
International Journal of Control, Automation, and Systems 20(10) (2022) 3296-3311
http://dx.doi.org/10.1007/s12555-021-0511-4

ISSN:1598-6446 eISSN:2005-4092
http://www.springer.com/12555

Hierarchical End-to-end Control Policy for Multi-degree-of-freedom Ma-
nipulators
Cheol-Hui Min and Jae-Bok Song* �

Abstract: In recent years, several control policies for a multi-degree-of-freedom (DOF) manipulator using deep
reinforcement learning have been proposed. To avoid complexity, previous studies have applied a number of con-
straints on the high-dimensional state-action space, thus hindering generalized policy function learning. In this
study, the control problem is addressed by in-troducing a hierarchical reinforcement learning method that can learn
the end-to-end control policy of a multi-DOF manipula-tor without any constraints on the state-action space. The
proposed method learns hierarchical policy using two off-policy methods. Using human demonstration data and a
newly proposed data-correction method, controlling the multi-DOF manipu-lator in an end-to-end manner is shown
to outperform the non-hierarchical deep reinforcement learning methods.

Keywords: Deep reinforcement learning, demonstration-based learning, end-to-end robot control, hierarchical re-
inforcement learning.

1. INTRODUCTION

Reinforcement learning (RL)-based robot control is
typically performed through policy search methods that
learn a policy function by receiving measured robot infor-
mation and outputting a robot control command. The con-
trol function of RL finds the innate rule of control system
by itself, while conventional Fuzzy-sytem based control
methods [1–3] requires control rules. Further, studies in-
vestigating generalized robot control policies using func-
tion approximation with deep neural networks are becom-
ing mainstream. However, three significant difficulties still
exist in learning robot control policies through RL. Firstly,
the state-action space of a robot is high-dimensional and
continuous [4]. Secondly, such learning requires a sub-
stantial amount of data, but it is difficult to obtain noiseless
data using real robots. Thirdly, as a robot agent performs
workspace exploration based on stochastic trajectories to
identify an optimal policy, there is a risk of damage to the
robot and the surrounding environment during operation
[5].

In attempts to address these difficulties, many studies
have proposed a number of methods, including the dis-
cretization of state-action space [6] and the design of a
poly function specified for an individual task or learning
from the demonstrated trajectory of a human [7]. Further-
more, employing prior knowledge of tasks, like human

demonstration [8] and model-based guidance [9,10] have
also been shown to be promising methods to solve the dif-
ficulties.

To be specific, many works have addressed the com-
plexity of the state-action space with a structural compo-
sition of the policy network. One stream of those studies is
to design the neural networks of the agent in a systematic
method. A neural programming that learns to decompose
demonstrated robotic tasks into hierarchy in a supervised
way was proposed in [11]. A compositional policy archi-
tecture, where a task-conditioned high-level policy infers
an embedded representation that chooses the combination
of sub policies was proposed to solve a complex task in
[12]. A compositional reasoning of actions with dynamic
assembly of module networks was performed in [13]. The
structured decomposition concept was applied to one-shot
imitation learning in [14]. While all of these studies can
be categorized as hierarchical abstract machine [15–17],
which requires an expert demonstration or predefined task
primitives [18].

Another line of work focuses on the hierarchical pol-
icy learning in either the model-free or model-based man-
ner, with hierarchical manipulation of the resolution of
the agent’s trajectory [19–24]. The underlying idea, which
has been the basis of many recent architectures, is the hi-
erarchical temporal abstraction of the trajectory that the
agent experiences. Such abstraction leads to the design of

Manuscript received June 19, 2021; revised November 27, 2021 and January 16, 2022; accepted February 9, 2022. Recommended by
Associate Editor Jiuxiang Dong under the direction of Editor Guang-Hong Yang. This research was supported by the MOTIE under the
Industrial Foundation Technology Development Program supervised by the KEIT (No. 20008613).

Cheol-Hui Min and Jae-Bok Song are with the School of Mechanical Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul,
Korea (e-mails: {mch5048, jbsong}@korea.ac.kr).
* Corresponding author.

