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Robust Gradient Estimation Algorithm for a Stochastic System with Col-
ored Noise
Wentao Liu and Weili Xiong* �

Abstract: This paper studies the parameter estimation algorithms of a finite impulse response system with colored
noise. To suppress the negative effects of the colored noises, a novel gradient-based algorithm is developed by
means of the cost function of the continuous mixed p-norm (CMPN). It combines the p-norms for 16 p6 2, which
control the proportions of the error norms and generate an adjustable gain to adapt the data quality. Moreover, to
improve the convergence rate, a CMPN multi-innovation gradient recursive algorithm is derived through expanding
the innovation scalar to the innovation vector. Finally, two examples are given to demonstrate the validity of the
proposed algorithms.
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1. INTRODUCTION

The dynamic behaviors of many physical plants are
modeled as stochastic systems in the vicinity of a spe-
cific operating point. Thus the identification methods
for stochastic systems have received much attention for
decades [1-5]. Typical stochastic systems include finite
impulse response system, controlled autoregressive mov-
ing average system [6] and output error moving average
system to name a few. Among them, the finite impulse re-
sponse system is crucial in signal processing, filter design-
ing and dynamical system modeling. Many identification
methods and parameter estimation algorithms have been
developed for stochastic systems [7-10].

The stochastic gradient (SG) algorithm is an effective
identification method owing to its computational conve-
nience therein. Recently, many gradient-based algorithms
have been applied for parameter estimation. For instance,
Chen modified the traditional SG algorithms by combin-
ing the polynomial transformation technique and thus pro-
posed a polynomial transformation SG algorithm for dual-
rate sampled systems [11]. However, these contributions
are developed for the stochastic control systems in the
presence of white noise and cannot be applied directly for
the systems contaminated by colored noises.

For the stochastic control systems, noise interference,
contaminates the measurement outputs of the systems re-
sulting in low identification accuracy [12-15]. To weaken
the colored noises interference and improve parameter es-

timation accuracy, an effective method is to apply adap-
tive filter algorithms against noise interference such as
the least mean square algorithm and the normalized al-
gorithm [16,17]. Zhang and Ding presented an optimal
adaptive filtering algorithm by using the fractional-order
derivative [18]. Navia-Vazquez et al. applied the combina-
tions of two recursive least p-norm algorithms for the im-
pulse response systems with non-Gaussian noise by adap-
tively minimizing the lp norm [19]. Zheng et al. presented
a variable step-size method for the finite-variance impul-
sive systems by using the least mean p-th norm algorithm,
where the cost function was selected as the p-th order mo-
ment of errors [20]. Zayyani generalized the mixed norm
defined in the robust mixed norm algorithm to a continu-
ous mixed p-norm (CMPN) and thus developed a CMPN
adaptive filtering algorithm for system identification [21].
Another way is introducing the multi-innovation to en-
hance the performance of the convergence rates. The in-
novation is the valuable information. The key of multi-
innovation theory is to extend the innovation vector to the
innovation matrix [22-24]. Ding et al. presented a filter-
ing based multi-innovation identification method for mul-
tivariate output-error systems [25]. Other identification
methods can be found in [26-29].

Inspired by the above researches, this paper proposes
the parameter estimation algorithms for a finite impulse
response system with colored noise through the CMPN al-
gorithm and the multi-innovation identification theory. For
one thing, the proposed algorithms control the proportions

Manuscript received July 8, 2021; revised March 8, 2022; accepted April 7, 2022. Recommended by Associate Editor Jun Moon under the
direction of Editor Jay H. Lee. This work was supported by the National Natural Science Foundation of China (No. 61773182) and the 111
Project (B12018).

Wentao Liu and Weili Xiong are with the Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), the School
of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China (e-mails: wtliu12@126.com, weili_xiong@jiangnan.edu.cn).
* Corresponding author.

©ICROS, KIEE and Springer 2023

http://www.springer.com/12555
https://orcid.org/0000-0002-9427-8809


554 Wentao Liu and Weili Xiong

of the error norms and offer an extra degree of freedom
within the adaptation. By taking into consideration each
p-norm of errors for 1 6 p 6 2, the proposed algorithms
combine the benefits of the variable error norms and thus
are more robust against colored noise interference. For an-
other thing, because the multi-innovation algorithms use
not only the current data but also the past data and thus
can make full use of input-output data, the parameter esti-
mation accuracy can be improved. The main contributions
of this paper are as follows;

1) The mixed p-norm-based extended stochastic gradi-
ent algorithm is presented for a stochastic system to
improve performance in the presence of colored noise
by minimizing a continuous mixed p-norm cost func-
tion.

