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Output Feedback Stabilization of Stochastic Nonlinear Time-varying De-
lay Systems with Unknown Output Function
Mengmeng Gao, Junsheng Zhao* � , Zong-Yao Sun, and Jianwei Xia

Abstract: This paper addresses the problem of output feedback stabilization for stochastic nonlinear time-varying
delay systems with an unknown output function. A remarkable feature of the system to be considered is the si-
multaneous presence of a continuous unknown sensitivity function and the stochastic disturbances, which have not
been treated together before. A new observer is designed by using a dynamic gain without using the information
on unknown time-varying delay and nonlinearities. With the aid of the observer, an output feedback controller is
constructed by the stochastic double-domination method, where two gains are used to handle the unknown out-
put function and nonlinearities. The performance of the system is analyzed in detail via two integral Lyapunov
functions. Finally, the efficiency of the control strategy is illustrated by a simulation example.
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1. INTRODUCTION

In practical engineering systems, the existence of time-
delay is a pervasive phenomenon. In general, time-delay
of controlled system deteriorates the performance of the
system and even affects the stability of the system. There-
fore, the problems of time-delay have quite practical sig-
nificance. In recent years, Lyapunov-Krasovskii method-
ology plays an important role in dealing with time-delay
systems. Based on this method, Pepe and Jiang [1] studied
the input state and integral input state stability of time-
delay nonlinear systems. Zhang et al. designed a con-
troller with dynamic gain for nonlinear time-delay feed-
forward system to achieve system stability in [2]. How-
ever, some problems of uncertain high-order time-delay
nonlinear systems cannot be solved because it is difficult
to find a suitable Lyapunov functional. To get over this dif-
ficulty, a new method should be put forward. Fortunately,
Song et al. studied the stabilization of high-order feed-
forward delay nonlinear systems by means of the satura-
tion function technique, homogeneous control and Lya-
punov method in [3]. Yang et al. [5] investigated the state
feedback stabilization for uncertain time-delay nonlinear
systems based on the homogeneous control idea and the
Lyapunov-Krasovskii functional. There are also other re-
search results on time-delay, such as [6–9] and the refer-
ences therein.

On the other hand, output feedback stabilization which

is the primary task of considering other control problems,
such as tracking problem and disturbance rejection prob-
lem, has always been a hot topic in the field of control
theory. In addition, the output feedback stabilization has
more practical application value because of the unmeasur-
able state existing in most physical systems. Fortunately,
many interesting results have emerged to manipulate the
issues of output feedback stabilization, for the details,
please see [11–16]. It is worth noting that some results
also have been extended to output feedback stabilization
of nonlinear time-delay systems. Recently, Sun et al. [23]
studied the global output feedback stabilization for non-
linear time-varying delays systems. He et al. studied the
global sampled output feedback stabilization for non-strict
feedback stochastic time-varying delay nonlinear systems
in [24]. Wang et al. [25] addressed the output feedback
control for generalized dissipative asynchronous repeated
scalar time-varying delay nonlinear systems with Markov
jump. There are other literatures on the time-delay sys-
tems with output feedback, such as [26–28] and so on.

What worse is, the actual systems in engineering tech-
nology, environmental ecology, social economy and other
fields are generally accompanied with random distur-
bance. It makes control problems more complex to handle,
so the study of stochastic systems is necessary for practi-
cal application. In recent years, some results have been
obtained by means of Lyapunov-Krasovskii approach and
homogeneous domination idea, such as Ai et al. [30], Xie
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and Jiang [31], to name just a few. Inspired by the large
amount of literatures above, this paper addresses the out-
put feedback stabilization for stochastic time-varying de-
lay nonlinear system. The difficulties are elaborated from
the following aspects: it is not clear how to ingeniously de-
sign an observer for the controlled system in the presence
of an unknown sensitivity function, and how to achieve
system stabilization by output feedback under the stochas-
tic setting. In view of the designing of integral Lyapunov
functions, an output feedback controller is adopted, which
averts the differentiability of unknown output sensitivity
function and reduces the complexity of the computation.
In this essay, the contributions of are described as follows:

1) The stochastic double-domination approach is deli-
cately used to nonlinear time-varying delay stochastic
systems with unknown sensitivity function in this pa-
per.

2) An output feedback controller is designed by the
transformation technique, the reasonable combina-
tion of several systems and the double-domination ap-
proach. The designing of integral Lyapunov functions
avoid the differentiability of output function and can
compensate the time-delay terms effectively. Finally,
we analyze the performance of the controlled system.