©ICROS, KIEE and Springer 2022

http://www.springer.com/12555
https://orcid.org/0000-0002-5818-1938

Hierarchical End-to-end Control Policy for Multi-degree-of-freedom Manipulators 3297

Fig. 1. End-to-end control policy of a manipulator.

higher-level policies, allowing more abstract transition dy-
namics of the environment. For example, Vezhnevets et al.
[25] proposes an on-policy hierarchical RL agent, whose
low-level agent is incentivized with the cosine similarity
reward to the goal. Co-Reyes et al. [26] adopts a repre-
sentation learning to learn latent representation of a tra-
jectory of the agent, to run the model predictive control
(MPC) agent. Levy et al. [27] utilizes the hindsight ex-
perience replay [28] to exploit the data-efficiency of off-
policy learning. Similar to this, Jiang et al. [30] proposes
an off-policy hierarchical deep RL method with off-policy
correction to increase the sample efficiency of the agent.
In addition, LI et al. [31] proposed a language-based ab-
straction of the goal state inferred from the high-level pol-
icy, and Jain et al. [32] adopted the hierarchical agent for
navigation in complex indoor environments. While these
methods are not validated on real-world robots, several
works have successfully learned real-world robot tasks.
In [33,34], the locomotion policy was trained for quadru-
pled robots whose state-action space is more complex than
robot arms. In addition to this, Levy et al. [35] trained a
mixture of policies conditioned on a specific task, alter-
nating between non-parametric policy search and super-
vision of parameterized policy in a hierarchical manner,
resulting in learning complex robot manipulation tasks in
real world.

Our work also investigates the hierarchical reinforce-
ment learning approach to tackle the complexity of state-
action space. By exploiting both the deterministic and
stochastic policy, we expand [31] in theory. In addition,
other techniques are adopted to train an end-to-end con-
trol policy of a robot to solve various manipulation tasks,
as depicted in Fig. 1.

In this study, our method, hierarchical hard soft actor-
critic (H-HSAC) algorithm, learns a policy that can con-
trol a multi-DOF manipulator through hierarchical RL. H-
HSAC represents high-dimensional state-action space us-

ing a hierarchical structure, which allows for the learn-
ing problem to be defined without limitation ns in terms
of dimensional complexity. Accordingly, control policies
that are more generalized than previously proposed meth-
ods, such as ones that involve confining action space to
be Cartesian space or using analytic information adoption
like Euclidean distance between a robot’s end-effector and
an object while training, can be learned. Furthermore, as
H-HSAC learns policy in an off-policy manner, human
demonstration data can be used to improve its sample ef-
ficiency.

The main contribution of the proposed H-HSAC
scheme is the newly proposed off-policy correction
method for the hierarchical RL whose low-level policy
has stochasticity. The resulting policy can estimate the
robot control command from the information obtained
from the camera and joint encoder, which are unrelated
to the kinematics and dynamics of a robot. In addition,
we propose a method to adopt human demonstration as
a hierarchical data to increase the sample efficiency in
training both high-level and low-level policies. The per-
formance of the proposed method on various robot tasks
are demonstrated by solving it in an end-to-end manner.
It is shown that the proposed approach outperforms the
state-of-the art hierarchical RL agents in [31,35].

The rest of the paper is organized as follows: Section 2
introduces the preliminaries of RL and the two algorithms
comprising the proposed hierarchical policy: twin-delayed
deep deterministic policy gradient (TD3) [36] and soft ac-
tor-critic (SAC) [37]. Next, the structure of H-HSAC is
de-scribed in Section 3 along with a method to improve
its off-policy learning. The leveraging human demonstra-
tion and the real-world transfer learning of simulation are
discussed in Sections 4 and 5, respectively. Finally, Sec-
tion 6 describes the experimental results of H-HSAC.

2. BACKGROUND

2.1. Reinforcement learning
The reinforcement learning framework can generally be

divided into agents and environments. For each time step
t, the agent first observes a state st from the environment
and subsequently performs an action at determined by a
policy π , which is conditioned on st . The agent then ob-
serves the next state st+1, which is a result of the tran-
sition through the probabilistic dynamics of the environ-
ment p(st+1 | st , at), and this transition is quantitatively
evaluated by a scalar reward tt that is obtained from the
reward function R and is defined as follows:

rt = R(st , at , st+1). (1)

The function R in (1) describes the desired goal of each
task, and is generated over the whole time sequence. Con-
sequently, the agent accumulates a sequence of data τ =
[s0, a0, r0, ..., sT], which is referred to as the trajectory.

3298 Cheol-Hui Min and Jae-Bok Song

The objective of reinforcement learning is to identify an
optimal policy π∗ that maximizes the return Gt = Σγ i/ri,
which is a cumulative sum of the reward rt discounted at
every step by γ . To find π∗, we first define a policy func-
tion πθ parameterized by θ and then formulate the cor-
responding objective function Jπ(θ), which optimizes θ

in the direction of maximum Gt . During optimization, θ

is updated with the gradient of the objective function J,
∇θ J, formulated as follows:

θk+1 = θk +∇θ Jπ(θk), (2)

where Jπ(θ) =E[Gt] for each gradient step k. The updated
policy of (2) is called the policy gradient method, and the
computation of the gradient is affected by the properties
of the policy.