2) The CMPN multi-innovation gradient-based recur-
sive algorithm is derived for a stochastic system with
colored noise to improve the estimation accuracy by
means of the multi-innovation identification theory.

The rest of this paper is organized as follows: Sec-
tions 2 and 3 derive the continuous mixed p-norm multi-
innovation extended stochastic gradient (ESG) algorithm
and the continuous mixed p-norm multi-innovation ex-
tended stochastic gradient (MIESG) algorithm respec-
tively. Section 4 gives the simulation examples to illus-
trate the effectiveness of the proposed algorithms. Section
5 shows some concluding remarks.

2. CONTINUOUS MIXED P-NORM ESG
ALGORITHM

Consider the following stochastic control system with
colored noise disturbance described by finite impulse re-
sponse moving average (FIR-MA) model,

y(t) = B(z)u(t)+D(z)v(t), (1)

where {u(t)} and {y(t)} are the input and output of the
system respectively, {v(t)} is independent and identically
distributed random noise with zero mean and variance σ 2,
the polynomials B(z) and D(z) are the functions in the unit
backward shift operator z−1

B(z) := b1z−1 +b2z−2 + · · ·+bnb z−nb ,

D(z) := 1+d1z−1 +d2z−2 + · · ·+dnd z−nd .

The information vector ϕ(t) and the parameter vector ϑ

are defined as

ϕ(t) :=
[

κ(t)
ψ(t)

]
∈ Rn, n := nb +nd ,

κ(t) := [u(t−1), u(t−2), · · · , u(t−nb)]
T ∈ Rnb ,

ψ(t) := [v(t−1), v(t−2), · · · , v(t−nd)]
T ∈ Rnd ,

ϑ :=
[

b
d

]
∈ Rn,

b := [b1, b2, · · · , bnb ]
T ∈ Rnb ,

d := [d1, d2, · · · , dnd ]
T ∈ Rnd .

Then equation (1) can be rewritten as

y(t) = ϕ
T(t)ϑ + v(t). (2)

The proposed parameter estimation algorithms in this pa-
per are based on the identification model in (2) of the FIR-
MA system in (1). Many identification methods are de-
rived based on the identification models of the systems
[30-34] and these methods can be used to estimate the
parameters of other linear systems and nonlinear systems
[35-39] and can be applied to other fields [40-45] such as
chemical process control systems.

Here, {u(t), y(t)} is the available observation data and
{v(t)} is the unmeasurable noise. Assume that the orders
nb and nd are known. The objective is to present efficient
identification algorithms with robustness for estimating
the parameter vector ϑ from measurements {u(t), y(t)}.

To suppress the effect of the colored noises and to pro-
vide the robust parameter approach, define the continuous
mixed p-norm cost function

J1(ϑ) :=
∫ 2

1
λt(p)|v(t)|pdp, (3)

where λt(p) is the probability density-like weighting func-
tion which is constrained by

∫ 2
1 λt(p)dp = 1, and v(t) =

y(t)−ϕT(t)ϑ . Taking the gradient of J1(ϑ) with respect
to b and d gives

grad[J1(ϑ)] =
∂J1(ϑ)

∂ϑ
=

 ∂J1(ϑ)

∂b
∂J1(ϑ)

∂d

 , (4)

∂J1(ϑ)

∂b
=
∫ 2

1
pλt(p)|v(t)|p−1sgn(v(t))

× ∂ (y(t)−κT(t)b−ψT(t)d)
∂b

dp

=−
∫ 2

1
pλt(p)|v(t)|p−1sgn(v(t))κ(t)dp,

∂J1(ϑ)

∂d
=
∫ 2

1
pλt(p)|v(t)|p−1sgn(v(t))

× ∂ (y(t)−κT(t)b−ψT(t)d)
∂d

dp

=−
∫ 2

1
pλt(p)|v(t)|p−1sgn(v(t))ψ(t)dp.

