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Convex Optimization-based Entry Guidance for Spaceplane
Juho Bae, Sang-Don Lee, Young-Won Kim, Chang-Hun Lee* � , and Sung-Yug Kim

Abstract: This paper aims to propose convex-optimization-based entry guidance for a spaceplane, which has po-
tential in online implementation with less sensitivity to initial guess accuracy while mitigating a high-frequency
jittering issue in the entry trajectory optimization problem. To this end, a highly nonlinear, constrained, and non-
convex entry guidance problem is converted into sequential convex sub-problems in the second-order cone pro-
gramming (SOCP) form by an appropriate combination of successive linearization and convexification techniques.
From the investigation on the potential sub-problem infeasibility due to a rough initial guess for radial distance, a
linear penalized term associated with a virtual control for an inequality constraint is used to relieve the sub-problem
infeasibility while preserving the standardized SOCP form. An adjustable trust-region bound is also adopted in the
proposed approach to improve the convergence property further. Additionally, a change of control variables and a
relaxation technique are utilized to relieve the high-frequency jittering issue. It is proven that the Lossless convex-
ification property is preserved for the relaxed problem even in the presence of the penalty terms. The feasibility of
the proposed method is investigated through numerical simulations.

Keywords: Convex optimization, entry guidance, second-order cone programming (SOCP), trajectory optimiza-
tion.

1. INTRODUCTION

Over the past several decades, there has been profound
attention to spaceplanes (types of reentry vehicles) for
space tourism, space transportation, and space exploration
[1]. It is recognized that entry guidance plays a vital role
in reentry vehicles. The ultimate goal of the entry guid-
ance is to produce steering commands to guide a reentry
vehicle from an entry interface point (EIP) to a specified
target point while satisfying various constraints and dis-
sipating mechanical energy for safe recovery. As the en-
try guidance problem is characterized by numerous practi-
cal constraints, highly time-variant, and nonlinear dynam-
ics [2,3], it has been considered a challenging problem in
guidance technology. Previous studies on the entry guid-
ance can be classified into three categories: variant of the
Shuttle entry guidance, predictor-corrector method, and
trajectory optimization approach.

The Shuttle entry guidance [4] has been devised for the
Shuttle operations, and its performance has been success-
fully demonstrated through numerous flight tests [5]. The
underlying concept of the Shuttle entry guidance is to set
a reference drag acceleration profile satisfying flight con-

straints and to track the reference drag profile using a lin-
ear feedback control law [4]. In the last few decades, there
have been several variants of the Shuttle entry guidance
with the purpose of improving its performance. In [6], a
new Shuttle entry guidance with an energy-dependent ref-
erence drag profile was proposed for more accurate guid-
ance performance. In [7], a nonlinear control approach
was applied to designing the feedback control law for the
reference drag following. The author in [8] devised new
entry guidance with the optimal reference drag profile and
nonlinear trajectory control law. However, as the Shuttle
entry guidance relies on the predetermined reference drag
profile, onboard applications intended to cope with unex-
pected situations are limited.

Hence, the predictor-correct approach, which relies
more on onboard computation for an entry trajectory and
guidance command, has been investigated as an alter-
native way in recent years. The basic idea of this ap-
proach is to iteratively determine a complete profile for the
bank angle magnitude while meeting boundary conditions
through numerical integration [9]. Explicitly handling in-
equality constraints is limited in the general predictor-
corrector approach, and this method is also vulnerable to
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modeling error. For these reasons, some modifications of
this method have been reported in recent years. In [10],
new predictor-corrector entry guidance was devised to en-
force the inequality constraints effectively by utilizing the
quasi-equilibrium glide condition (QEGC). In [11], a fully
constrained predictor-corrector entry guidance was sug-
gested using a modified QEGC. In [12], a unified form
of predictor-corrector guidance was suggested for various
types of reentry vehicles. Although the previous studies
on the predictor-corrector approach could show potential
in onboard applications than the Shuttle entry guidance,
this approach still has weak points. The optimality of en-
try trajectory cannot be addressed in this approach, and the
computational complexity is still high to be implemented
online.

More recently, as remedies, a trajectory optimization
approach, based on the computational guidance and con-
trol philosophy [13,14], has been investigated according
to the mathematical developments and the computational
capability improvements. The key ingredient for this ap-
proach is the convex optimization technique: it allows
to effectively solve optimization problems in a polyno-
mial time. The convex optimization technique has recently
been applied to various engineering problems [15–18], in-
cluding guidance applications. In [19], the entry guidance
problem was formulated in the form of second-order cone
programming (SOCP) to leverage favorable features of the
convex optimization technique, and it was solved by the
successive convexification method [20,21]. In [22], a new
entry guidance problem was formulated in the sequential
convex optimization framework by introducing a new con-
trol input. In [23], successive convex programming for the
online trajectory generation and tracking of the reference
trajectory was devised. For a rapid entry trajectory gen-
eration, the pseudospectral method and an improved suc-
cessive convexification were applied to an entry guidance
problem [24]. The authors in [25] proposed two meth-
ods for improving the convergence characteristic of the
sequential convex programming method: line-search and
trust-region techniques. The authors in [26] developed a
convex optimization-based approach for rapidly generat-
ing an aerocapture trajectory. In [27], entry guidance con-
sidering no-fly-zone constraints was developed based on
multiphase convex programming.

As the equations of motion for the entry guidance
problem are highly nonlinear in general, sequential con-
vex programming (SCP) with the successive linearization
technique [20] has been widely adopted in previous stud-
ies. In the generic SCP method, a nonlinear optimization
problem is sequentially solved by converting it into a con-
vex sub-problem at each iteration. Although a strict con-
vergence property of the convex optimization is weakened
in the SCP method, it still has been recognized as an effi-
cient heuristic method for solving nonlinear optimization
problems. Moreover, it has been successfully applied to a

real-world guidance problem [28]. However, there are still
some issues to be improved in the generic SCP method in
the entry trajectory optimization problem.

First, the sub-problem infeasibility issue due to a poor
initial guess of a solution is considered as an obstacle for
the generic SCP method. To be more specific, in the suc-
cessive linearization process, as a nonlinear optimization
problem is convexified in the neighborhood of initial guess
in early iterations, the convex sub-problem could be infea-
sible when an initial guess is too inaccurate. If the sub-
problem infeasibility occurs, the successive convexifica-
tion process no longer proceeds, and the convergence is
failed. Accordingly, some studies handling this issue have
been reported in the open literature recently. In [29], a dy-
namic relaxation term, which is regarded as a virtual con-
trol, was introduced to prevent the artificial infeasibility
caused by the successive convexification sequence with a
poor initial guess. The authors in [30] suggested a penal-
ized SCP method by utilizing a linear penalty term in stan-
dard optimization [31]. Two pairs of positive slack vari-
ables were introduced to inequality constraints and equal-
ity constraints, respectively, and the linear penalty term
with these slack variables was augmented into the perfor-
mance index. In [24], a combination of L1 and L2 penalty
terms was suggested to relieve the convex sub-problem in-
feasibility. Indeed, the occurrence of sub-problem infeasi-
bility is closely related to the underlying nature of a given
problem and a way of initial guess. Thus, only necessary
relaxation terms should be introduced to a given problem.
However, this point was less addressed in the previous
studies.