2.2. Goal-conditioned reinforcement learning
The proposed H-HSAC algorithm is a goal-conditioned,

hierarchical reinforcement learning method [38]. Its low-
level policy function estimates primitive actions to achieve
the goals estaimated by high-level policy function that
achieves a single learning objective, where in return max-
imization is implicitly set by the reward function R(st ,
at , st+1). By contrast, in goal-conditioned RL, the policy
function πθ (at | st , gt) considers both the state st and the
goal gt that an agent should achieve at every step. Thus,
the reward function Rg(st , at , st+1, gt) is dependent on gt ,
meaning that the agent behaves differently based on the
given gt as it is optimized with the objective function de-
scribed by

J = Eg
[
Eπθ (a|s,g) [ΣtRg(st , at , st+1, gt)]

]
. (3)

2.3. High-level policy for goal estimation: TD3
The H-HSAC algorithm has a hierarchical RL structure,

and its high-level policy function is learned based on the
twin delayed deep deterministic policy gradient (DDPG)
algorithm [36]. The twin-delayed DDPG (TD3) is based
on the deep deterministic policy gradient algorithm [39] in
which the return Gt in (2) is approximated by the Q func-
tion. The policy function µθ from the deterministic policy
gradient and the Q function Qφ adopted from a deep Q-
network (DQN) [40] are learned alternately. The updates
are implemented in an off-policy manner using data sam-
ples obtained from a replay buffer D. The deterministic
policy function µθ is optimized based on the following
objective function:

J(θ) = ED
[
Qφ (s,µθ (s))

]
. (4)

DDPG trains µθ by taking the gradient of (4) and updat-
ing the neural network θ similar to (2). Further, Qφ is op-
timized through the loss function given by

L(φ) = ED
[
{Qφ (s,a)− y}2] , (5)

where y represents the target function described by, y =
r + γQtarg

φ
(s′, µ

targ
θ

(s′)), where Qtarg
φ

and µ
targ
θ

are the tar-
get networks used to stabilize the learning procedure in a
manner similar to DQN. The TD3 algorithm, along with
the DDPG, further stabilizes learning by addressing the
overestimation issue of the Q-values in DDPG. To begin,
the target policy network in (5) is modified as follows:

a′(s′) = µ
targ
θ

(s′)+ clip(ε,−c, c), where ε ∼ N(0,σ),
(6)

where ε is the random noise following a normal distribu-
tion N added in the process of estimating Qtarg and the
clip() operator truncates ε in the range (−c, c). Equation
(6) prevents the maximum Qtarg from being estimated at
all times. Furthermore, TD3 trains the two separate the
Q-function networks of φ1 and φ2 with the following loss
function of Q-functions:

L(φi,D)i=1,2 = ED

[(
Qφi(s, a)− y

)2
]
, (7)

where y = r+ γ min i=1,2Qtarg
φi

(s′,a′(s′)).
For the function approximation error in the neural net-

works to yield different estimations from the same input,
the minQφi operation in (7) reduces the overestimation er-
ror of the Q values by considering the smaller of the Q
value estimates of Qφ1 and Qφ2 . Finally, TD3 performs a
delayed policy function update, compared to Q functions,
which also promotes the robustness of the algorithm. In H-
HSAC, TD3 behaves as a high-level policy that estimates
a deterministic goal for the low-level policy.

2.4. Low-level policy for primitive action: SAC
The low-level policy of H-HSAC is learned through

the soft actor-critic (SAC) algorithm [37]. To begin with,
this reparameterizes the stochastic policy function πθ as
a Gaussian policy fθ (s, ξ) (i.e., πθ = ftheta(s, ξ)). Fur-
ther, SAC aims to maximize both the return and entropy
H(πθ) that represents the randomness of πθ . This behav-
ior is learned by considering the objective function of the
policy network θ in (8), which helps the agent regulate the
trade-off between exploitation and exploration.

J(θ) = ED
[
Qφ (s, fθ (s,ξ))+αH(πθ)

]
. (8)

In (8), H(πθ) equals − logπθ and Qφ is the approximated
return using the Q-function network φ . Like DDPG, SAC
also alternates between updating θ and φ . As a result, φ is
optimized as follows:

L(φ) = ED
[
(Qφ (s,a)− y)2] , (9)

where y = r+ γ

{
Qtarg

φ
(s′, fθ (s′,ξ))+αH(πθ)

}
.

Equation (9) is a loss function that learns Qφ to fit the
target function y augmented with the entropy H(πθ).