Therefore, (4) can be expressed as

grad[J1(ϑ)] =−
∫ 2

1
pλt(p)|v(t)|p−1sgn(v(t))ϕ(t)dp

=−γ(t)sgn(v(t))ϕ(t),

γ(t) :=
∫ 2

1
pλt(p)|v(t)|p−1dp. (5)
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Obviously, the information vector ϕ(t) contains the un-
measurable noise v(t − i). The solution is to replace the
unmeasurable noise v(t− i) with the identified innovation
e(t − i). The estimate of ϕ(t) defined by the measurable
input u(t− i) and the innovation e(t− i) is

ϕ̂(t) :=[u(t−1), u(t−2), · · · , u(t−nb),

e(t−1), e(t−2), · · · , e(t−nd)]
T ∈ Rn,

where the innovation e(t) is defined as

e(t) := y(t)− ϕ̂
T(t)ϑ̂(t−1).

Using the negative gradient search, the cost function J1(ϑ)
is minimized to get

ϑ̂(t) = ϑ̂(t−1)−µ(t)grad[J1(ϑ̂)]

= ϑ̂(t−1)+µ(t)γ̂(t)sgn(e(t))ϕ̂(t), (6)

where µ(t)> 0 is the step size, and the estimate of γ(t) is

γ̂(t) :=
∫ 2

1
pλt(p)|e(t)|p−1dp. (7)

λt(p) is a probability density-like weighting function with
the constraint

∫ 2
1 λt(p) = 1. To obtain a closed form for-

mula for γ̂(t), a uniform weighting function λt(p) = 1 is
assumed. While λt(p) = 1, the constraint is met and γ̂(t)
can be computed by

γ̂(t) =
∫ 2

1
pλt(p)|e(t)|p−1dp

=
1

ln|e(t)|

∫ 2

1
pd|e(t)|p−1

=
p|e(t)|p−1|21

ln|e(t)|
−
∫ 2

1 |e(t)|p−1dp
ln|e(t)|

=
(2|e(t)|−1)

ln|e(t)|
− (|e(t)|−1)

ln2(|e(t)|)

=
(2|e(t)|−1) ln(|e(t)|)−|e(t)|+1

ln2(|e(t)|)
. (8)

Generally speaking, the estimate ϑ̂(t) approaches the true
value of ϑ as t increases, and the innovation e(t) may be
close to zero. To avoid division by zero, Equation (8) can
be modified as

γ̂(t) =
(2|e(t)|−1) ln(|e(t)|)−|e(t)|+1

ln2(|e(t)|)+1
. (9)

Substituting ϑ = ϑ̂(t) into (3) gives

J1(ϑ̂(t)) =
∫ 2

1
λt(p)|y(t)− ϕ̂

T(t)ϑ̂(t)|pdp

=
∫ 2

1
λt(p)|y(t)− ϕ̂

T(t)[ϑ̂(t−1)

+µ(t)γ̂(t)sgn(e(t))ϕ̂(t)]|pdp

=
∫ 2

1
λt(p)|e(t)−µ(t)γ̂(t)

× sgn(e(t))‖ϕ̂(t)‖2|pdp. (10)

Inserting (7) into (10) gives

J1(ϑ̂(t)) =
∫ 2

1
λt(p)|e(t)−µ(t)

∫ 2

1
pλt(p)|e(t)|p−1dp

× sgn(e(t))‖ϕ̂(t)‖2|pdp

=
∫ 2

1
|e(t)−µ(t)

∫ 2

1
p|e(t)|p−1dp

× sgn(e(t))‖ϕ̂(t)‖2|pdp

=
∫ 2

1
|e(t)[1−µ(t)

∫ 2

1
p|e(t)|p−2dp

×‖ϕ̂(t)‖2]|pdp

=
∫ 2

1
|e(t)[1−µ(t)ρ(t)‖ϕ̂(t)‖2]|pdp. (11)

To guarantee the convergence of the algorithm, the opti-
mal step-size can be modified as

µ(t) :=
1

r(t)
, r(t) = r(t−1)+‖ϕ̂(t)‖2. (12)

For the recursive identification algorithm, the parameter
estimates are expected to approach their true values of the
identified system continuously with the recursive variable
t increasing. This behavior is called the convergence of
the identification algorithms. In this paper, the modified
step size µ(t)> 0 can ensure the stability and convergence
of the proposed algorithm. Thus the continuous mixed
p-norm extended stochastic gradient (CMPN-ESG) algo-
rithm (13)-(18) for the FIR-MA system is summarized in
the following:

ϑ̂(t) = ϑ̂(t−1)+
1

r(t)
γ̂(t)sgn(e(t))ϕ̂(t), (13)

ϕ̂(t) = [u(t−1), u(t−2), · · · , u(t−nb),

e(t−1), e(t−2), · · · , e(t−nd)]
T, (14)

r(t) = r(t−1)+‖ϕ̂(t)‖2, (15)

γ̂(t) =
(2|e(t)|−1) ln(|e(t)|)−|e(t)|+1

ln2(|e(t)|)+1
, (16)

ϑ̂(t) = [b̂1(t), · · · , b̂nb(t), d̂1(t), · · · , d̂nd (t)]
T, (17)

e(t) = y(t)− ϕ̂
T(t)ϑ̂(t−1). (18)

The steps of the CMPN-ESG algorithm for the FIR-MA
system to compute ϑ̂(t) are as follows:

1) Initialization: Let t = 1, set the data length L and some
initial values be ϑ̂ 0 = 1n/p0, r0 = 1, u(t− i) = 1/p0,
y(t− i) = 1/p0, e(t− i) = 1/p0, i = 1, 2, · · · , nd , p0 =
106.

2) Collect the input and output data u(t) and y(t).
3) Form the information vectors ϕ̂(t) using (14).
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4) Compute r(t) and γ̂(t) using (15) and (16), respec-
tively.

5) Update the parameter estimation vector ϑ̂(t) using
(13).

6) Compute the innovation e(t) using (18).
7) If t < L, increase t by 1 and go to Step 2; else obtain

the parameter estimate ϑ̂(L), and finish the computa-
tion process.

Remark 1: The CMPN-ESG algorithm integrates the
noise regression terms and the parameters d into the infor-
mation matrix and the parameter vectors ϑ , respectively.

Remark 2: The cost function J1(ϑ) is a continuous
mixed p-norm function of the error. Since it combines p-
norms for 1 6 p 6 2, and it combines the advantages of
different error norms.

Remark 3: The CMPN-ESG algorithm controls the
proportions of the error norms and offers an extra degree
of freedom within the adaptation and thereby it has higher
parameter estimation accuracy compared with the ESG al-
gorithms.

Remark 4: The CMPN-ESG algorithm is a recursive
algorithm which updates the estimates along the nega-
tive gradient optimization. However, each recursion of
the CMPN-ESG algorithm only contains the data at the
current moment. Generally speaking, the more observa-
tion data the algorithm uses, the higher parameter estima-
tion accuracy the algorithm will get. Therefore, the multi-
innovation principle will be introduced to make full use of
input-output data in Section 3.

3. CONTINUOUS MIXED P-NORM MIESG
ALGORITHM

Based on the CMPN-ESG algorithm in (13)-(18), we
introduce the multi-innovation theory to enhance the per-
formance by making full use of data information in this
section. Note that the innovation e(t) is the valuable in-
formation that can improve the parameter estimation ac-
curacy for identification algorithms.

Extend the innovation scalar e(t) to a large innovation
vector

E(l, t) = Y (l, t)− Φ̂
T
(l, t)ϑ̂(t−1),

where

Φ̂(l, t) := [ϕ̂(t), ϕ̂(t−1), · · · , ϕ̂(t− l +1)] ∈ Rn×l ,

Y (l, t) := [y(t), y(t−1), · · · , y(t− l +1)]T ∈ Rl .

Consider the measurements from t− l + 1 to t and define
the cost function

J2(ϑ) :=
l−1

∑
j=0

∫ 2

1
λt(p)|v(t− j)|pdp. (19)

Taking the gradient of J2(ϑ) gives

grad[J2(ϑ)] =
∂J2(ϑ)

∂ϑ
=

 ∂J2(ϑ)

∂b
∂J2(ϑ)

∂d

 , (20)

∂J2(ϑ)

∂b
=−

l−1

∑
j=0

∫ 2

1
pλt(p)|v(t− j)|p−1

× sgn(v(t− j))κ(t− j)dp,

∂J2(ϑ)

∂d
=−

l−1

∑
j=0

∫ 2

1
pλt(p)|v(t− j)|p−1

× sgn(v(t− j))ψ(t− j)dp.