When applying the SCP method to the entry trajectory
optimization problem, another issue is a high-frequency
jittering observed in the control profile, as reported in
[19,22]. A similar issue has been reported when the en-
try trajectory optimization problem is solved by an NLP
(nonlinear programming) solver, especially a sequential
quadratic programming method in [32,33]. The main rea-
son for the jittering is the dynamic coupling of state and
control variables in the entry trajectory optimization prob-
lem. Thus, the key to suppressing the undesirable jittering
in the control profile is to convert the coupled dynamics
into dynamics in the form of the control-affine system. In
[22], a control augmentation technique (i.e., utilizing the
rate of control input as a pseudo control) was employed to
create the control-affine system. However, this technique
in [22] has been applied to a fixed-final-time entry guid-
ance problem only, and an initial guess for the original
control variable (i.e., the bank angle) solution was still re-
quired, which is not an easy task. Additionally, according
to the discussion in [19], the control augmentation tech-
nique might be inappropriate for the entry trajectory op-
timization with a free-final-time problem because of the
inherent nature of the problem characteristic. As another
approach, a change of control variables has been utilized
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to obtain the control-affine system [19]. Since the change
of the control variables scheme introduces an additional
nonconvex constraint on the control input variables, a re-
laxation technique was also suggested in this study. It has
been proven that relaxed inequality guarantees the opti-
mal solution for the original problem [19]. However, as
the sub-problem infeasibility was not handled in [19], this
proof was only valid for the entry trajectory optimization
problem without considering the virtual control terms. Ac-
cordingly, a relatively accurate initial guess was required
in this approach, and numerical integration was used to
generate an initial guess of radial distance solution [19].

In this context, this paper aims to propose SCP-based
entry guidance for a spaceplane, which is less sensitive to
the accuracy of the initial guess and free of high-frequency
jittering issues simultaneously. To this end, the character-
istics of the inequality constraints, which are mainly as-
sociated with the radial distance from the center of Earth
and the reentry vehicle, are investigated in the entry guid-
ance problem. The investigation results uncover that a
poor initial guess of the radial distance would be the pri-
mary source for the sub-problem infeasibility in the entry
trajectory optimization problem. A single slack variable
intended to relax a lower bound of the inequality condi-
tions and a linear penalty term are used to relieve this issue
while preserving the standardized convex forms. A vary-
ing bound for the trust-region constraint is also adopted
further to improve the convergence performance of the
successive solution procedure. Additionally, a change of
control variables and a corresponding relaxation technique
are utilized to form the control-affine system with the pur-
pose of avoiding the high-frequency jittering issue in the
control profile. The key property of the proposed methods
lies in the fact that it is less sensitive to the accuracy of
the initial guess of the radial distance solution while mit-
igating the high-frequency jittering issue. Therefore, the
proposed methods can allow a rough initial guess. Numer-
ical simulations are performed to verify this fact and the
feasibility of the proposed methods.

The contributions of this study are threefold compared
to existing results. First, the primary source for the sub-
problem infeasibility in the entry trajectory optimization
problem is investigated in this study, allowing us to use
minimal relaxation terms to mitigate the sub-problem in-
feasibility. Second, more general proof of relaxation tech-
nique is provided than the previous result [19]. To be more
specific, it is proven that the relaxation technique can guar-
antee the optimal solution for the original entry trajectory
optimization problem even in the presence of the virtual
control terms in this study. Last but not least, in this study,
a simple linear interpolation (two straight lines connect-
ing the boundary conditions) is proposed to generate an
initial guess of radial distance solution without a compu-
tationally expensive process (i.e., numerical integration of
dynamic equations), unlike the previous works [19,24].

The remainder of this paper is organized as follows: In
Section 2, the entry guidance problem is formulated in the
trajectory optimization framework. In Section 3, the con-
vexification process and the modifications are discussed.
In Section 4, simulation results are offered to show the
performance of the proposed methods. Finally, the con-
cluding remarks are provided in Section 5.

2. PROBLEM FORMULATION

In this study, the entry guidance problem is formulated
based on the trajectory optimization framework by lever-
aging the concept of the computational guidance and con-
trol (CG&C) approach [13,14]. This section provides the
details of the problem formulation: the equations of mo-
tion, the boundary conditions, the practical constraints,
and the performance index, which is based on [19].

2.1. Equations of motion
Under the assumption of a spherical rotating Earth, the

three-degree-freedom (3DOF) equations of motion for a
reentry vehicle with respect to the non-dimensional time
can be written as follows [34]:

dr
dτ

=V sinγ, (1)

dλ

dτ
=

V cosγ cosψ

r
, (2)

dl
dτ

=
V cosγ sinψ

r cosλ
, (3)

dV
dτ

=−D− sinγ

r2

+Ω
2r cosλ (sinγ cosλ − cosγ sinλ cosψ) ,

(4)

dγ

dτ
=

Lcosσ

V
−
(

1
V r2 −

V
r

)
cosγ +2Ωcosλ sinψ

+
Ω2r cosλ

V
(cosγ cosλ + sinγ sinλ cosψ) ,

(5)
dψ

dτ
=

Lsinσ

V cosγ
+

V
r

cosγ sinψ tanλ

−2Ω(tanγ cosλ cosψ− sinλ )

+
Ω2r

V cosγ
sinλ cosλ sinψ, (6)

where the variable r denotes the non-dimensional radial
distance between the center of Earth and the reentry vehi-
cle. This variable representing the length quantity is scaled
by the radius of Earth R0. The variables λ and l rep-
resent the latitude and longitude, respectively. The vari-
able V represents the non-dimensional vehicle speed rel-
ative to Earth, which is scaled by

√
R0g0, where g0 is the

gravitational acceleration at sea level. The variables γ and
ψ represent the flight path angle and the heading angle



Convex Optimization-based Entry Guidance for Spaceplane 1655

of the vehicle, respectively. The parameter Ω is the non-
dimensional Earth rotation rate, scaled by

√
g0/R0. The

variable τ is the non-dimensional time, which is defined
as follows:

τ
∆
=

t√
R0/g0

. (7)

In the above equations, the terms L and D represent the
aerodynamic lift and aerodynamic drag in g0. These are
given by

L =
1

2m
R0ρV 2SrefCL, (8)

D =
1

2m
R0ρV 2SrefCD, (9)

where the parameters m and Sref represent the dimensional
vehicle mass and the dimensional reference area, which
are assumed to be constant values. The parameters CL and
CD denote the lift and drag coefficients, which are the
non-dimensional values and given by the functions of the
angle-of-attack α and Mach number M. In the above equa-
tions, the variable ρ denotes the dimensional air density,
and it is given by

ρ = ρ0e−h/hs , (10)

where h ∆
= rR0−R0 is the altitude relative to Earth. The

parameter ρ0 is the air density at sea level, and the param-
eter hs denotes the reference altitude for the exponential
air density model. The definition of the state variables is
shown in Fig. 1. In orbital mechanics, the negative of the
specific mechanical energy [12] can be written as

e ∆
=

1
r
− V 2

2
. (11)

By differentiating e with respect to the non-dimensional
time τ , we have

de
dτ

=− 1
r2

dr
dτ
−V

dV
dτ

. (12)

Under the small value assumption of Ω in (4) (i.e., Ω≈ 0),
the above equation can be approximated as

de
dτ
≈ DV > 0. (13)

Fig. 1. The definition of the state variables.

From (13), it is worth noting that e is monotonically in-
creasing with respect to τ . This fact implies that e can
be used as the independent variable instead of τ . Addi-
tionally, as the definition of e is given by the function
of r and V , the equation of motion for the vehicle speed
can be dropped if e is used as the independent variable. It
could be an advantage in terms of relieving the complex-
ity of the state equations in a way to reduce the size of the
state vectors. By applying (13) to the original equations of
motion, the non-dimensional 3DOF (degree-of-freedom)
equations of motion with respect to the specific energy can
be written as

dr
de

=
sinγ

D
, (14)

dλ

de
=

cosγ cosψ

rD
, (15)

dl
de

=
cosγ sinψ

rDcosλ
, (16)

dγ

de
=

Lcosσ

V 2D
+

(
V 2− 1

r

)
cosγ

rV 2D
+

2Ωcosλ sinψ

V D

+
Ω2r cosλ

V 2D
(cosγ cosλ + sinγ sinλ cosψ) ,

(17)
dψ

de
=

Lsinσ

V 2Dcosγ
+

1
Dr

cosγ sinψ tanλ

−2Ω(tanγ cosλ cosψ− sinλ )
1

V D

+
Ω2r

V 2Dcosγ
sinλ cosλ sinψ. (18)

From (11), as the definition of e is given by the function
of r and V , and the non-dimensional vehicle speed can be
directly determined from the given independent variables
e and r as

V =

√
2
(

1
r
− e
)
. (19)

2.2. Control inputs
Most reentry vehicles have adopted the bank-to-turn

(BTT) control system, as shown in Fig. 2. The magni-
tude of lift L and lift direction can be considered the con-
trol inputs in BTT control. In most reentry vehicles, the
angle-of-attack is controlled to follow the predetermined
angle-of-attack profile for ensuring thermal protection and
trimmed flight. Therefore, only the bank angle σ becomes
the control input for a reentry vehicle. As shown in Fig. 2,
the lift L with the bank angle σ can be decomposed into
the vertical Lcosσ and horizontal forces Lsinσ , respec-
tively. These two forces can introduce the changes in the
flight path angle and the heading angle, as shown in (17)
and (18). The system equation can then be regarded as a
control-affine system with respect to these control forces.
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Fig. 2. The bank-to-turn control mechanism.