Hierarchical End-to-end Control Policy for Multi-degree-of-freedom Manipulators 3299

Therefore, SAC learns a policy that approximately soft-
maximizes the Q values by optimizing the two objective
functions of (8) and (9) in an actor-critic, off-policy man-
ner. Furthermore, the double Q-network method of (7) was
borrowed during implementation for the purpose of stabi-
lization. Further, the variable α for adjusting the entropy
maximization degree can also be learned using the follow-
ing objective function

J (α) = Ea [−α logπθ (a|s)−αH0] , (10)

where H0 represents the entropy, which should be kept
to a minimum. In summary, the SAC algorithm adjusts
the trade-off between exploration and exploitation in the
learning process so that the agent can better find meaning-
ful reward signals in a complex state-action space.

3. HIERARCHICAL-HARD-SOFT
ACTOR-CRITIC (H-HSAC)

This section proposes the hierarchical-hard-soft actor-
critic (H-HSAC) algorithm, which is a hierarchical and
goal-conditioned RL algorithm. H-HSAC consists of the
high-level policy µhi

θ
learned with TD3, which is based on

(hard-) maxa Q, and the low-level policy π lo
θ

learned with
soft-maxa Q-based SAC, as described in Section 2.

3.1. Hierarchical architecture for goal-conditioned
policy

In this study, a goal-conditioned RL is performed, where
µhi

θ
estimated a goal g that π lo

θ
should achieve at every c

step, as illustrated in Fig. 2. At this point, H-HSAC bor-
rows the structure of subgoal-based deep RL algorithms
[29,31]. In addition, only the partial state spart,t and obser-
vation ot are fed to the high-level and the low-level poli-
cies of H-HSAC, respectively, despite the environment, at

Fig. 2. Hierarchical interaction of the policy in H-HSAC
with the environment.

Fig. 3. Goal-conditioned interaction of hierarchical policy
in the state space.

the time of training, providing the full state st . This is done
intentionally to train an end-to-end control policy that can
estimate the control command of a manipulator, at , inde-
pendently of spart,t and ot . The partial state spart,t denotes
a subset of the full state, and it consists of information ob-
tained without using the robot models (i.e., kinematics and
dynamics) and the pose of target object. Further, the ob-
servation data indicates the raw visual information of the
environment.

To describe the proposed method in detail, the agent-
environment interaction, depicted in Fig. 2, is projected
into the state space of the learning problem, as shown in
Fig. 3. In this sense, the agent-environment interaction of
a hierarchical policy is carried out using the following pro-
cedure. During training, the agent begins by acquiring the
initial full state s0 and observation o0 from the environ-
ment during each episode.

Subsequently, the high-level policy µhi
θ
(o, spart) takes

the partial state spart,0 and the observation o0, and then
estimates a subgoal g0 that amounts to the difference be-
tween the partial goal states, which the agent visit after c
steps, and its current partial state. Next, the low-level pol-
icy π lo

θ
(a | o, g) estimates an action a0 from g0 and o0, and

the agent then applies a0 to the environment. Finally, the
agent observes the next state s1 and the observation o1 that
follows the environment dynamics p(st+1 | st , at) and the
observation dynamics p(ot | st). Meanwhile, µhi

θ
should

estimate gt at every c step in the proposed method, where
gt should be adjusted over the intervening time steps. The
adjustment is conducted through a goal transition function
h which is defined by

gt+1 = h(spart,t , gt , spart,t+1) = spart,t +gt − spart,t+1.
(11)

The transition function in (11) is depicted in Fig. 3 as a
sequence of black dashed lines, and g

t
points to sgoal,kc at

every time step in between the goal estimations. Further,
an intrinsic reward [41] to train the low-level policy π lo

θ

3300 Cheol-Hui Min and Jae-Bok Song

using h is defined as follows:

rint,t =−‖spart,t +gt − spart,t+1‖2 =−‖h‖2 . (12)

As rint,t in (12) equals the negative Euclidian distance of
the vector gt , a higher value denotes increased satisfac-
tion of gt . The low-level policy π lo

θ
in H-HSAC is then

improved to satisfy the subgoal gt as it is trained on rint,t .
Simultaneously, the high-level policy µhi

θ
is trained on c

step cumulative reward ΣRt:t+c−1, where Rt is the reward
given by the environment. In this manner, µhi

θ
is improved

toward achieving the episodic objective.

3.2. Assymetric actor-critic method

In this study, an end-to-end control policy of a robot is
proposed. To be specific, the policy outputs a robot’s joint
velocity and gripper commands by observing an RGB im-
age and partial state that is irrelevant to the kinematics and
the dynamics of a robot. This form of training has certain
advantages and disadvantages. One advantage is that the
well-trained policy can be generalized due to the uncon-
strained state-action space. The disadvantage is that the
training becomes challenging when the full state cannot be
exploited. To address this, an asymmetric actor-critic [42]
architecture is adopted for both the high- and low-level
actor-critics as the value function for policy evaluation is
necessary only during the training.