Notations: For a real vector x(t) = [x1(t), . . ., xn(t)]T ,
denote the norm of x(t) as ‖x‖ = (∑n

i=1 x2
i )

1
2 . For a given

real matrix A = (ai j)n×m, AT is the transpose of A; ‖A‖F =

(∑n
i=1 ∑

m
j=1 a2

i j)
1
2 denotes Frobenius norm; and ‖A‖∞ =

max1≤i≤n ∑
m
j=1 |ai j| is referred to as the norm of row sum.

Tr(A) = ∑
n
i=1 aii represents the trace of A, when m = n.

2. PROBLEM STATEMENT AND
PRELIMINARIES

2.1. Problem statement
Consider the stochastic time-varying delay nonlinear

system as follows:

dxi(t) = xi+1(t)dt + fi(t,x(t),x(t− τ(t)))dt

+gi(t,x(t),x(t− τ(t)))dω(t),

i = 1, . . . , n−1,

dxn(t) = u(t)dt + fn(t,x(t), x(t− τ(t)))dt

+gn(t, x(t), x(t− τ(t)))dω(t),

y(t) = φ(t)x1(t),

(1)

where x(t) = [x1(t), . . ., xn(t)]T ∈ Rn is the state, x(t −
τ(t)) = [x1(t−τ(t)), . . ., xn(t−τ(t))]T , u(t), xn+1(t)∈R
and y(t) ∈ R are the time-delayed state, the input and
the output, respectively. The unknown continuous func-
tions fi(·) : R×Rn×Rn→ Rn and gi(·) : R×Rn×Rn→
Rn represent nonlinearities of system (1). ω(t) is an m-
dimensional standard Brownian motion, which is defined

on a probability space (Ω, F , P). The unknown continu-
ous function φ(t) : R→ R is a sensitivity error. The time-
varying delay τ(t) is unknown and satisfies τ(t) ∈ [0, τ̃],
τ̇ ≤ τ̄ < 1, where the known constants τ̃ ≥ 0 and τ̄ ≥ 0.
x(Ξ) = x0(Ξ) is the initial value for −τ̃ ≤ Ξ≤ 0 and x0(·)
is a known continuous function.

This paper aims to construct a controller u(t) inge-
niously such that state x(t) of system (1) approaches to
zero in probability. Assumptions in the following are nec-
essary.

Assumption 1: There exists a known parameter φ̄ > 0
such that |1−φ(t)| ≤ φ̄ < 1.

Assumption 2: For given constants c≥ 0, p > 0, there
holds

‖ fi‖+‖gi‖

≤ c(1+ |y|p)
i

∑
j=1
|x j|

+ c(1+ |y(t− τ(t))|p)
i

∑
j=1
|x j(t− τ(t))|,

i = 1, . . . , n. (2)

2.2. Preliminaries
In order to facilitate the controller design, the following

definitions and lemmas are needed. Consider a stochastic
system of the form

dx(t) = f (t,x(t),x(t− τ(t)))dt

+g(t,x(t),x(t− τ(t)))dω(t), t ≥ t0. (3)

Definition 1: For a given function V is C2 with respect
to the system (3), then LV is said to be the infinitesimal
generator of V defined by

LV =
∂V
∂x

f +
1
2

Tr
{

gT ∂ 2V
∂x2 g

}
.

Lemma 1 [23]: For a given constant q≥ 1, and xi ∈R,
i = 1, . . . ,n, there holds

(
n

∑
i=1
|xi|)q ≤ nq−1

n

∑
i=1
|xi|q. (4)

Lemma 2 [23]: For given constants a > 0,b > 0 and
positive smooth function r(x,y)> 0, following inequality
holds

|xayb| ≤ a
a+b

r(x,y)|x|a+b

+
b

a+b
r−

a
b (x,y)|y|a+b, x ∈ R, y ∈ R. (5)

Lemma 3 [19]: For a given real matrix A = (ai j)m×n,
there is ‖A‖∞ ≤

√
m‖A‖F . If m = n, then Tr(A)≤ n‖A‖∞.
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3. DESIGN PROCEDURES

Since the states x2(t), . . ., xn(t) of system (1) are un-
measurable, we will design an observer for the system at
first, and construct a controller to stabilize the system.