It is well-known that the control-affine system is more de-
sirable for avoiding unwanted high-frequency jittering is-
sues in the successive linearization procedure [19,35]. Ac-
cordingly, new control variables to exploit the benefit of
the control-affine system [20,35] are defined as follows:

ah
∆
= Lsinσ , av

∆
= Lcosσ . (20)

Since the new control variables ah and av are not indepen-
dent, the following kinematics rule should be met.

a2
h +a2

v = L2. (21)

For given ah and av, the original bank angle can be recon-
structed as

σ = tan−1 ah

av
. (22)

Note that the lift term L in (20) and (21) can be regarded
as a function of the vehicle speed as the predetermined
angle-of-attack profile depends on the vehicle speed.

2.3. Boundary conditions
Generally, the entry guidance phase starts at the entry

interface point (EIP), and it proceeds until the terminal
energy management phase (TAEM) begins. Therefore, the
entry trajectory should satisfy these boundary conditions.
In this study, it is assumed that the initial conditions at EIP
are given as

r(e0) = r0, λ (e0) = λ0, l(e0) = l0,

γ(e0) = γ0, ψ(e0) = ψ0, (23)

where the parameter e0 represents the specific mechani-
cal energy at EIP, and this value can be determined using
(11) with the EIP conditions r0 and V0. Additionally, the
final conditions at the beginning of the TAEM phase are
typically given by

r(e f ) = r f , λ (e f ) = λ f , l(e f ) = l f ,

γ(e f ) = γ f , ψ(e f ) = ψ f . (24)

Likewise, the parameter e f represents the specific me-
chanical energy at the beginning of the TAEM phase. It
can be calculated by utilizing (11) with r f and Vf . In this
study, the final boundary conditions for the latitude and

longitude are handled as the soft constraints for improving
the convergence of the successive linearization procedure
as

|λ (e f )−λ f | ≤ ελ , |l(e f )− l f | ≤ εl . (25)

Note that if the upper bounds ελ and εl approach zero, the
soft constraints in (25) gradually become the hard con-
straints in (24).

2.4. Flight constraints
The key benefit of the trajectory optimization-based

guidance is that it allows imposing several practical flight
constraints to the problem formulation. In this study, we
consider commonly used constraints in the entry guidance
problem. The first constraint to be considered is the max-
imum heat flux limit, which is essential to protect the ve-
hicle material from aerodynamic heating [36]. This con-
straint is typically modeled as

Q̇max ≥Cq

√
g0R3.15

0
√

ρV 3.15. (26)

The following constraint is the maximum dynamic pres-
sure limit. This constraint is required to relieve the hinge
moment acting on the aerodynamic control fins and pre-
vent structural damage to the vehicle body. This constraint
is given by

qmax ≥
1
2

g0R0ρV 2. (27)

Another constraint is related to the maximum aerody-
namic load on the vehicle body, which is given by

nmax ≥
1

2m
R0ρV 2Sref|CZ |, (28)

where the parameter CZ
∆
=CL cosα +CD sinα is the aero-

dynamic coefficient for the normal force. The above con-
straint is introduced to prevent the structural damage
caused by excessive aerodynamic forces acting on the ve-
hicle body. Note that the above constraints, as given in
(26), (27), and (28), are given by the function of the air
density ρ , and the air density, as given in (10), is given
by the function of the radial distance r. Therefore, by sub-
stituting (10) into (26), (27), and (28) and rearranging the
results with respect to the radial distance, the above con-
straints can be rewritten as

r ≥ 1− hs

R0
ln

(
Q̇2

max

ρ0C2
q (g0R0)

3.15 V 6.3

)
, (29)

r ≥ 1− hs

R0
ln
(

2qmax

ρ0g0R0V 2

)
, (30)

r ≥ 1− hs

R0
ln
(

2mnmax

ρ0R0V 2Sref |CZ |

)
. (31)
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Note that the right-hand side terms of (29), (30), and (31)
are given by the function of the vehicle speed V and the
parameters Q̇max, Cq, qmax, and nmax. These parameters are
depending on the reentry vehicle designs. In this study, we
assume that these parameters are given.

Additionally, the allowable bank angle is typically
bounded because of the maneuverability characteristics of
the reentry vehicle as

σmin ≤ |σ | ≤ σmax. (32)

Accordingly, the control input is constrained as

Lcosσmax ≤ av ≤ Lcosσmin. (33)

2.5. Minimum-time guidance problem

In this study, the minimum-time entry guidance prob-
lem is mainly considered with the purpose of minimizing
the heat accumulation during a reentry flight. The perfor-
mance index for the flight time with respect to the specific
mechanical energy can be written as

J =
∫

τ f

τ0

1dτ =
∫ e f

e0

1
DV

de. (34)

To enforce the soft constraints in (25) to become the hard
constraints (24), the parameters ελ and εl should be mini-
mized. In this context, the optimal guidance problem can
be formulated as follows:

P1 : min J = cλ ελ + clεl +
∫ e f

e0

1
DV

de

subject to (14)-(19), (21), (23)-(25),

(29)-(31), (33). (35)

For convenience, the above problem is called P1 in this
study. In the problem P1, the vertical force av and horizon-
tal force ah can be considered as the free variables to be
optimized. Furthermore, the equations of motion and the
performance index are nonlinear, and there are nonconvex
constraints. Accordingly, this problem can be character-
ized as a nonconvex problem.

3. SECOND-ORDER CONE PROGRAMMING
WITH LINEAR PENALIZATION

This section elaborates on the convexification process
for the original problem P1 based on the successive lin-
earization [20] and other convexification techniques. After
performing convexification, the problem P1 is converted
into the SOCP sub-problems. The sub-problem infeasibil-
ity issue with a poor initial guess is investigated. To re-
solve this issue, a relaxation technique is also applied to
the SOCP sub-problems.

3.1. System equation
For notational convenience, let the state vector and the

input vector be defined as follows:

x ∆
= [r, λ , l, γ, ψ]T , u ∆

= [av, ah]
T . (36)

Based on the definitions of the state vector and the input
vector, the system equation can be expressed as

x′ = f1(x)+h(x)u+ f2(x), (37)

where

f1(x)
∆
=



sinγ

D
cosγ cosψ

rD

cosγ sinψ

rDcosλ(
V 2− 1

r

) cosγ

rV 2D

cosγ sinψ tanλ

rD


, h(x) ∆

=


0 0
0 0
0 0
1

V 2D 0
0 1

V 2Dcosγ

,

(38)

where x′ represents the differentiation of the state vector
with respect to e. The remaining terms with Ω in (14) to
(18) are defined as the function f2(x). It is worth pointing
out that the system equation is given in the form of the
control-affine system.