Fig. 4 illustrates the input-output relationship between
the high- and low-level policy functions µhi and π lo, re-
spectively, as well as the value functions Qhi and Qlo. As
shown in the figure, µhi and π lo only require the observa-
tion o and the partial state spart , while Qhi and Qlo receive
a full state s, where spart is augmented with the auxiliary
state saux. This asymmetric design leads to the policy func-
tion being learned indirectly on the full state s received by
the value function although it only receives only spart and
o. Consequently, the policy function can better estimate
the action a in an end-to-end manner within the test time
by simply observing spart and o.

Fig. 4. Overall asymmetric actor-critic architecture of H-
HSAC.

3.3. Off-policy correction for the reparameterized
high-level policy

The off-policy characteristic of H-HSAC, induced by em-
ploying a replay buffer D, allows us to consistently uti-
lize training samples in a sample-efficient way. Neverthe-
less, in hierarchical RL when the high-level policy µhi

θ

is trained in an off-policy manner, the non-stationary dy-
namics issue occurs [43]. In H-HSAC, this is attributed
to the fact that because the dynamics of high-level policy
phi(st+c | st , gt ; θlo) is dependent on the c step state-action
trajectory of low-level policy p(st , ot , at , ..., sc, oc | θlo),
as described below.

phi(st+c|st ,gt ;θlo)

∝ p(st ,ot ,at , ...,sc,oc | θlo)

= p(st)
t+c−1

∏
i=t

π
lo
θ (ai|oi,gi)p(oi|si)p(si+1|si,ai). (13)

The connection between phi and π lo
θ

in (13) implies
that phi is transient as the low-level policy network θlo

is updated (i.e., phi(st+c | st , gt ; θlo,old) 6= phi(st+c | st , gt ;
θlo,new)). To address this issue, we propose an off-policy
correction method [29] that reflects the stochastic nature
of the low-level policy of H-HSAC. During the learning
process, this method corrects the data τhi,old sampled from
the replay buffer of high-level policy Dhi, which has been
previously generated along the dynamics phi(st+c | st , gt ;
θlo,old), represented as sky-blue dashed lines in Fig. 5(a).
Accordingly, τhi,old is corrected to τhi,new, which satisfies
the current dynamics p(st+c | st , gt,corr; θlo,new), as depicted
by the blue dashed line in Fig. 5(b). The corrected sub-
goal gt,corr that fits the current dynamics is chosen with the
maximum likelihood estimation (MLE) on a set of sub-
goal candidates C. The MLE of the subgoal is found over
c step length data at:t+c−1 and ot:t+c−1, and the estimator
is the current policy π lo

θ ,new; it can therefore be formulated
by

gt,corr = argmax
g̃t∈C

logπ
lo
θ ,new(at:t+c−1|ot:t+c−1, g̃t:t+c−1).

(14)

C in (14) consists of goal candidates gcands as follows:

C ={gt,θold ,st+c− st ,

grand,1 ∼ Ncorr(st+c− st ,(α ·σθ ,lo)
2I), ...,grand,n}.

(15)

The elements of C are illustrated in Fig. 5 where the el-
ements gt,old , sc+t − st , and n sampled goals grands from
the distribution N(sc+t − st , (α ·σθ)

2). logπ lo
θ ,new in (14),

which is a diagonal Gaussian with mean µ lo
θ

and standard
deviation σ lo

θ
, where action a is k-dimensional, and is cal-

culated as follows:

logπ
lo
θ ,new(at:t+c−1 | ot:t+c−1, g̃t:t+c−1)

Hierarchical End-to-end Control Policy for Multi-degree-of-freedom Manipulators 3301

Fig. 5. Off-policy correction of H-HSAC.

=−1
2

[
Σ

t+c−1
i=t Σ

k
j=1

{
(ai, j−µi, j)

2

σ 2
i, j

+2logσi, j

}

+ kc log2π

]
. (16)

Fig. 5(a) shows the distribution of goal candidates in the
state space S. The off-policy correction aims to correct
gt,old to fit the current low-level policy’s dynamics (blue
dashed line) by selecting a new goal that maximizes the
current policy’s probability; this procedure is shown in
Fig. 5(b), which illustrates that gt,old , which has the max-
imum likelihood under π lo

θ ,old , is being corrected with the
new subgoal gt,corr that has the maximum likelihood under
π lo

θ ,new. The proposed method, in contrast to [29], reflects
the learnability of the stochasticity of low-level policy σ lo

θ

and α in composing the goal candidates. The proposed
off-policy correction reflects the stochastic characteristics
of low-level policy better than compared to the one pro-
posed in [29], which is formulated on the deterministic
policy.