3.1. Observer design
To begin with, the linear observer is designed as fol-

lows:{
˙̂xi(t) = x̂i+1(t)− kiγ

i(t)x̂1(t), i = 1, · · · , n−1,
˙̂xn(t) = u(t)− knγ

n(t)x̂1(t),
(6)

where γ(t) is a dynamic gain and

γ̇(t) =
1
η

max{0,−γ(t)(lγ(t)−X (y(t)))}, (7)

γ(t) ≡ 1 for −τ̃ ≤ t ≤ 0, the positive constants l, η , k1,
· · · , kn can be specified later, X (y(t)) is an undetermined
continuous function.

Remark 1: The dynamic gain γ(t) is used to domi-
nate the unknown nonlinearities that are bounded by states
multiplied by output polynomial. The intrinsic feature of
γ(t) and the appropriate choices of ki guarantee the sta-
bility of the observer in the case of u(t) = 0. On the
other hand, because γ(t) can be increased to a sufficient
large value, it can compensate the polynomial growth rate
c(1+ |y|P) in Assumption 2.

The estimation error is defined as follows:

εi =
xi− x̂i

γ i−1+ϑ (t)
, i = 1, . . . , n, (8)

where ϑ > 0, and it is not hard to obtain

dεi = d
xi− x̂i

γ i−1+ϑ (t)

=
xi+1dt+ fi(·)dt+gT

i (·)dω− x̂i+1dt+kiγ
i(t)x̂1dt

γ i−1+ϑ (t)

− (i−1+ϑ)
(xi− x̂i)γ̇(t)dt

γ i+ϑ (t)

=γ(t)εi+1dt− γ(t)kiε1dt− (i−1+ϑ)
γ̇(t)
γ(t)

εidt

+
γ(t)

γϑ (t)
kix1dt +

fi(·)dt
γ i−1+ϑ (t)

+
gT

i (·)dω

γ i−1+ϑ (t)
, (9)

where εn+1 , 0. Rewrite (9) into the following form

dε(t) =(γ(t)Aε +
γ(t)

γϑ (t)
Mx1−

γ̇(t)
γ(t)

(ϑ I +D)ε)dt

+ f (·)dt +gT (·)dω, (10)

where

A =


−k1 1 · · · 0

...
...

. . .
...

−kn−1 0 · · · 1
−kn 0 · · · 0

 , ε =


ε1

ε2
...

εn

 , M =


k1

k2
...

kn

 ,

f (·) =


f1(·)

γϑ (t)
f2(·)

γ1+ϑ (t)
...

fn(·)
γn−1+ϑ (t)

 , gT (·) =


gT

1 (·)
γϑ (t)
gT

2 (·)
γ1+ϑ (t)

...
gT

n (·)
γn−1+ϑ (t)

 ,

D =


0

1
. . .

n−1

 .

Choose positive constants k1, · · · , kn such that the matrix
A is Hurwitz. There is a positive-definite and symmetric
matrix Q1 satisfies

AT Q1 +Q1A≤−I, (11)

ϑQ1 ≤ DQ1 +Q1D+2ϑQ1. (12)

Then, choose the candidate function as

V1 = ε
T Q1ε +

n

∑
i=1

2cL1i(n− i+1)
1− τ̄

×
∫ t

t−τ(t)

(1+ |y|p)2x2
i (s)

γ2i−2+2ϑ (s)
ds,

(13)

where L1 = 1+2n
√

n‖Q1‖F .
With the help of (11) and (12), one can figure out that

LV1 =
∂V1

∂ε
(γ(t)Aε +

γ(t)
γϑ (t)

Mx1 + f (·)

− γ̇(t)
γ(t)

(ϑ I +D)ε)+
1
2

Tr
{

g
∂ 2V1

∂ε2 gT
}

+
n

∑
i=1

2cL1i(n− i+1)
1− τ̄

x2
i (1+ | y |p)2

γ2i−2+2ϑ (t)

−
n

∑
i=1

2cL1i(n− i+1)
1− τ̄

× x2
i (t− τ(t))(1+ | y(t− τ(t)) |p)2

γ2i−2+2ϑ (t− τ(t))
(1− τ̇)

≤2γ(t)εT Q1Aε +
2γ(t)
γϑ (t)

ε
T Q1Mx1 +2ε

T Q1 f (·)

−ϑλ1
γ̇(t)
γ(t)
‖ε‖2 +Tr{gQ1gT}

+
n

∑
i=1

2cL1i(n− i+1)
1− τ̄

x2
i (1+ | y |p)2

γ2i−2+2ϑ (t)

−
n

∑
i=1

2cL1i(n− i+1)
γ2i−2+2ϑ (t− τ(t))