3.2. Convexification process
In the optimal control problem, the system equation

can be considered as a set of equality constraints. Since
the system equation is highly nonlinear, as shown in (37)
and (38), these constraints are nonconvex. Accordingly,
the successive linearization technique is first applied to
the nonlinear system equation. The basic idea of the suc-
cessive linearization is to sequentially linearize nonlinear
terms at a previous iteration solution by leveraging a first-
order Taylor series approximation. Assuming that the i-th
iteration solutions are given as x(i) =

[
r(i), λ (i), l(i), γ (i),

ψ (i)
]T and u(i) =

[
a(i)

v , a(i)
h

]T . According to the Taylor the-
orem, the linear approximation of the nonlinear term f1(x)
near the i-th iteration solutions is written as

f1(x)≈ f1

(
x(i)
)
+

∂ f1
(
x(i)
)

∂x

(
x− x(i)

)
. (39)

Note that the above approximation is valid only in a suffi-
ciently small neighborhood of x = x(i) as∣∣∣x− x(i)

∣∣∣≤ δ . (40)

It is called the trust-region constraint, where δ is the upper
bound. Furthermore, as the variations of h(x) and f2(x) ac-
cording to changes in the state vector x are insignificant,
these terms can also be approximated by the lagging tech-
nique (i.e., the function values are determined by directly
assigning the previous iteration solutions) [37].

h(x)≈ h
(

x(i)
)
, f2(x)≈ f2

(
x(i)
)
. (41)
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By utilizing these approximations, the nonlinear system
equation can be written in a linear form as

x′ ≈ Fx

(
x(i)
)

x+h
(

x(i)
)

u+R
(

x(i)
)
, (42)

where

Fx

(
x(i)
)

∆
=

∂ f1
(
x(i)
)

∂x
, (43)

R
(

x(i)
)

∆
= f1

(
x(i)
)
−

∂ f1
(
x(i)
)

∂x
x(i)+ f2

(
x(i)
)
. (44)

Note that the terms Fx
(
x(i)
)
, h
(
x(i)
)

and R
(
x(i)
)

are con-
stant matrices because these are given by the function of
the previous iteration solutions. Thus, the system equation
in (42) becomes a linear function, and it will be converted
into a set of convex equality constraints after performing
discretization.

Hereafter, let us discuss the convexification process for
nonconvex constraints. As the flight constraints, as shown
in (29), (30), and (31) are given by the function of the
vehicle speed (which is further given by the function of
the non-dimensional radial distance r and the specific me-
chanical energy e), these are implicitly nonconvex con-
straints. Therefore, by applying the lagging technique,
these inequality constraints can be approximated as

r ≥ 1− hs

R0
ln

(
Q̇2

max

ρ0C2
q (g0R0)

3.15 (V (i)
)6.3

)
, (45)

r ≥ 1− hs

R0
ln

(
2qmax

ρ0g0R0
(
V (i)
)2

)
, (46)

r ≥ 1− hs

R0
ln

(
2mnmax

ρ0R0
(
V (i)
)2 Sref

∣∣CZ
(
V (i)
)∣∣
)
, (47)

where the parameter V (i) is given by

V (i) =

√
2
(

1
r(i)
− e
)
. (48)

Next, the kinematics constraints for the control inputs can
be convexified by the relaxation [20] and the lagging tech-
niques as follows:

a2
h +a2

v ≤ L
(

V (i)
)2

. (49)

Furthermore, the control input constraints, as shown in
(33), can be approximated by the lagging technique as

L
(

V (i)
)

cosσmax ≤ av ≤ L
(

V (i)
)

cosσmin. (50)

Note that the upper or lower bounds in (45), (46), (47),
(49), and (50) are constant values as these are given by the
function of the previous iteration solutions x(i).

Lastly, as the integrand of the performance index, as
given in (35), is nonlinear, it should be convexified. Based
on the successive linearization, the nonlinear integrand
can be approximated from (9), (10), and (35), as follows:

1
DV
≈ η1

(
x(i)
)

r+η0

(
x(i)
)
, (51)

where

η1

(
x(i)
)

∆
=

2m

ρ (i)hsSref
(
V (i)
)3 CD

(
V (i)
) , (52)

η0

(
x(i)
)

∆
=− 2mr(i)

ρ (i)hsSref
(
V (i)
)3 CD

(
V (i)
)

+
2m

ρ (i)R0Sref
(
V (i)
)3 CD

(
V (i)
) , (53)

ρ
(i) ∆

= ρ0e−
(r(i)R0−R0)

hs . (54)

Note that the terms η0
(
x(i)
)

and η1
(
x(i)
)

are assumed to
be constant values given by the function of the i-th previ-
ous iteration solutions x(i).

3.3. Discretization
This section explains the discretization procedure for

the linearized system equation. It is the process of trans-
forming the linearized system equation, as given in (42),
into a set of equality constraints. The independent variable
e is discretized into Nk +1 uniformly distributed points as

ek = e0 + k∆e, ∀k ∈ [0,Nk] , (55)

where ∆e ∆
= (e f − e0)/Nk. Then, the state and the control

input vector at the k-th step can be defined as

xk
∆
= x(ek) = [rk, λk, lk, γk, ψk]

T ,

uk
∆
= u(ek) = [av,k, ah,k]

T . (56)

Likewise, for notational convenience, the terms Fx
(
x(i)
)
,

h
(
x(i)
)
, and R

(
x(i)
)

at the k-th step are defined as

F (i)
x,k = Fx

(
x(i)(ek)

)
, h(i)k = h

(
x(i)(ek)

)
,

R(i)
k = R

(
x(i)(ek)

)
. (57)

Based on the trapezoidal numerical method, the linearized
system equation can be numerically integrated as follows:

xk+1 = xk +

(
x′k+1 + x′k

)
2

∆e, ∀k ∈ [0, Nk−1]. (58)

By substituting (42) into (58) and rearranging the result,
we have

Ak+1xk+1 +Bk+1uk+1 +Ck+1

= Akxk +Bkuk +Ck, ∀k ∈ [0, Nk−1], (59)
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where

Ak+1
∆
= I− ∆e

2
F (i)

x,k+1, Bk+1
∆
=−∆e

2
h(i)k+1,

Ck+1
∆
=−∆e

2
R(i)

k+1, (60)

Ak
∆
= I +

∆e
2

F (i)
x,k , Bk

∆
=

∆e
2

h(i)k , Ck
∆
=

∆e
2

R(i)
k , (61)

where the parameter I represents an identity matrix with
the same dimension as Ns. Additionally, the linearized in-
tegrand of the performance index, as shown in (51), can
be discretized as follows:∫ e f

e0

[
η1

(
x(i)
)

r+η0

(
x(i)
)]

de

≈
Nk

∑
k=0

(Γ1,krk +Γ0,k)∆e, (62)

where

Γ1,k
∆
= η1

(
x(i)(ek)

)
, Γ2,k

∆
= η0

(
x(i)(ek)

)
. (63)

Lastly, in the discrete-energy domain ∀k ∈ [0, Nk], the
above constraints can also be written as

rk ≥ 1− hs

R0
ln

 Q̇2
max

ρ0C2
q (g0R0)

3.15
(

V (i)
k

)6.3

 , (64)

rk ≥ 1− hs

R0
ln

 2qmax

ρ0g0R0

(
V (i)

k

)2

 , (65)

rk ≥ 1− hs

R0
ln

 2mnmax

ρ0R0

(
V (i)

k

)2
Sref

∣∣∣CZ

(
V (i)

k

)∣∣∣
 ,

(66)∣∣∣xk− x(i)k

∣∣∣≤ δ , (67)

a2
v,k +a2

h,k ≤ L2
k , (68)

Lk cosσmax ≤ av,k ≤ Lk cosσmin, (69)

r(i)0 = r0, λ
(i)
0 = λ0, l(i)0 = l0, γ

(i)
0 = γ0, ψ

(i)
0 = ψ0,

(70)

r(i)Nk
= r f , γ

(i)
Nk

= γ f , ψ
(i)
Nk

= ψ f ,∣∣∣λ (i)
Nk
−λ f

∣∣∣≤ ελ ,
∣∣∣l(i)Nk
− l f

∣∣∣≤ εl , (71)

where Lk
∆
= L

(
V (i)

k

)
.