Therefore, (20) can be expressed as

grad[J2(ϑ(t))] =−
l−1

∑
j=0

∫ 2

1
pλt(p)|v(t− j)|p−1

× sgn(v(t− j))ϕ(t− j)dp,

=−
l−1

∑
j=0

γ(t− j)sgn(v(t− j))ϕ(t− j),

γ(t− j) :=
∫ 2

1
pλt(p)|v(t− j)|p−1dp.

Similar to the derivation of the CMPN-ESG algorithm, us-
ing the negative search and minimizing J2(ϑ) yield

ϑ̂(t) = ϑ̂(t−1)− 1
r(t)

grad[J2(ϑ̂(t))]

= ϑ̂(t−1)+
1

r(t)
Φ̂(l, t)Γ(l, t), (21)

Γ(l, t) :=


sgn(e(t))γ̂(t)

sgn(e(t−1))γ̂(t−1)
...

sgn(e(t− l−1))γ̂(t− l +1)

 ∈ Rl .

Thus, the continuous mixed p-norm multi-innovation ex-
tended stochastic gradient (CMPN-MIESG) algorithm for
the FIR-MA system is summarized as follows:

ϑ̂(t) = ϑ̂(t−1)+
1

r(t)
Φ̂(l, t)Γ(l, t), (22)

γ̂(t) =
(2|e(t)|−1) ln(|e(t)|)−|e(t)|+1

ln2(|e(t)|)+1
, (23)

e(t) = y(t)− ϕ̂
T(t)ϑ̂(t−1), (24)

r(t) = r(t−1)+‖ϕ̂(t)‖2, (25)

ϕ̂(t) = [u(t−1), u(t−2), · · · , u(t−nb),

e(t−1), e(t−2), · · · , e(t−nd)]
T, (26)

Φ̂(l, t) = [ϕ̂(t), ϕ̂(t−1), · · · , ϕ̂(t− l +1)], (27)

Y (l, t) = [y(t), y(t−1), · · · , y(t− l +1)]T, (28)

E(l, t) = Y (l, t)− Φ̂
T
(l, t)ϑ̂(t−1), (29)
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Γ(l, t) = [sgn(e(t))γ̂(t), sgn(e(t−1))γ̂(t−1), · · · ,
sgn(e(t− l−1))γ̂(t− l +1)]T. (30)

The proposed algorithms in this paper can joint other iden-
tification methods [46-49] to new parameter estimation
approaches of linear and nonlinear systems [50-54] and
can be applied to other literature [55-58] such as engineer-
ing application systems.

Remark 5: Not only does the CMPN-MIESG algo-
rithm utilize the current data {y(t), ϕ̂(t)} and the innova-
tion e(t), but also utilizes the past data {y(t− j), ϕ̂(t− j),
j = 1, 2, · · · , l−1} and the innovation e(t− j) , which im-
proves the estimation accuracy by using the observations
repeatedly. When l = 1, the CMPN-MIESG algorithm re-
duces to the the CMPN-ESG algorithm.

4. EXAMPLES

Example 1: Consider the following FIR-MA system,

y(t) = B(z)u(t)+D(z)v(t),

B(z) = b1z−1 +b2z−2 = 1.68z−1 +2.32z−2,

D(z) = 1+d1z−1 +d2z−2 = 1−0.75z−1 +0.75z−2.

The parameter vector to be estimated is

ϑ := [b1, b2, d1, d2]
T

= [1.68, 2.32, −0.75, 0.75]T.

In simulation, the input {u(t)} is taken as a persistent ex-
citation signal sequence, {v(t)} is taken as a normal dis-
tribution white noise sequence with zero mean and vari-
ance σ 2. Take the data length L = 3000 and noise vari-
ances σ 2 = 1.002, σ 2 = 2.002, σ 2 = 3.002, σ 2 = 4.002

and σ 2 = 5.002 respectively. The ESG algorithm and the
CMPN-ESG algorithm are applied to estimate the param-
eters of the FIR-MA system under the different noise vari-
ances. The parameter estimates and errors of the ESG
algorithm and the CMPN-ESG algorithm are illustrated
in Tables 1 and 2. The parameter estimation errors δ :=
‖ϑ̂(t)−ϑ‖/‖ϑ‖ versus t under different σ 2 of the ESG
algorithm and the CMPN-ESG algorithm are depicted in
Figs. 1 and 2.