× (1+ | y(t− τ(t)) |p)2x2
i (t− τ(t)), (14)

where 1− τ̇ ≥ 1− τ̄ and λ1 > 0 is the minimum eigen-
value of the matrix Q1. In the following, we need to han-
dle the indefinite item in the right side of (14). To begin
with, there holds

2γε
T Q1Aε ≤−γ(t)‖ε‖2. (15)
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In view of Lemma 2, it follows that

2γ(t)
γϑ (t)

ε
T Q1Mx1

≤ γ(t)
2
‖ε‖2 +

2γ(t)
γ2ϑ (t)

‖Q1‖2‖M‖2x2
1. (16)

By Assumption 1, it can be obtained that

2ε
T Q1 f (·)

≤ 2c‖ε‖‖Q1‖
n

∑
i=1

(n− i+1)
γ i−1+ϑ (t)

|xi|(1+ |y|p)

+2c‖ε‖‖Q1‖
n

∑
i=1

(n− i+1)
γ i−1+ϑ (t− τ(t))

×|xi(t− τ(t))|(1+ |y(t− τ(t))|p)

≤ cn(n+1)‖Q1‖(
2n+1

6
‖Q1‖+1)‖ε‖2

+ c‖Q1‖
n

∑
i=1

(n− i+1)
γ2i−2+2ϑ (t)

|xi|(1+ |y|p)

+ c
n

∑
i=1

(n− i+1)
γ2i−2+2ϑ (t− τ(t))

×|xi(t− τ(t))|(1+ |y(t− τ(t))|p). (17)

In light of Assumption 1 and Lemma 1, it is not difficult
to deduce that

‖g‖2
F

= ‖[g1

γk ,
g2

γϑ+1 , · · · ,
gn

γn−1+ϑ
]‖2

F

≤
n

∑
i=1

2i(n− i+1)c2(1+ |y|p)2|xi|2

γ2i−2+2ϑ (t− τ(t))

+
2i(n−i+1)c2(1+|y(t−τ(t))|p)2|xi(t−τ(t))|2

γ2i−2+2ϑ (t− τ(t))
,

and with Lemma 3 in mind, there holds

Tr{gQ1gT}= n‖gQ1gT‖∞ ≤ n
√

n‖gQ1gT‖F

≤ n
√

n‖Q1‖F‖g‖2
F ≤ n

√
n‖Q1‖F

×
n

∑
i=1

2ic2(n− i+1)(
|xi|2(1+ |y|p)2

γ2i−2+2ϑ (t)

+
|xi(t− τ(t))|2(1+ |y(t− τ(t))|p)2

γ2i−2+2ϑ (t− τ(t))
).

(18)

Substituting (15)-(18) into (14) yields that

LV1 ≤−
γ(t)

2
‖ε‖2−ϑλ1

γ̇(t)
γ(t)
‖ε‖2 +

γ(t)%1

γ2ϑ (t)
x2

1

+%2‖ε‖2 +
n

∑
i=1

%i+2(y)x2
i

γ2i−2+2ϑ (t)
, (19)

where positive constants %1, %2 and functions %i+2(y) are
defined by

%1 = 2‖Q1‖2‖M‖2,

%2 = cn(n+1)‖Q1‖(
2n+1

6
‖Q1‖+1),

%i+2(y) =
c(n− i+1)

2
(1+ |y|p)2‖Q1‖

+
2cL1i(n− i+1)

1− τ̄
(1+ |y|p)2

+2c2i(n−1+ i)n
√

n‖Q1‖F(1+ |y|p)2,

i = 1, 2, · · · , n.
(20)

3.2. Controller design
In view of (1), (6) and (8), it follows that

dx1(t) = x2(t)dt + f1(t,x(t),x(t− τ(t)))dt

+g1(t,x(t),x(t− τ(t)))dω(t),
˙̂xi(t) = x̂i+1(t)+ γ

i(t)ki(γ
ϑ (t)ε1− x1),

i = 2, . . . , n−1,
˙̂xn(t) = u(t)+ γ

n(t)kn(γ
ϑ (t)ε1− x1).