3.4. Convex sub-problems
In this subsection, the convex sub-problem is formu-

lated in the form of SOCP. Based on the successive con-
vexification process, the convex sub-problem can be con-
structed as follows:

P2 : min J = cλ ελ + clεl +
Nk

∑
k=0

(Γ1,krk +Γ0,k)∆e

subject to (64)-(71). (72)

From (72), it can be readily observed that the above prob-
lem belongs to the SOCP problem, and it can be solved
by the generic sequential convex programming (SCP)
method. For convenience, the above problem is called the
problem P2 in this study.

3.5. Modified convex sub-problems
In this subsection, the modified convex sub-problem is

constructed to enhance the convergence characteristics of
the generic SCP approach. As discussed in the Introduc-
tion, the sub-problem infeasibility occurs when an initial
guess is inaccurate in the generic SCP method. This issue
becomes more severe in most entry guidance problems.
As the system equation is given in the form of the control-
affine system, as shown in (37), an initial guess for the
control inputs is not required. Besides, it is worth noting
that among the inequality constraints in the entry guid-
ance problem, the inequality constraints associated with
the maximum heat flux limit, the maximum dynamic pres-
sure limit, and the maximum load factor limit, as shown in
(64), (65), and (66), are highly related to an initial guess
for the state variable r. Hence, if an initial guess for r is
poor, the early iteration solutions often lie outside of these
inequality constraints during the successive linearization
process. Accordingly, the sub-problem infeasibility arises.
To be more specific, one of rough initial guess options for
the radial distance r would be a straight line connecting
its initial boundary condition and final boundary condition
(or a combination of straight lines connecting intermedi-
ate points). Without loss of generality, it can be expressed
in a linear function (or a set of linear functions) as follows:

r(0)k = aek +b, ∀k ∈ [0, Nk] , (73)

where a and b are constant values, and these are given by

a ∆
=

r f − r0

e f − e0
, b ∆

= r0−ae0. (74)

Note that the parameter a can be considered as the slope
of this linear function, and it has a negative value a < 0.
From (19) and (74), the vehicle speed at the k-th step can
be determined as

V (0)
k =

√√√√2

(
1

r(0)k

− ek

)

=

√
2
(

1
aek +b

− ek

)
, ∀k ∈ [0, Nk]. (75)

The lower bounds of the inequality constraints associated
with r at the k-th step can be expressed in the generic
forms as

r(0)LB,k = 1− p1 ln

p2
1(

V (0)
k

)2

 or
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(a) Vehicle speed.

(b) Radial distance and its bounds.

Fig. 3. The general patterns of vehicle speed, radial dis-
tance, and its bounds.

r(0)LB,k = 1− p1 ln

p2
1(

V (0)
k

)6.3

 , (76)

where the parameters p1 and p2 are given by the func-
tion of the parameters Q̇max, Cq, qmax, and nmax. The gen-
eral pattern of the vehicle speed can be depicted as shown
in Fig. 3(a), and the general pattern of the lower bounds
and the initial guess for the radial distance can be vi-
sualized as depicted in Fig. 3(b). The general pattern of
the lower bound for the inequality constraints regarding
r is curved towards the upper right corner, as shown in
Fig. 3(b). Thus, in the next iteration, the possible solution
within the trust-region bound δ might lie in infeasible so-
lution space if the rough initial guess for r (i.e., a straight
line connecting the two boundary conditions) is used, and
the sub-problems infeasibility occurs.

To relax the above issue, the slack variable is aug-
mented to the inequality constraints as shown in (64), (65),
and (66) as

rk ≥ 1− hs

R0
lnωk−νk ∀k ∈ [0, Nk] , (77)

Fig. 4. The visualization for the effect of lower bound re-
laxation.

νk ≥ 0, ∀k ∈ [0, Nk], (78)

where

ωk = min(ωk,1, ωk,2, ωk,3),

ωk,1
∆
=

Q̇2
max

ρ0C2
q (g0R0)

3.15
(

V (i)
k

)6.3 ,

ωk,2
∆
=

2qmax

ρ0g0R0

(
V (i)

k

)2 ,

ωk,3
∆
=

2mnmax

ρ0R0

(
V (i)

k

)2
Sref

∣∣∣CZ

(
V (i)

k

)∣∣∣ . (79)

The role of this slack variable is to bring the effect of mak-
ing the lower bound move downward direction, as shown
in Fig. 4. In this way, the possible solution within the trust-
region bound can be in a feasible solution space in the next
iteration. To enforce the relaxed constraint to become the
original constraint, the magnitudes of the slack variable
should be zero as the iteration proceeds. In this context,
the slack variable is included in the performance index as
a linear penalty term.

ν
∆
=

Nk

∑
k=0

νk. (80)

Furthermore, the trust-region bound is essential for the
convergence and feasibility characteristics of the SCP
method. Although a hard trust-region constraint with a
fixed bound in (67) would be suitable for retaining a suf-
ficient step size at every iteration, it might be more vul-
nerable for a poor initial guess. On the other hand, a soft
trust-region constraint with a varying bound [29] is ben-
eficial to ensure the bounded and feasible solutions for a
poor initial guess. Thus, a trust-region constraint with a
varying term is adopted in this study further to improve
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the convergence performance of the successive convexifi-
cation procedure.∣∣∣xk− x(i)k

∣∣∣≤ δ
(i)
1 , ∀k ∈ [0, Nk],

δ
(i)
1 ≥ 0, (81)

where δ
(i)
1 represents a varying bound at the i-th iteration.

To mitigate the effect of the varying bound in (81), the
term δ

(i)
1 needs to be zero as the iteration proceeds. Thus,

this term is augmented into the performance index. Fi-
nally, the modified convex sub-problem can be formulated
as follows:

P3 : min J = cλ ελ + clεl +
Nk

∑
k=0

(Γ1,krk +Γ0,k)∆e

+wν

Nk

∑
k=0

νk +wδ δ1

subject to (68)-(71), (77)-(81), (82)

where wν and wδ are weight values for the penalty term.
For convenience, the above problem is called the problem
P3 in this study. It can be effectively solved by the succes-
sive convexification algorithm, which will be explained
in the following subsection. Additionally, as proven in
Proposition 1, the optimal solution with the relaxation
technique used in (49) will be the same as the optimal so-
lution for the original problem.

Proposition 1: Whenever the sub-problem P3 is solved,
the convex relaxation holds. i.e., a2

v(e)+a2
h(e) = L

(
V (i)
)2

almost everywhere on [e0, e f ].
Proof: See Appendices A and B. �
Remark 1: Proposition 1 is a more general statement

of a relaxation technique than the previous study [19] be-
cause it is proven that the relaxation technique can guar-
antee the optimal solution for the original entry trajectory
optimization problem even in the presence of the slack
variables (virtual control terms). Besides, a regularization
term in the performance index is not required in the proof
procedure, unlike the previous study [19].

3.6. Successive convexification algorithm
This subsection describes the successive convexifica-

tion procedure used in this study. The successive convex-
ification algorithm solves the convex sub-problem formu-
lated in (82) iteratively until the predetermined conver-
gence criterion is met. The details of the successive con-
vexification procedure are summarized in Algorithm 1.

As shown in Algorithm 1, the initial guess for the first
iteration solutions x(0) is required in this approach. In
this study, a rough initial guess, which are straight lines
connecting the initial boundary conditions and the final
boundary conditions, is used as follows:

λ
(0)
k = µ1,kλ0 +µ2,kλ f , ∀k ∈ [0, Nk],

Algorithm 1: Successive convexification.