From Tables 1-2 and Figs. 1-2, the following conclu-
sions can be drawn.

1) Although the estimation results for a few of parame-
ters are not quite good, the total estimation errors δ

decay as t increases, and both the ESG algorithm and
the CMPN-ESG algorithm are effective for identify-
ing the example system.

2) The parameter estimation errors decrease with the
noise-to-signal ratio decreases.
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Fig. 1. The ESG estimation errors δ versus t with different
σ 2 for Example 1.

Table 1. The ESG estimates and their errors with different σ 2 for Example 1.

σ 2 t b1 b2 d1 d2 δ (%)

5.002 100 1.99842 5.34353 -0.52347 0.49176 100.16781
200 1.99410 5.31753 -0.51759 0.45406 99.43924
500 1.99238 5.28463 -0.51165 0.44000 98.43195
2000 1.98830 5.23800 -0.53122 0.44583 96.84372
3000 1.98695 5.22394 -0.53091 0.44052 96.40406

3.002 100 1.51106 3.67966 -0.62393 0.51990 45.67095
200 1.51235 3.64655 -0.62242 0.50235 44.71509
500 1.52179 3.60670 -0.61735 0.50149 43.43261
2000 1.53114 3.55100 -0.63748 0.52989 41.39400
3000 1.53346 3.53418 -0.63721 0.52743 40.86429

1.002 100 1.36784 2.45719 -0.61496 0.28641 19.35245
200 1.39858 2.45700 -0.63433 0.30314 18.25852
500 1.46033 2.46708 -0.63882 0.34305 16.29922
2000 1.51613 2.46379 -0.66056 0.42638 13.10616
3000 1.53049 2.45984 -0.66214 0.43889 12.52748

True values 1.68000 2.32000 -0.75000 0.75000
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Table 2. The CMPN-ESG estimates and their errors with different σ 2 for Example 1.

σ 2 t b1 b2 d1 d2 δ (%)

5.002 100 1.32497 3.47429 -0.65817 0.47185 40.68378
200 1.32545 3.46685 -0.67387 0.48311 40.33665
500 1.33200 3.45890 -0.67823 0.50855 39.85073
2000 1.33793 3.44580 -0.69489 0.56684 39.02691
3000 1.33966 3.44142 -0.69425 0.57068 38.85698

3.002 100 1.12655 2.73123 -0.69929 0.49221 24.15684
200 1.13471 2.72809 -0.71065 0.49828 23.80706
500 1.15939 2.73201 -0.70517 0.52446 23.00267
2000 1.18533 2.73150 -0.71826 0.59324 21.70708
3000 1.19308 2.73025 -0.71560 0.59665 21.47065

1.002 100 1.23308 2.20961 -0.54105 0.27084 22.80429
200 1.28335 2.25088 -0.56516 0.28296 21.07542
500 1.38028 2.31402 -0.56911 0.32244 18.09240
2000 1.46645 2.36305 -0.61503 0.41731 13.74876
3000 1.48941 2.37087 -0.62138 0.43051 12.99417

True values 1.68000 2.32000 -0.75000 0.75000
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Fig. 2. The CMPN-ESG estimation errors δ versus t with
different σ 2 for Example 1.

3) The CMPN-ESG algorithm possesses higher param-
eter estimation accuracy at the same noise variances
compared with the ESG algorithm.

Example 2: Consider the following FIR-MA system

y(t) = B(z)u(t)+D(z)v(t),

B(z) = b1z−1 +b2z−2 +b3z−3

= 1.25z−1 +2.02z−2 +0.45z−2,

D(z) = 1+d1z−1 +d2z−2 +d3z−3

= 1+0.65z−1 +0.55z−2 +0.35z−2.

The parameter vector to be estimated is

ϑ := [b1, b2, b3, d1, d2, d3]
T

= [1.25, 2.02, 0.45, 0.65, 0.55, 0.35]T.

The simulation circumstance is similar in Example 1. The
noise variance is set as σ 2 = 1.002. Take the data length
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Fig. 3. The CMPN-MIESG estimation errors δ versus t
under different l with σ 2 = 1.002 for Example 2.