3.4. Learning procedure of H-HSAC algorithm

Algorithm 1 outlines the overall interaction and learn-
ing of H-HSAC. First the agent accumulates the trajecto-
ries τhi and τlo in the replay buffers for each of the high-
and low-level policies, as shown in Fig. 3. Next, in the
learning phase, the low-level actor-critics θlo, φlo,1, and
φlo,2 are trained based on 1-step temporal difference (TD)
learning, whereas the high-level actor-critics θhi, φhi,1, and
φhi,2 are trained based on c step TD learning using the
off-policy correction described in Fig. 5. By using this
scheme, H-HSAC learns the control policy of a robot with-

Algorithm 1: Hierarchical-hard soft actor-critic (H-
HSAC).
Initialize high-level actor-critics µhi

θ
, Qhi

φ1, Qhi
φ2 and their

target networks.
Initialize low-level actor-critics µ lo

θ
, Qlo

φ1, Qlo
φ2 and their

target networks.
Initialize α , H0, c, goal candidate number ncand , λ (learn-
ing rate), ν(Polyak averaging rate).
Initialize high-level and low-level buffers Dhi, Dlo.
for each episode do

Observe st , ot (t = 0).
gt ∼ µhi(spart,t , ot)+σ(0, III)
for each env. step t do

if t (> 0) mod c then
Store< [ot:t+c−1], [at:t+c−1], Στ Rt , st , st+c,
gt,old >hi in Dhi.
gt ∼ µhi(spart,t , ot)+σ(0, III).

end if
Execute at ∼ πlo(a | ot , gt) and get Rt, st+1, ot+1

Append< [ot], [at], Rt , st , ·, gt >hi.
gt+1 = h(spart,t , spart,t+1, gt)
Compute intrinsic reward tint,t =−‖h‖2.
Store< st , ot , gt , at , tt , st+1, ot+1, gt+1 >lo in Dlo.

end for
for each gradient step s (= env. step) do

if s mod c then
do off-policy correction on Dhi.
Update high-level critics.→(7)

end if
if s mod 2c then

Update high-level actor.→(4)
Update high-level target networks.

end if
Update low-level critics.→(9)
if s mod 2 then

Update low level actor.→(8)
Update low level target networks.
Update α .→(10)

end if
end for

end for

3302 Cheol-Hui Min and Jae-Bok Song

out any constraints in the state-action space, thus resolving
the first difficulty of RL for robotics that was discussed to
in the introduction section.

4. LEVERAGING HUMAN DEMONSTRATION

Although the proposed method can learn the end-to-end
control policy of a robot from scratch, this learning is still
difficult as a substantial number of training samples are
required to train six neural networks along with their per-
formances µhi

θ
and π lo

θ
which are dependent on each other.

Thus, the use of training samples that have a good reward
signal can facilitate learning.

In this study, a robotic teleoperation system was set up,
as shown in Fig. 6, to obtain the necessary human demon-
stration data for the desired task. The teleoperation was
used to acquire RGB videos of a robot that performs the
task without the human demonstrator appearing in the im-
age, making the training data identical to those obtained
by the robot agent’s own interaction. The hierarchical pol-
icy of H-HSAC eventually estimated the joint velocity
command q̇qqd as action at . A 7-DOF robot was teleoperated
using Jacobian pseudo-inverse matrix-based joint velocity
control, which converted the target Cartesian commands
ẋxxd and xxxd to q̇qqd .

As a human demonstrator can be deemed as an expert
policy π∗, it is assumed that the data τdemo =< st , ot , at , tt ,
Rt , st+1, ot+1 > generated from demonstration always sat-
isfies c step goal-conditioning gkc between high- and low-
level policies. Hence, the expert subgoal gkc can be derived
from the difference s(k+1)c− skc, as depicted by red arrows
in Fig. 7. Next, the goal-transition of (11) is applied to ob-

Fig. 6. Human demonstration collection via VR device.

Fig. 7. Transition data generation from demonstration.

tain the interim goals up to g2kc−1 (black arrow of Fig. 7).
Finally, if a terminal state sT exists over the intervening
time steps, the last gkc is computed from gkc = sT − skc

(blue arrow in Fig. 7). After obtaining subgoals from this
approach, the whole demo data is reorganized as τhi

demo and
τ lo

demo for high- and low-level policy learning, respectively.
The restructured data are then stored in the replay buffers
and used to facilitate hierarchical policy learning in H-
HSAC, thus making it possible to overcome the second
difficulty of RL, which requires a substantial amount of
data.