(21)

The coordinate transformations are introduced for dealing
with the nonlinear function f1 and g1 as follows:

ζ1(t) =
x1(t)
γϑ (t)

, · · · ,ζi(t) =
x̂i(t)

γ i−1+ϑ (t)qi−1 ,

υ(t) =
u(t)

γn+ϑ (t)qn , i = 2, . . . , n, (22)

where constant q ≥ 1 can be specified later. Combining
(8), (21) and (22) yields

dζ1(t) = (γ(t)qζ2(t)−ϑ
γ̇(t)
γ(t)

ζ1(t)+ γ(t)ε2)dt

+
f1(·)
γϑ

dt +
gT

1 (·)
γϑ (t)

dω,

dζi(t) = γ(t)qζi+1(t)dt− (i−1+ϑ)
γ̇(t)
γ(t)

ζi(t)dt

+
γ(t)ki(ε1−ζ1(t))

qi−1 dt, i = 2, · · · , n−1,

dζn(t) = γ(t)qυ(t)dt− (n−1+ϑ)
γ̇(t)
γ(t)

ζn(t)dt

+
γ(t)kn(ε1−ζ1(t))

qn−1 dt.

(23)

Then, the following actual control law is designed:

υ(t) =− b1

γϑ (t)
y(t)−b2ζ2(t)−·· ·−bnζn(t), (24)
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where b1, · · · , bn are positive constants to be determined
later. Substituting (24) into (23) to render

dζ (t) =(γ(t)qBζ + f̃ (·)− γ̇(t)
γ(t)

(ϑ I +D)ε

+
γ(t)

q
H3(ε1−ζ1)+ γ(t)H2ε2

+ γ(t)qH1b1(1−φ(t))ζ1)dt + g̃T (·)dω,
(25)

where

B =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
−b1 −b2 · · · −bn

 , ζ =


ζ1

ζ2
...

ζn

 ,

f̃ (·) =


f1(·)

γϑ (t)
0
...
0

 , g̃T (·) =


gT

1 (·)
γϑ (t)

0
...
0

 , H1 =


0
0
...
1

 ,

H2 =


1
0
...
0

 , H3 =


0
k2
k3
q
...

kn
qn−2

 .

Choose positive constants b1, · · · , bn such that B is a Hur-
witz matrix. Similarly to the matrix Q1, there exists a ma-
trix Q2 satisfying

BT Q2 +Q2B≤−I, (26)

ϑQ2 ≤ DQ2 +Q2D+2ϑQ2. (27)

Then, choose the function as

V2 = ζ
T Q2ζ +

cL2

1− τ̄

∫ t

t−τ(t)

(1+ |y|p)2x2
1(s)

γ2ϑ (s)
ds, (28)

where L2 = 1+2n
√

n‖Q2‖F .
The time derivative along the trajectories of (25) can be

calculated as follows:

LV2 = 2ζ
T Q2(γ(t)qBζ − γ̇(t)

γ(t)
(ϑ I +D)ζ + γ(t)H2ε2

+
γ(t)

q
H3(ε1−ζ1)

+ γ(t)qH1b1(1−φ(t))ζ1 + f̃ (·))

+Tr{g̃Q2g̃T}+ cL2

1− τ̄
(1+ | y |p)2‖ζ‖2

− cL2(1+ | y(t− τ(t)) |p)2x2
1(t− τ(t))

(1− τ̄)γ2ϑ (t− τ(t))
(1− τ̇)

≤ 2γ(t)qζ
T Q2Bζ −ϑλ2

γ̇(t)
γ(t)
‖ζ‖2

+
cL2

1− τ̄
(1+ | y |p)2‖ζ‖2 +2γ(t)ζ T Q2H2ε2

− cL2x2
1(t− τ(t))(1+ | y(t− τ(t)) |p)2

γ2ϑ (t− τ(t))

+2γ(t)qb1ζ
T Q2H1(1−φ(t))ζ +2ζ

T Q2 f̃ (·)

+2ζ
T Q2

γ(t)
q

H3(ε1−ζ1)+Tr{g̃Q2g̃T}, (29)

where λ2 is the minimum eigenvalue of the matrix Q2,
|ζ1| ≤ ‖ζ‖ and γ̇(t)

γ(t) ≥ 0.
In what follows, it is necessary to manipulate indefinite

terms in the right hand side of (29). By means of (26), one
immediately has

2γ(t)qζ
T Q2Bζ ≤−γ(t)q‖ζ‖2. (30)

It is not difficult to deduce that

2γ(t)qb1ζ
T Q2H1(1−φ(t))ζ

≤ 2γ(t)qb1‖Q2H1‖(1−φ(t))‖ζ‖2. (31)

With the aid of ‖H2‖= 1 and ‖H3‖ ≤ (∑n
i=2 k2

i )
1
2 , δ , it is

not hard to arrive at

2γ(t)ζ T Q2H2ε2 +2ζ
T Q2

γ(t)
q

H3(ε1−ζ1)