L = 2000. Under the different innovation length l, the pa-
rameter estimates and errors of the CMPN-ESG algorithm
(That is, the innovation length l = 1) and the CMPN-
MIESG algorithm (the innovation length l = 3, 5) are de-
picted in Tables 3-5. Estimation errors δ versus t is shown
in Fig. 3. The CMPN-MIESG estimates ϑ̂ versus t are de-
picted in Figs. 4-5. It can be seen from Fig. 3 that three
estimation errors decrease as t increases, and a larger in-
novation length l results in the higher estimation accuracy.
Furthermore, Figs. 4-5 show the CMPN-MIESG (l = 5)
estimates can rapidly reach the vicinity of the true values
with t increasing. This indicates that the CMPN-MIESG
algorithm is effective for the FIR-MA system.

5. CONCLUSIONS

By exploiting continuous mixed p-norm and the multi-
innovation theory, this paper derives the CMPN-ESG al-
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Table 3. The CMPN-ESG estimates and their errors for Example 2.

t b1 b2 b3 d1 d2 d3 δ (%)

100 0.81642 1.29989 -0.13783 0.66099 0.29422 0.20475 41.24811
200 0.86585 1.33491 -0.11971 0.66905 0.30523 0.19691 39.13768
500 0.94173 1.40151 -0.09661 0.69732 0.31971 0.18258 35.83848
1000 0.97603 1.44707 -0.07979 0.70490 0.33721 0.17467 33.76446
2000 1.00546 1.49523 -0.06275 0.70227 0.35440 0.16748 31.69614

True values 1.25000 2.02000 0.45000 0.65000 0.55000 0.35000

Table 4. The CMPN-MIESG estimates and their errors with l = 3 for Example 2.

t b1 b2 b3 d1 d2 d3 δ (%)

100 1.13034 1.72256 -0.06464 0.71904 0.61138 0.24898 24.02723
200 1.19841 1.75021 0.03219 0.66675 0.58068 0.31584 19.41954
500 1.26605 1.85418 0.10527 0.66612 0.52278 0.30947 14.93260
1000 1.25982 1.91851 0.18199 0.66235 0.51867 0.31237 11.25450
2000 1.25153 1.97019 0.25762 0.64864 0.52367 0.29812 8.00407

True values 1.25000 2.02000 0.45000 0.65000 0.55000 0.35000

Table 5. The CMPN-MIESG estimates and their errors with l = 5 for Example 2.

t b1 b2 b3 d1 d2 d3 δ (%)

100 1.33359 1.97392 0.07967 0.71540 0.59606 0.28880 15.28654
200 1.34179 1.93718 0.25879 0.64022 0.55688 0.35978 8.82167
500 1.33720 2.00664 0.30311 0.64694 0.52588 0.33473 6.71532
1000 1.28510 2.03758 0.36488 0.65395 0.53523 0.33410 3.72217
2000 1.25880 2.05831 0.42196 0.63835 0.55574 0.30624 2.56816

True values 1.25000 2.02000 0.45000 0.65000 0.55000 0.35000
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Fig. 4. The CMPN-MIESG (l = 5) estimates b̂1(t), b̂2(t)
and b̂3(t) versus t for Example 2.

gorithm and the CMPN-MIESG algorithm for the FIR-
MA systems. The continuous mixed p-norm theory is in-
troduced to generate an adjustable gain in the algorithms
and yield robustness to noise interference. The multi-
innovation identification theory is introduced to improve
the estimation accuracy. It is clear from the simulation
results that good parameter estimates can be acquired by
applying the proposed CMPN-ESG approach and CMPN-
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Fig. 5. The CMPN-MIESG (l = 5) estimates d̂1(t), d̂2(t)
and d̂3(t) versus t Example 2.

MIESG approach.
Although the CMPN-ESG algorithm and the CMPN-

MIESG algorithm are effective for identifying the finite
impulse response system with colored noise, they have
some limitations. For example, the estimation results for a
few of parameters are not quite good; if the systems have
hidden variables, the algorithm may be invalid. Thus de-
veloping some algorithms with wide applicability to rem-
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edy these problems is a more challenging and interesting
topic in the future. The basic idea of this paper can be com-
bined the hierarchical identification and filtering theory to
treat other linear and nonlinear identification problems.
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