations,” Automatica, vol. 133, p. 109857, 2021.

[37] Y. Hong, J. Wang, and D. Cheng, “Adaptive finite-time
control of nonlinear systems with parametric uncertainty,”
IEEE Transactions on Automatic control, vol. 51, no. 5, pp.
858-862, 2006.

[38] S. Li, S. Ding, and Q. Li, “Global set stabilisation of the
spacecraft attitude using finite-time control technique,” In-
ternational Journal of Control, vol. 82, no. 5, pp. 822-836,
2009.

[39] B. Tian, J. Cui, H. Lu, Z. Zuo, and Q. Zong, “Adaptive
finite-time attitude tracking of quadrotors with experiments
and comparisons,” IEEE Transactions on Industrial Elec-
tronics, vol. 66, no. 12, pp. 9428-9438, 2019.

[40] B. Tian, J. Cui, H. Lu, L. Liu, and Q. Zong, “Attitude con-
trol of UAVs based on event-triggered supertwisting algo-
rithm,” IEEE Transactions on Industrial Informatics, vol.
17, no. 2, pp. 1029-1038, 2020.

[41] S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, “Continuous
finite-time control for robotic manipulators with terminal
sliding mode,” Automatica, vol. 41, no. 11, pp. 1957-1964,
2005.

[42] Y.-S. Lu, “Sliding-mode disturbance observer with
switching-gain adaptation and its application to optical
disk drives,” IEEE Transactions on Industrial Electronics,
vol. 56, no. 9, pp. 3743-3750, 2009.

[43] J. A. Moreno and M. Osorio, “A Lyapunov approach
to second-order sliding mode controllers and observers,”
Proc. of 47th IEEE Conference on Decision and Control,
IEEE, pp. 2856-2861, 2008.

https://doi.org/10.1109/TSMC.2020.3010221
https://doi.org/10.1109/TSMC.2020.3010221
https://doi.org/10.1109/TSMC.2020.3010221
https://doi.org/10.1109/TSMC.2020.3010221
https://doi.org/10.1109/TSMC.2020.3010221
https://doi.org/10.1109/TIE.2017.2739700
https://doi.org/10.1109/TIE.2017.2739700
https://doi.org/10.1109/TIE.2017.2739700
https://doi.org/10.1109/TIE.2017.2739700
https://doi.org/10.1109/TIE.2016.2516498
https://doi.org/10.1109/TIE.2016.2516498
https://doi.org/10.1109/TIE.2016.2516498
https://doi.org/10.1109/TIE.2016.2516498
https://doi.org/10.1109/ACC.2013.6580911
https://doi.org/10.1109/ACC.2013.6580911
https://doi.org/10.1109/ACC.2013.6580911
https://doi.org/10.2514/1.52178
https://doi.org/10.2514/1.52178
https://doi.org/10.2514/1.52178
https://doi.org/10.2514/1.52178
https://doi.org/10.2514/1.14511
https://doi.org/10.2514/1.14511
https://doi.org/10.2514/1.14511
https://doi.org/10.2514/1.14511
https://doi.org/10.1177/0959651812447722
https://doi.org/10.1177/0959651812447722
https://doi.org/10.1177/0959651812447722
https://doi.org/10.1177/0959651812447722
https://doi.org/10.1177/0959651812447722
https://doi.org/10.1016/j.neucom.2015.03.063
https://doi.org/10.1016/j.neucom.2015.03.063
https://doi.org/10.1016/j.neucom.2015.03.063
https://doi.org/10.1016/j.neucom.2015.03.063
https://doi.org/10.1109/TNNLS.2016.2516948
https://doi.org/10.1109/TNNLS.2016.2516948
https://doi.org/10.1109/TNNLS.2016.2516948
https://doi.org/10.1109/TNNLS.2016.2516948
https://doi.org/10.1109/TSMC.2020.3020365
https://doi.org/10.1109/TSMC.2020.3020365
https://doi.org/10.1109/TSMC.2020.3020365
https://doi.org/10.1109/TSMC.2020.3020365
https://doi.org/10.1109/TSMC.2020.3020365
https://doi.org/10.2514/2.4669
https://doi.org/10.2514/2.4669
https://doi.org/10.2514/2.4669
https://doi.org/10.2514/2.4669
https://doi.org/10.2514/1.20151
https://doi.org/10.2514/1.20151
https://doi.org/10.2514/1.20151
https://doi.org/10.2514/1.20151
https://doi.org/10.1016/j.jfranklin.2011.07.020
https://doi.org/10.1016/j.jfranklin.2011.07.020
https://doi.org/10.1016/j.jfranklin.2011.07.020
https://doi.org/10.1016/j.jfranklin.2011.07.020
https://doi.org/10.1109/TIE.2016.2633530
https://doi.org/10.1109/TIE.2016.2633530
https://doi.org/10.1109/TIE.2016.2633530
https://doi.org/10.1109/TIE.2016.2633530
https://doi.org/10.1016/j.ast.2012.07.004
https://doi.org/10.1016/j.ast.2012.07.004
https://doi.org/10.1016/j.ast.2012.07.004
https://doi.org/10.1016/j.ast.2012.07.004
https://doi.org/10.1016/j.ast.2017.10.012
https://doi.org/10.1016/j.ast.2017.10.012
https://doi.org/10.1016/j.ast.2017.10.012
https://doi.org/10.1016/j.ast.2017.10.012
https://doi.org/10.1016/j.ast.2017.10.012
https://doi.org/10.1109/TSMC.2019.2894916
https://doi.org/10.1109/TSMC.2019.2894916
https://doi.org/10.1109/TSMC.2019.2894916
https://doi.org/10.1109/TSMC.2019.2894916
https://doi.org/10.1016/j.ast.2020.106080
https://doi.org/10.1016/j.ast.2020.106080
https://doi.org/10.1016/j.ast.2020.106080
https://doi.org/10.1016/j.ast.2020.106080
https://doi.org/10.1016/j.automatica.2021.109857
https://doi.org/10.1016/j.automatica.2021.109857
https://doi.org/10.1016/j.automatica.2021.109857
https://doi.org/10.1109/TAC.2006.875006
https://doi.org/10.1109/TAC.2006.875006
https://doi.org/10.1109/TAC.2006.875006
https://doi.org/10.1109/TAC.2006.875006
https://doi.org/10.1080/00207170802342818
https://doi.org/10.1080/00207170802342818
https://doi.org/10.1080/00207170802342818
https://doi.org/10.1080/00207170802342818
https://doi.org/10.1109/TIE.2019.2892698
https://doi.org/10.1109/TIE.2019.2892698
https://doi.org/10.1109/TIE.2019.2892698
https://doi.org/10.1109/TIE.2019.2892698
https://doi.org/10.1109/TII.2020.2981367
https://doi.org/10.1109/TII.2020.2981367
https://doi.org/10.1109/TII.2020.2981367
https://doi.org/10.1109/TII.2020.2981367
https://doi.org/10.1016/j.automatica.2005.07.001
https://doi.org/10.1016/j.automatica.2005.07.001
https://doi.org/10.1016/j.automatica.2005.07.001
https://doi.org/10.1016/j.automatica.2005.07.001
https://doi.org/10.1109/TIE.2009.2025719
https://doi.org/10.1109/TIE.2009.2025719
https://doi.org/10.1109/TIE.2009.2025719
https://doi.org/10.1109/TIE.2009.2025719
https://doi.org/10.1109/CDC.2008.4739356
https://doi.org/10.1109/CDC.2008.4739356
https://doi.org/10.1109/CDC.2008.4739356
https://doi.org/10.1109/CDC.2008.4739356