≤ γ(t)
4
‖ε‖2 +

γ(t)
8
‖Q2‖2‖ζ‖2

+
8γ(t)δ 2

q2 ‖Q2‖2‖ζ‖2 +2δ
γ(t)

q
‖Q2‖‖ζ‖2. (32)

Then, by Assumption 1 and Lemma 2, one can obtain that

2ζ
T Q2 f̃ (·)
≤ 2‖ζ‖‖Q2‖‖ f̃ (·)‖

≤ 2‖ζ‖‖Q2‖c(1+ | y |p)|x1|
γϑ (t)

+
2‖ζ‖‖Q2‖c(1+ | y(t− τ(t)) |p)|x1(t− τ(t))|

γϑ (t)

≤ 2c‖Q2‖(1+ | y |p)2‖ζ‖2 + c‖ζ‖2‖Q2‖2

+
c

γ2ϑ (t− τ(t))
(1+ | y(t− τ(t)) |p)2

×|x1(t− τ(t))|2. (33)

By Assumption 1 and Lemma 3, there holds

Tr{g̃Q2g̃T} ≤ n
√

n‖Q2‖F‖g̃‖2
F

≤ 2c2n
√

n‖Q2‖F(1+ |y|p)2‖ζ‖2

+2c2n
√

n‖Q2‖F

× (1+|y(t−τ(t))|p)2|x1(t−τ(t))|2)
γ2ϑ (t− τ(t))

.

(34)
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Substituting (30)-(34) into (29), there exist γ(t) ≥ 1 and
q > 1 such that

LV2 ≤− γ(t)q(1−2b1(1−φ(t))‖Q2‖)‖ζ‖2

−ϑλ2
γ̇(t)
γ(t)
‖ζ‖2 +

γ(t)
4
‖ε‖2

+ γ(t)q(
2‖Q2‖[δ (1+4δ‖Q2‖)+4‖Q2‖]

q

+
c(2(1+ |y|p)+‖Q2‖)‖Q2‖

γ(t)
+

cL2(1+ |y|p)2

(1− τ̄)

+
2c2n
√

n‖Q2‖F(1+ |y|p)2

γ(t)
)‖ζ‖2

=− γ(t)q(1−2b1(1−φ(t))‖Q2‖)‖ζ‖2

+
γ(t)

4
‖ε‖2−ϑλ2

γ̇(t)
γ(t)
‖ζ‖2

+ γ(t)q(
%̄1

q
+

%̄2

γ(t)
)‖ζ‖2, (35)

where the positive constant %̄1 and function %̄2 are defined
as follows:

%̄1 = 2‖Q2‖[δ (1+4δ‖Q2‖)+4‖Q2‖],
%̄2 = c(2(1+ |y|p)+‖Q2‖)‖Q2‖

+2c2n
√

n‖Q2‖F(1+ |y|p)2

+
cL2

(1− τ̄)
(1+ |y|p)2.

(36)

4. MAIN RESULTS

Combining (22) and (24), one immediately has

u(t) = − γ
n(t)qnb1y(t)− γ

n−1(t)qn−1b2x̂2(t)

−·· ·− γ
2(t)q2bn−1x̂n−1(t)− γ(t)qbnx̂n(t).

(37)

Next, we will formulate the main results of this paper.

Theorem 1: If system (1) satisfies Assumptions 1 and
2, the states of the closed-loop systems (1), (6), (7)
and (37), which are defined on [−τ̃ , +∞) are uniformly
bounded, and the closed-loop systems are stochastic sta-
ble in probability.

Proof: The aforementioned theorem is proved from the
following aspects.

1) Calculation of time derivative of V1. By (8) and (22),
it is not hard to obtain

x1 = γ
ϑ (t)ζ1,

xi = γ
i−1+ϑ (t)εi + γ

i−1+ϑ (t)qi−1
ζi, i = 2, . . . , n.

(38)

Then, applying Lemma 1 and the fact |εi| ≤ ‖ε‖, |ζi| ≤
‖ζ‖ for i = 2, . . ., n, one can obtain

1
γ2ϑ+2i−2(t)

x2
i ≤ 2(‖ε‖2 +q2i−2‖ζ‖2). (39)

Substituting (38),(39) into (19), one can get

LV1 ≤ −
γ(t)

2
‖ε‖2−ϑλ1

γ̇(t)
γ(t)
‖ε‖2

+(%1 +2
n

∑
i=2

%i+2)‖ε‖2

+(γ(t)%2 +q(%3 +2
n

∑
i=2

%i+2q2i−3))‖ζ‖2, (40)

where defining functions %̃1 and %̃2 as
%̃1(y) = %1 +

n

∑
i=2

2%i+2(y)≥ 0,

%̃2(y) = %3(y)+
n

∑
i=2

2q2i−3%i+2(y)≥ 0.
(41)