5. SIM-TO-REAL TRANSFER OF LEARNED
POLICY

One of the aims of this study is to learn the end-to-end
control policy function in simulation environments alone
and then directly apply the results to a real robot. In this
way, it is possible to execute rapid learning without any
risk of collision caused by stochastic exploration in the
real robot learning process.

However, there are certain discrepancies between the
real world and simulation environments, such as visual in-
formation and physical modeling of objects, which dete-
riorates the performance of simulation to real-world (sim-
to-real) transfer learning. Therefore, domain randomiza-
tion (DR) [44] is employed to bridge the gap between the
simulation environment and the real-world test setup. The
components listed in Table 1 were randomized by virtue
of the H-HSAC policy that estimates the control command
from the vision and the joint sensor policy that estimates
the control command from the vision and the joint sensor
information.

Fig. 8(a) illustrates the randomized visual domains cen-
tered in the default simulation environment (Fig. 8(b)). As
the hierarchical policy with DR being learned, the policy
gradually becomes more generalized, ultimately expand-
ing its estimation accessible domain to the real-world do-
main (Fig. 8(c)). Thus, a real robot can be controlled in the
target test domain (Fig. 8(c)) with a policy network trained
solely in randomized simulation environments. Note that
the visual properties of the robot and its surrounding en-
vironment are randomized for each time step, and that the
robot’s joint properties are changed for every episode.

Table 1. Randomized properties in simulation environ-
ment.

State type Randomized properties

Visual, o
Color and position of target objects,
robot link materials, ambient lights,

environmental lights
Measured,

spart

Joint damping, friction coefficients,
proportional gain of the joints

Hierarchical End-to-end Control Policy for Multi-degree-of-freedom Manipulators 3303

Fig. 8. Sim-to-real transfer learning via domain random-
ization.

6. EXPERIMENTAL ANALYSIS

In this section, the training and test performances of H-
HSAC are evaluated in a reach-and-pick task of a 7-DOF
manipulator. The training evaluation is conducted by ex-
amining the stability of the proposed method, the effec-
tiveness of using human demonstration, and the efficacy
of the newly proposed off-policy correction. Further, H-
HSAC is compared to other deep RL algorithms. To as-
sess the test performance, H-HSAC was used to perform
reach-and-pick task on both simulation and real environ-
ments, with the results shown in Figs. 9(a) and 9(b), re-
spectively. The reward function Rt given by the environ-

Fig. 9. Experimental environments of reach-and-pick
task: (a) virtual environment, and (b) real world.

Table 2. State, observation, and action space defined for
the experiments.

State space Σ
Observation

space O
Action space

A

st = sfull = spart ∪ saux

spart = [qqq, q̇qq, τ]

saux = [xe, xo, bgrip]

a = [q̇qqd ‖ bgrip]

ment for learning the reach-and-pick task is defined as

Rt(s,a) =−‖xe− xo‖2 +bpicked, (17)

where xxxe and xxxo represent the Cartesian position of the
robot’s end-effector and the position of the target object,
respectively, and bpicked represents the positive sparse re-
ward that is only given if the robot’s gripper successfully
picks the target object. Hence, the negated distance be-
tween the two incentivizes the robot to reach the target
object.

As proposed in the introduction section, the hierarchi-
cal policy estimates seven joint velocities and gripper state
of a robot by observing the global camera and joint en-
coder information. Accordingly, the state space, observa-
tion space, and action space of the agent and environment
are defined in Table 2. In this study, the full state s f ull of
the environment is a union of the partial state spart and the
auxiliary state saux, where spart is a set of joint positions
q, velocities q̇, and torques τ , whereas saux consists of xe,
xo, and the binary state of the gripper, bgrip. Further, the
observation o represents an RGB video of the robot per-
forming the tasks. Finally, the action consists of the seven
joint velocities and gripper commands of a robot.

The experimental conditions are as follows: The con-
trol period of the robot was fixed to 30 Hz for both train-
ing and testing, and the maximum episode length was set
at 1,000 steps. The training performance measure was an
undiscounted episodic return ΣT Rt . In (17), bpicked was set
to 5. Furthermore, if the end-effector of the robot went
out of the valid workspace, the agent was penalized with
a scalar value of −1. The experimental conditions are as
follows. The control period of the robot was fixed to 30
Hz for both training and test, and the maximum episode
length was 1,000 steps. The training performance measure
was an undiscounted episodic return ΣT Rt . In (17), bpicked

was set to 5. Furthermore, the agent was penalized with a
scalar value of−1 if the end-effector of the robot went out
of the valid workspace.