Composite Design of Disturbance Observer and Reentry Attitude Controller: An Enhanced Finite-time ... 2473

Zhenshu Yang received her B.S. degree
in electrical engineering and automation
from the Tianjin University of Science and
Technology, Tianjin, China, in 2015, and
an M.S. degree in the aeronautical and as-
tronautical science and technology from
the Civil Aviation University of China,
Tianjin, China, in 2018, respectively. She
is currently a lecturer in the Aeronautical

Engineering Institute, Jiangsu Aviation Technical College. Her
current research interests are in the fields of fault diagnosis and
detection, and flight control system design.

Qi Mao received his B.S. degree in elec-
trical engineering and automation from the
Tianjin University of Science and Technol-
ogy, Tianjin, China, in 2015, and an M.S.
degree in the control science and engineer-
ing from the Tianjin University, Tianjin,
China, in 2018, respectively. He is cur-
rently working toward a Ph.D. degree in
the Department of Electrical Engineering,

City University of Hong Kong, Kowloon, Hong Kong. His cur-
rent research interests include PID control, time-delay systems,
multiagent systems, and flight control.

Liqian Dou received his B.S., M.S., and
Ph.D. degrees in automatic control from
Tianjin University, Tianjin, China, in 1999,
2005, and 2008, respectively. He was an
Academic Visitor in the School of Electri-
cal and Electronic Engineering, University
of Manchester, Manchester, U.K., from
June 2015 to June 2016. He is currently an
Associate Professor in the School of Elec-

trical and Information Engineering, Tianjin University, Tianjin,
China. His main research interests include nonlinear control for
hypersonic vehicle, attitude control for RLV, and coordinate con-
trol of multi-UAVs.

Qun Zong received his Bachelor’s, Mas-
ter’s and Ph.D. degrees all in automatic
control from Tianjin University, Tianjin,
China, in 1983, 1988, and 2002, respec-
tively. He is currently a professor at the
School of Electrical and Information En-
gineering, Tianjin University. His main re-
search interests include complex system
modeling and flight control.

Jianzhong Yang received his Bachelor’s
and Master’s degrees in power electronics
and power drives from Liaoning Techni-
cal University, Liaoning, China, in 1997
and 2000, respectively. He is currently a
professor at the College of Electrinic In-
formation and Automation, Civil Aviation
University of China. His main research in-
terests include civil aircraft system safety

analysis and assessment, and advanced flight control.

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.