Input: An initial guess of solution x(0) and initial weight
values wν and wδ

for all i = 0 : Nmax do
solve a convex sub-problem (82) with x(i)

if max
∣∣x(i+1)− x(i)

∣∣≤ εtol then
Return x(i+1) and u(i+1)

end if
end for

l(0)k = µ1,kl0 +µ2,kl f , ∀k ∈ [0, Nk],

γ
(0)
k = µ1,kγ0 +µ2,kγ f , ∀k ∈ [0, Nk],

ψ
(0)
k = µ1,kψ0 +µ2,kψ f , ∀k ∈ [0, Nk], (83)

where µ1,k and µ2,k are defined as

µ1,k
∆
=

Nk− k
Nk

, µ2,k
∆
=

k
Nk

, ∀k ∈ [0, Nk]. (84)

For an initial guess of r, two straight lines connecting the
initial boundary conditions, intermediate points, and the
final boundary conditions, are used as follows:

r(0)k =

{
µ11,kr0 +µ12,krref, if k ≤ Nref,

µ21,krref +µ22,kr f , otherwise,
∀k ∈ [0, Nk],

(85)

with

µ11,k
∆
=

Nref− k
Nref

, µ21,k
∆
=

Nk−Nref− k
Nk−Nref

,

µ12,k
∆
=

k
Nref

, µ22,k
∆
=

k
Nk−Nref

, ∀k ∈ [0, Nk], (86)

where rref
∆
= (R0 +href)/R0. It will be shown in simula-

tion results that this initial guess can ensure a good con-
vergence characteristic because the linear penalization can
help resolve the infeasibility issue at the early iteration due
to a poor initial guess.

Remark 2: Although the convergence of the succes-
sive convexification procedure is not rigorously proved
yet, its usefulness and efficiency have been successfully
demonstrated through extensive studies on this method. It
has also been successfully applied to a real application:
reusable rocket landing guidance [28].

4. SIMULATION RESULTS

In this section, numerical simulations are conducted to
show the performance of the proposed methods. A reen-
try vehicle model and an environment model used in this
study are introduced. The design parameters for the pro-
posed method are then described. Lastly, the numerical
optimization results are offered.
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4.1. Reentry vehicle model and environment model
A reentry vehicle model used in this study refers to [23],

where the vehicle mass is 104,305 kg, and the reference
area is 391.22 m2. The aerodynamic coefficients for the
reentry vehicle [8] are given by

CL =−0.041065+0.016292α +0.00026024α
2,

(87)

CD = 0.080505−0.03026CL +0.86495C2
L, (88)

where α is in degrees. Here, the angle-of-attack α is con-
trolled to track the predetermined speed-dependent pro-
file. The reference angle-of-attack profile with respect to
the vehicle speed is given by [8]

α =


40 deg, if v≥ 4570 m/s,

−0.0073(4570− v)+40 deg,

if 760≤ v < 4570 m/s,

12 deg, otherwise,

(89)

where v ∆
= V
√

g0R0 is the dimensional vehicle speed.
From [23], the parameters for the flight path constraints in
(26), (27), and (28) are chosen as follows: Q̇max = 1,500
kW/m2, Cq = 1.65× 10−4 W/m2, qmax = 18,000 N/m2,
and nmax = 2.5 g. Additionally, the parameters for the bank
angle constraints in (32) are selected as σmin = 15 deg and
σmax = 165 deg. In this study, a simple exponential atmo-
sphere model with ρ0 = 1.225 kg/m3 and hs = 8.42 km
is used. The values for the radius of Earth, the gravita-
tional acceleration at sea-level, and the dimensional Earth
rotation rate are selected as R0 = 6379.137 km, g0 = 9.81
m/s2, and Ω = 7.292115×10−5 rad/s, respectively.

4.2. Simulation conditions
For the entry mission considered in this study, the ini-

tial boundary condition at the entry interface point and the
final condition are provided in Table 1. In the entry trajec-
tory optimization, it is assumed that the trajectory is dis-
cretized into 201 evenly distributed points (i.e., Nk = 200).
The design parameters for the proposed methods are set to
wν = 100, wδ = 1, cλ = 10, and cl = 10, respectively. For
the initial guess, the parameters Nref and href are chosen as
Nref = 5 and href = 85 km. The stopping criterion for the
successive convexification procedure in Algorithm 1 is set
to

εtol =

[
200
R0

,
0.05π

180
,

0.05π

180
,

0.05π

180
,

0.05π

180

]T

.

(90)

Additionally, in the trajectory optimization, MATLAB in
conjunction with MOSEK [38] (which is the most ad-
vanced SOCP solver) is utilized to solve convex sub-
problems. All the results are obtained by implementing
the software tools and the algorithm on a desktop with In-
tel (R) Core i7-8700 3.20 GHz.

Table 1. The parameters for entry trajectory optimization.

Parameter Value Parameter Value
V0 7450 m/s Vf 900 m/s
h0 120 km h f 30 km
λ0 29.4692 deg λ f 37.4692 deg
l0 79.4510 deg l f 126.4510 deg
γ0 −0.5 deg γ f −5.0 deg
ψ0 90 deg ψ f −90 deg

4.3. Simulation results

In the entry trajectory optimization, six successive it-
erations are conducted to obtain the converged complete
solution. By utilizing MOSEK, it takes about 0.2 seconds
to solve the problem P3, as formulated in Subsection 3.5.
Note that it is a promising result for online implementation
potential: if a customized SOCP solver written in C lan-
guage is utilized, the computation time could be further
reduced. To examine the convergence characteristics of
the successive convexification process with the proposed
relaxations, altitude and bank angle profiles in successive
iterations are plotted as shown in Fig. 5. The results ob-
tained readily show that the altitude and bank angle pro-
files are almost converged within three or four successive
iterations despite the fact that a rough initial guess (i.e.,
straight lines connecting initial and final conditions) is
used. These results confirm a rapid convergence feature
of the proposed methods. Additionally, it can be observed
that although the initial guess for r lies in the infeasible
region in the first iteration, as shown in Fig. 5(a), the con-
verged complete solution is successfully obtained under
the proposed approach. On the other hand, although not
provided here, a solution does not converge under the suc-
cessive convexification process without the proposed re-
laxations (i.e., the generic SCP method). Thus, the results
indicate that the proposed approach is less sensitive to the
sub-problem infeasibility caused by a rough initial guess.

Moreover, Fig. 6 shows the convergence patterns for the
performance index J and the relaxation terms ν and δ (i).
From Fig. 6(a), we can observe that the performance in-
dex gradually decreases as the successive iterations pro-
ceed, and it successfully converges to its minimum value.
As shown in Fig. 6(a), the magnitude of the relaxation
term for the inequality constraint in (77) begins with a
non-zero value, and the magnitude of this term approaches
zero value as the number of iterations increases. It implies
that the relaxation is activated in early iterations to help
resolve the sub-problem infeasibility caused by a rough
initial guess. Then, the relaxation effect gradually dimin-
ishes: the relaxed inequality constraint is progressively
converted into the original inequality constraint. Likewise,
the trust-region bound gradually decreases ad the succes-
sive iterations proceed, as shown in Fig. 6(c). This feature
is desirable for improving the convergence performance
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(a) Altitude vs. iteration.

(b) Bank angle profile.

Fig. 5. Convergence patterns for altitude and bank angle
profiles in successive iterations.

of the successive solution procedure.
Figs. 7(a) and 7(b) represent the vehicle speed his-

tory and the corresponding angle-of-attack profile. It can
be readily observed that a high angle-of-attack is main-
tained at the beginning of the entry trajectory for ensur-
ing thermal protection, and the angle-of-attack gradually
decreases near the final conditions for retaining trimmed
flight, as in (90). Next, the converged solutions for the
state variables and the control variable are plotted in Figs.
8 and 9. Fig. 8(a) and 8(b) represent the three-dimensional
trajectory and the ground track history. Figs. 9(a)-9(f) de-
pict the altitude, the latitude, the longitude, the flight path
angle, the heading angle, and the bank angle, respectively.
From Fig. 9, we can readily observe that all the bound-
ary conditions for the mission, as provided in Table 1, are
successfully satisfied.