It is not hard to verify that (19) can be further simplified
to

LV1 ≤−
γ(t)

2
‖ε‖2−ϑλ1

γ̇(t)
γ(t)
‖ε‖2

+ %̃1‖ε‖2 +(γ(t)%2 +q%̃2(y))‖ζ‖2. (42)

2) Specification of design parameters. Firstly, by the
inequality φ̄ < min{1, 1

2b1‖Q2‖}, the sensitivity error φ̄ is
specified, one gets

1−2b1|1−φ | · ‖Q2‖ ≥ 1−2b1φ̄‖Q2‖, ρ, (43)

V = ε
T Q1ε +

n

∑
i=1

2cL1i(n− i+1)
1− τ̄

×
∫ t

t−τ(t)

(1+ |y|p)2x2
i (s)

γ2i−2+2ϑ (s)
ds+ζ

T Q2ζ

+
cL2

1− τ̄

∫ t

t−τ(t)

(1+ |y|p)2x2
1(s)

γ2ϑ (s)
ds, (44)

then

LV ≤−γ(t)(
1
4
+ϑλ1

γ̇(t)
γ2(t)

− %̃1

γ(t)
)‖ε‖2

− γ(t)q(ρ +ϑλ2
γ̇(t)

γ2(t)q
− %2 + %̄1

q

− %̃2 + %̄2

γ(t)
)‖ζ‖2, (45)

ρ− %2 + %̄1

q
≥ 1

4
ρ, (46)

where q ≥ max
{

1, 4(%2+%̄1)
3ρ

}
. Let η = min{ϑλ1, ϑλ2},

l = qρ

8 , γ̇(t)≥− qργ2(t)
8η

+ γ(t)X (y)
η

, one has

η
γ̇(t)

γ2(t)q
≥−ρ

8
+
X (y)
γ(t)q

. (47)

Substituting (46) and (47) into (45), and let 0 < ρ < 1,
q≥ 1, it follows that

LV ≤− γ(t)(
1
4
+η

γ̇(t)
γ2(t)q

− %̃1

γ(t)
)‖ε‖2
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− γ(t)q(
ρ

4
+η

γ̇(t)
γ2(t)q

− %̃2 + %̄2

γ(t)
)‖ζ‖2

≤− (
ρ

8
+
X (y)

q
− %̃1)‖ε‖2

− (
ρ

8
+X (y)−q%̃2−q%̄2)‖ζ‖2. (48)

Then, choosing

X (y) = q%̃1 +q%̃2 +q%̄2, (49)

yields

LV ≤−ρ

8
‖ε‖2− ρ

8
‖ζ‖2. (50)

3) In light of the existence and the continuation proper-
ties of solutions, the state of the closed-loop systems com-
posed of (1), (6), (7) and (22) is X(t), [ε(t), ζ (t), γ(t)]T ,
which is defined on a time interval [−τ̃ , tκ).

(i) X(t) is bound on [−τ̃ , tκ). Firstly, it sees that the
function V is monotonically nonincreasing and nonnega-
tive with respect to t from (44)and (50). Then, we have

V (t)

≤V (0) = ε(0)T Q1ε(0)

+
n

∑
i=1

2cL1i(n− i+1)
1− τ̄

∫ 0

−τ(0)

(1+ |y|p)2x2
i (s)

γ2i−2+2ϑ (s)
ds

+ζ (0)T Q2ζ (0)+
cL2

1− τ̄

∫ 0

−τ(0)

(1+ |y|p)2x2
1(s)

γ2ϑ (s)
ds

≤ λ3‖ε(0)‖2 +λ4‖ζ (0)‖2

+
n

∑
i=1

3cL(n− i+1)
1− τ̄

∫ 0

−τ(0)

(1+ |y|p)2x2
i (s)

γ2i−2+2ϑ (s)
ds,

(51)

where the positive constants λ3 and λ4 are the maximum
eigenvalue of the matrixes Q1 and Q2, respectively; The
constant L = max{L1, L2}. The term in the right hand side
of (51) is bounded since y(s) and x1(s), · · · , xn(s) are con-
tinuous functions with s ∈ [−τ̃ , 0), and it is not hard to
summarize from (51) that V (t) is bounded for−τ̃ ≤ t < tκ .
Hence, ε(t) and ζ (t) are bounded by (44).