Additionally, all the flight path constraints are met, as

(a) Performance index J.

(b) Relaxation term for inequality constraint.

(c) Trust-region bound.

Fig. 6. Convergence patterns for the performance index
and penalty terms in successive iterations.
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(a) Vehicle speed.

(b) Angle-of-attack.

Fig. 7. Vehicle speed and angle-of-attack profile.

shown in Fig. 9(a). The result indicates that the satisfac-
tion of the heat flux limit constraint is significant at the be-
ginning of the entry guidance. In the midcourse guidance
phase, the constraint for the maximum aerodynamic load-
ing limit is activated. We can also observe that the maxi-
mum dynamic pressure constraint becomes important in
the vicinity of the arrival point, as shown in Fig. 9(a).
Moreover, as shown in Fig. 9(f), it can be observed that
the achieved bank angle command lies within the maxi-
mum and minimum bounds on the bank angle magnitude.
Finally, Fig. 10 represents the error for the kinematics con-
straint for the control input in (21). In this study, the relax-
ation error for this constraint is defined as follows:

εerr
∆
= a2

h +a2
v−L2. (91)

Note that εerr = 0 means that the kinematics constraint is
satisfied in the above equation. As shown in Fig. 10, it can
be readily observed that the kinematics constraint is met,

(a) 3D trajectory.

(b) Ground track.

Fig. 8. Minimum-time entry trajectory.

although the relaxation on this constraint is applied in the
trajectory optimization, including the slack variable. The
result obtained verifies Proposition 1.

5. CONCLUSIONS

This paper presents a way to solve the entry guidance
problem by utilizing a modern convex optimization ap-
proach based on the computational guidance and control
framework. The entry guidance problem is typically char-
acterized as highly nonlinear, constrained, and nonconvex.
By applying the successive convexification technique,
the problem can be converted into convex sub-problems.
However, the sub-problem infeasibility often occurs dur-
ing the successive convexification procedure when an ini-
tial guess is rough. Additionally, high-frequency jittering
is often observed in the control profile. Appropriate re-
laxation techniques are introduced in this study based on
rigorous analysis on the issues to handle the challeng-
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(a) Altitude. (b) Latitude.

(c) Longitude. (d) Flight path angle.

(e) Heading angle. (f) Bank angle.

Fig. 9. State variables and control variables for minimum-time entry trajectory.

ing issues. Simulation results have shown that the pro-
posed methods can improve the convergence characteris-

tics of the successive solution procedure in the entry guid-
ance problem even though a rough initial guess (straight
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Fig. 10. The relaxation error for control input.

line approximations) is used while mitigating the high-
frequency jittering issue. The solution is converged within
six successive iterations, and it takes about 0.2 seconds
in each iteration by utilizing a genetic solver. Thus, the
proposed methods have potential in online implementa-
tion if a customized solver written an embedded program
language is used.

APPENDIX A: PRELIMINARIES FOR PROOF OF
PROPOSITION 1

Assumption 1: Assume that the optimal control sub-
problem P3 before discretizing has a solution. Then, as
mentioned in [19], the constraints (A.9) and (A.12) are
only active on a region with measure zero. i.e., exists no
sub-region [e1, e2] ⊂ [e0, e f ] s.t. av

∆
= L(V (i))cosσmax or

av
∆
= L(V (i))cosσmin, or |x− x(i)|< δ1 for ∀e ∈ [e1, e2].

A.1. Defining equivalent problem
Based on Assumption 1, when the sub-problem P3 is

solved without discretization or continuously, the corre-
sponding δ

∆
=
∣∣x− x(i)

∣∣ and δ1 = δ∞ will be determined.
Therefore, for such δ1, we define an equivalent problem
to the problem P3 without discretization (i.e., a continuous
form of problem P3) as follows:

Minimize

J = cλ ελ (e f )+ clεl(e f )

+
∫ e f

e0

η1

(
x(i)
)

r+η0

(
x(i)
)
+wν ′ν(e)de (A.1)

Subject to

ẋ = Fx

(
x(i)
)

x+h
(

x(i)
)

u+R
(

x(i)
)
, (A.2)

r(e0) = r0, λ (e0) = λ0, l(e0) = l0,

γ(e0) = γ0, ψ(e0) = ψ0, (A.3)

r(e f ) = r f , γ(e f ) = γ f , ψ(e f ) = ψ f , (A.4)

a2
v +a2

h ≤ L
(

V (i)
)2

, (A.5)

[ελ (e)]
′
= ξλ (e), ελ (e0) = 0, (A.6)

[εl(e)]
′
= ξl(e), εl(e0) = 0, (A.7)

|λ (e f )−λ f | ≤ ελ (e f ), |l(e f )− l f | ≤ εl(e f ), (A.8)

L
(

V (i)
)

cosσmax ≤ av ≤ L
(

V (i)
)

cosσmin, (A.9)

r+ν ≥ g, (A.10)

ν ≥ 0, (A.11)∣∣∣x− x(i)
∣∣∣≤ δ1, (A.12)

where wν ′ = wν/∆e ≥ 0, ∆e = (e f − e0)/Nk and g(e) ∆
=

max{(45), (46), (47)}. Additionally, ξλ and ξl are slack
variables defined by derivatives of ελ and εl , respectively.
Note that x(i) is the solution obtained from the previous
i-th iteration, and it is not yet discretized. For the above
optimal control problem, the state variables are r, λ , l, γ ,
ψ , ελ , εl , and the control variables are av, ah, ν , ξλ , ξl .
Let Fmn denote the (m,n)-th component of Fx

(
x(i)
)
, and

hk denotes the k-th component of h
(
x(i)
)
.

A.2. Defining Hamiltonian and Lagrangian
In this proof, we adopt the Direct-Adjoining approach

[39] to obtain the necessary conditions for the solution of
the above optimal control problem. First, let us define the
Hamiltonian H and the Lagrangian L as follows:

H ∆
= pr (F11r+F14γ +h1)

+ pλ (F21r+F23l +F24γ +F25ψ +h2)

+ pl (F31r+F34γ +F35ψ +h3)

+ pγ

(
F41r+F44γ +

1

D
(
V (i)
)(

V (i)
)2 av +h4

)

+ pψ

(
F51r+F53l +F54γ +F55ψ

+
1

D
(
V (i)
)(

V (i)
)2 cosγ (i)

ah +h5

)
+ pελ

ξλ + pεl ξl + p0

(
η1

(
x(i)
)

r

+η0

(
x(i)
)
+wν ′ν

)
, (A.13)

where p0 is a non-positive constant.

L ∆
= H +µu

((
L
(

V (i)
))2
−a2

v−a2
h

)
+µM

(
av−L

(
V (i)
)

cosσmax

)
+µm

(
L
(

V (i)
)

cosσmin−av

)
+µg (r+ν−g)+µν ν . (A.14)
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Here, let us define p ∆
=
[
pr, pλ , pl , pγ , pψ , pελ

, pεl

]T as the
costate vector. µu, µM , µm, µg, and µν are Lagrange Multi-
pliers. Note that p is piecewise absolutely continuous and
Lagrange multiplier functions µu, µM , µm, µg, and µν are
piecewise continuous.

A.3. Pointwise maximum condition
Assume {x∗, a∗v , a∗h, ν∗, ξ ∗

λ
, ξ ∗l } to be an optimal solu-

tion. The pointwise maximum condition is given by

[a∗v , a∗h, ν
∗, ξ

∗
λ
, ξ
∗
l ]

T

= argmax
av,ah,ν ,ξλ ,ξl

H (x∗, av, ah, ν , ξλ , ξl , p, p0) . (A.15)

A.4. Costate differential equations
By applying (4.6) from [39], we have

p′r =−F11 pr−F21 pλ −F31 pl−F41 pγ −F51 pψ

− p0η1

(
x(i)
)
−µg, (A.16)

p′
λ
= 0, (A.17)

p′l =−F23 pλ −F53 pψ , (A.18)

p′γ =−F14 pr−F24 pλ −F34 pl−F44 pγ −F54 pψ ,

(A.19)

p′ψ =−F25 pλ −F35 pl−F55 pψ , (A.20)

p′ελ
= 0, p′εl

= 0. (A.21)

A.5. Complementary slack conditions
Next, the complementary slack conditions are given by

µu ≥ 0, µu

(
L
(

V (i)
)2
− (a∗v)

2− (a∗h)
2
)
= 0, (A.22)

µm ≥ 0, µm

(
a∗v−L

(
V (i)
)

cosσmax

)
= 0, (A.23)

µM ≥ 0, µM

(
L
(

V (i)
)

cosσmin−a∗v
)
= 0, (A.24)

µg ≥ 0, µg (r∗+ν
∗−g) = 0, (A.25)

µν ≥ 0, µν ν
∗ = 0. (A.26)

A.6. Transversality conditions
Since (A.8) can be rewritten as λ ∗(e f )−λ f + ε∗

λ
(e f )≥

0, λ f −λ ∗(e f )+ ε∗
λ
(e f )≥ 0 and l∗(e f )− l f + ε∗l (e f )≥ 0,

l f − l∗(e f )+ ε∗l (e f ) ≥ 0, we can apply the transversality
conditions (4.11) from [39] as follows:

µ
+
λ
≥ 0, µ

+
λ
(λ ∗(e f )−λ f + ε

∗
λ
(e f )) = 0, (A.27)

µ
−
λ
≥ 0, µ

−
λ
(λ f −λ

∗(e f )+ ε
∗
λ
(e f )) = 0, (A.28)

µ
+
l ≥ 0, µ

+
l (l∗(e f )− l f + ε

∗
l (e f )) = 0, (A.29)

µ
−
l ≥ 0, µ

−
l (l f − l∗(e f )+ ε

∗
l (e f )) = 0. (A.30)

The conditions (4.10) from [39] would be as follows:

pr

(
e−f
)
= µr, (A.31)

pλ

(
e−f
)
= µ

+
λ
−µ

−
λ
, (A.32)

pl

(
e−f
)
= µ

+
l −µ

−
l , (A.33)

pγ

(
e−f
)
= µγ , (A.34)

pψ

(
e−f
)
= µψ , (A.35)

pελ

(
e−f
)
= p0cλ +µ

+
λ
+µ

−
λ
, (A.36)

pεl

(
e−f
)
= p0cl +µ

+
l +µ

−
l , (A.37)

where µr, µγ , µψ are constants.

A.7. Non-triviality condition
Additionally, the non-triviality condition is given by

(µu, µm, µM, µg, µν , µ
+
λ
, µ
−
λ
, µ

+
l , µ

−
l , µγ ,

µψ , p, p0) 6= 0, for ∀ e ∈ [e0, e f ]. (A.38)

Until now, the conditions (4.4) and (4.6) to (4.11) from
[39] are applied. Hereafter, applying (4.5) will take an es-
sential role in the following proof.

APPENDIX B: PROOF OF PROPOSITION 1

Based on the preliminaries described in the previous ap-
pendix, Proposition 1 will be proven hereafter. By adopt-
ing the similar approach used in [19], first assume (a∗v)

2 +

(a∗h)
2 < L

(
V (i)
)2

is uniform on [e0, e f ]. Then, (A.22) leads
to µu = 0. In this context, f (e) = 0 for some function f on
[e0, e f ] means that f (e) = 0 almost everywhere on [e0, e f ].

Now from the assumption that av = L
(
V (i)
)

cosσmax

and av = L
(
V (i)
)

cosσmin are not satisfied almost every-
where, by (A.23) and (A.24), we conclude that µm = 0
and µM = 0.

From (A.15), H is maximized over ξλ and ξl . Addition-
ally, since these are unbounded, pελ

= 0 and pεl = 0 are
required for maximizing H to exist. Then applying (4.5)
from [39], ∂av L = ∂ah L = ∂ν L = 0 as

∂av L =
1

D
(
V (i)
)(

V (i)
)2 pγ −2µuaν −µm +µM

=
1

D
(
V (i)
)(

V (i)
)2 pγ = 0, ∴ pγ = 0. (B.1)

∂ah L =
1

D
(
V (i)
)(

V (i)
)2 cosγ (i)

pψ −2µuah

=
1

D
(
V (i)
)(

V (i)
)2 cosγ (i)

pψ = 0, ∴ pψ = 0.

(B.2)

∂ν L = p0wν ′ +µg +µν = 0. (B.3)

Here, (B.2) implies p′ψ = 0. Then substituting the result
from (B.2) to (A.18) and (A.20), we can obtain

p′l =−F23 pλ , (B.4)
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p′ψ =−F25 pλ −F35 pl = 0. (B.5)

Then, since pl =−(F25/F35) pλ , differentiating both sides
by e gives

p′l = − (F25/F35) p′
λ
− (F25/F35)

′
pλ

= − (F25/F35)
′
pλ =−F23 pλ . (B.6)

Because p′
λ
= 0. From this condition, we have(

F23−
(

F25

F35

)′)
pλ = 0. (B.7)

By explicitly substituting each component of Fx
(
x(i)
)
, one

can quickly check that F23− (F25/F35)
′
6= 0, hence pλ = 0

and pl = 0 from (B.5). From the preceding results with
(A.32) and (A.33), µ

+
λ
= µ

−
λ

and µ
+
l = µ

−
l .

Given that pελ
is piecewise absolutely continuous on

[e0, e f ], ∃ ε > 0 s.t. pελ
is absolutely continuous on (e f −ε ,

e f ). With the fact that pελ
= 0 almost everywhere, this

implies that pελ
(e) = 0 is uniform on (e f − ε , e f ), hence

pελ

(
e−f
)
= 0.

Now from (A.36), we have

pελ

(
e−f
)
= p0cλ +µ

+
λ
+µ

−
λ
= 0. (B.8)

Since it is evident that the inequalities from (A.8) must be
tight in order to achieve minimum cost, either λ ∗(e f )−
λ f + ε∗

λ
(e f ) = 0 or λ f −λ ∗(e f )+ ε∗

λ
(e f ) = 0. First, sup-

pose that only one of the two is zero and the other to be
non-zero. Then, (A.27) and (A.28) provide that at least
one of µ

+
λ

and µ
−
λ

is 0. Then, µ
+
λ
= µ

−
λ

implies that both
µ
+
λ
= µ

−
λ
= 0. An analogous approach to l instead of λ

proves that µ
+
l = µ

−
l = 0. Then, (B.8) directly shows that

p0 = 0. Since it is proven that all the other terms on the
right-hand side (RHS) of (A.16) except µg are zero, pr = 0
implies µg = 0. Then, (B.3) directly proves that µν = 0.

Now when both, λ ∗(e f ) − λ f + ε∗
λ
(e f ) = 0λ f −

λ ∗(e f ) + ε∗
λ
(e f ) = 0, this is simply when the final state

λ ∗(e f ) = λ f and ε∗
λ
(e f ) = 0. Then, since all the costate

vectors are proven to be zero, (A.16) becomes

−p0η1

(
x(i)
)
−µg = 0. (B.9)

With (B.3), eliminating p0 gives(
η1

(
x(i)
)
−w′ν

)
µg +η1

(
x(i)
)

µν = 0. (B.10)

Since both µg and µν are non-negative values, we can
conclude that µg = µν = 0 under the mild assumption
η1
(
x(i)
)
−w′ν > 0. Substituting the results to (B.3) again,

we have p0 = 0 and given µ
+
λ
,µ−

λ
,µ+

l ,µ−l ≥ 0, it is direct-
forward from (A.36) and (A.37) that µ

+
λ
= µ

−
λ
= µ

+
l =

µ
−
l = 0. Lastly, (A.31), (A.34), and (A.35) imply µr =

µγ = µψ = 0.
Hence assuming that convex relaxation is violated leads

to contradiction on non-triviality condition.
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