Then, one needs to prove the boundness of γ(t) on
[−τ̃, tκ). There are the positive numbers M1 and M2 sat-
isfying

X (y)≤M1(1+ |y|p)2, (52)

and

|y| ≤ |φ(t)| · |x1| ≤ (1+ φ̄)|ζ |γϑ (t)≤M2γ
ϑ (t). (53)

It is not hard to deduce that ϑ can be fixed by the inequal-
ity 2pϑ < 1 by means of the constant p of Assumption
1. With the aid of Lemmas 1 and 2, substituting (53) into
(52) yields

X (y)≤ 2M1(1+ y2p)

≤ 2M1(1+M2p
2 γ

2pϑ (t))

= 2M1 +2M1M2p
2 γ

2pϑ (t)

≤ ρq
16

γ(t)+M3, (54)

where the positive real number M3 = 2M1 + (1 −
2pϑ)(2M1M2p

2 ( 32pϑ

ρq )2pϑ )
1

1−2pϑ .
It is not hard to obtain

γ̇(t) =
X (y)

η
γ(t)− qρ

8η
γ

2(t)

≤ M3

η
γ(t)− qρ

16η
γ

2(t)

,−ς1γ
2(t)+ ς2γ(t),

(55)

where the positive real numbers ς1 = qρ

16η
and ς2 = M3

η
,

γ(t) = ς2eς2t

ς2−ς1+ς1eς2t is the solution of the equation γ̇(t) =
−ς1γ2(t)+ ς2γ(t), γ(0) = 1. Then, we can see that

γ(t)≤ ς2eς2t

ς2− ς1 + ς1eς2t

≤ lim
t→+∞

ς2eς2t

ς2− ς1 + ς1eς2t =
ς2

ς1
.

(56)

Thus, γ(t) is bounded on [−τ̃ , tκ).
(ii) tκ = +∞. If tκ is finite, tκ would be a finite escape

time, which implies that at least one parameter of X(t)
would tend to ∞ when t → tκ . The boundedness of X(t)
at t = tκ can be guaranteed by the continuity of ε(t), ζ (t),
γ(t) since X(t) is bounded on [−τ̃, tκ). This contradicts
the assumed result. Thus, tκ =+∞, and we’ve proved the
theorem. �

5. SIMULATION EXAMPLE

Example 1: As an illustration of the proposed control
method, this paper considers the following system:

dx1(t)

= [x2(t)+(1+y(t− τ(t))x1(t−τ(t))cos(10x1))]dt

+(1+ y(t− τ(t))x1(t− τ(t))cos(x1))dω(t),

dx2(t)

= [u(t)+(1+ y(t− τ(t))x2(t− τ(t))sin(2x1))]dt

+(1+ y(t− τ(t))x2(t− τ(t))sin(x1))dω(t),

y(t) = φ(t)x1(t),

where φ(t) = 0.1|sin(100t2)|+ 0.7. Obviously, Assump-
tion 1 satisfies c = p = 1. By choosing ϑ = 1

3 , k1 = 10,
k2 = 1, b1 = 1, b2 =

1
2 , q = 1, one can construct the output

feedback controller as follows:
˙̂x1(t) = x̂2(t)−10γ(t)x̂1(t),
˙̂x2(t) = u(t)− γ

2(t)x̂1(t),

γ̇(t) = max{0,−3γ
2(t)+(5+5(1+ |y|)2)γ(t)},

u(t) =−0.5γ(t)x̂2(t)− yγ
2(t).
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Fig. 1. The trajectories of x1(t) and x̂1(t).

Fig. 2. The trajectories of x2(t) and x̂2(t).

Next, we choose initial value as x1(Ξ) = 1, ˙̂x1(Ξ) =−1,
x2(Ξ) = 1, ˙̂x2(Ξ) = −1, τ(t) = 0.01 and γ(Ξ) = 1 for
−0.1 ≤ Ξ ≤ 0. Figs. 1-4 exhibit the simulation results.
One can be obtained from Fig. 1 that the states and the
observed values converge to zero. That is to say, the afore-
mentioned control strategy is effective.

6. CONCLUSION

This manuscript investigates the topic of output feed-
back stabilization for stochastic nonlinear systems with
unknown time-varying delay and output function. Accord-
ing to the designing of integral Lyapunov functions and
the double domination approach, the control method is
achieved via the construction of the observer and con-
troller. The above results indicate that the closed-loop sys-
tem is stochastic stable in probability.
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