6.1. Training performances in a simulation environ-
ment

The efficacy of the off-policy correction discussed in Sub-
section 3.3 was compared with that of the correction pre-
sented in [29], as shown in Fig. 10(b). The off-policy

3304 Cheol-Hui Min and Jae-Bok Song

Fig. 10. Training performance curves for experiments: (a)
H-HSAC over 7 different random seeds, (b) effi-
cacy of the proposed off-policy correction in H-
HSAC compared with that of HIRO [13], (c) effi-
cacy of human demonstration on the task, and (d)
comparison of H-HSAC, TD3 + HER, and pure
TD3.

correction method (red solid line) outperformed that of
[29] (solid blue line) in the early- and mid-stage of learn-
ing, and both methods ultimately converged to a similar
performance, which indicates that the proposed method
off-policy correction method is more suitable for stable
learning with the entropy regularized low-level policy. A
method for improving training performance using human
demonstrations was also investigated. Fig. 10(c) shows the
effect of using 20 human demonstration episodes. The per-
formance and stability of the learning with demonstration

data surpassed those of learning with purely exploratory
data, indicating that the use of demonstration increases the
sample efficiency and improves the policy.

Finally, H-HSAC was compared to TD3+HER (hind-
sight experience replay, [28]) as well as vanilla TD3.
These three algorithms have similar state, observation, and
action spaces, and their replay buffers were augmented
with identical demonstration data. As shown in Fig. 10(d),
vanilla TD3 did not improve the policy at all, whereas
goal-conditioning TD3 with HER could facilitate policy
improvement, but was still not comparable to H-HSAC
in terms of both performance and stability. Consequently,
the goal-conditioned hierarchical approach of H-HSAC is
a reasonable choice for control policy learning in high-
dimensional state-action space.

6.2. Test performances in a real-world environment
As the action space is involved in the joint velocities

of a robot, the learned end-to-end control policy should
have the ability to estimate continuous joint velocity com-
mands that do not have a detrimental effect on the robot.
In Fig. 11, which shows a part of recorded control com-
mands estimated for a real robot, the overall shape of the
trajectories was continuous aside from a few small jerks,
which implies that the policy is qualitatively well trained.
The learned policy was quantitatively evaluated over 50
episodes of the reach-and-pick task in the real world. The
success rate was checked for the three cases of reach,
reach-and-pick, and reach-and-pick with a valid pose, as
listed in. In evaluating the reaching performance, it was
determined that the reaching was successful if the robot
end-effector and the object were within 3 cm, although the
position of the target object was randomly initialized for
every episode. As presented in Table 3, the control policy
of a real-world robot could be learned without the need for
exploratory data acquisition using real robots.

In the simulation environment, the success rates based
on the three criteria are 100%, 54%, and 20%, respec-
tively, and Fig. 12(a) shows one of the test episodes in
the simulation environment. This indicates that the learned

Fig. 11. Joint velocity commands inferred from the con-
trol policy.

Hierarchical End-to-end Control Policy for Multi-degree-of-freedom Manipulators 3305

Fig. 12. Sampled test episodes of reach-and-pick task
over simulated and real world environments, ex-
ecuted with the same policy network. (a) Suc-
ceed in the simulated environment. (b) Failure
in the real-world environment. (c) Successfully
achieved tasks in real-world environment: this
verifies the sim-to-real transfer learning of a con-
trol policy.

policy of H-HSAC can independently control the robot
using camera and joint encoder information, although it
lacks some generalization over the various positions of the
target object in the tested workspace.

The success rates were compared for the two real-world
cases of the policy learned with and without DR. As
shown in Table 3, the test performance of the learned pol-
icy in the simulation environment was substantially deteri-
orated as it was transferred to the real world, but applying
DR could prevent the performance degradation to some
extent. In the real-world, for a few episodes, the agent
showed an undesirable pose despite the fact that it had
grasped the target object (Fig. 12(b)), while for some other
episodes, the agent successfully picked the target object
with a desirable pose (Fig. 12(c)).

Furthermore, H-HSAC was compared with TD3+HER
and TD3 for the reach-and-pick task, with the results
shown in Table 4. Note that the test performances among
the three are similar in terms of training performance, as
shown in Fig. 10(d). From this result, we further verified
that the goal-conditioned hierarchical policy of H-HSAC
is a suitable approach for end-to-end control policy learn-
ing.

In summary, H-HSAC can learn the end-to-end control
policy of a robot for achieving a specific task. In summary,
H-HSAC can learn the end-to-end control policy of a robot

Table 3. Reach-and-pick task success rate comparison
over different domains.

Simulated
environment

Real environment
with DR w/o DR

Reach
(within 3 cm)

50/50
(100%)

32/50
(64%)

11/50
(22%)

Reach &
pick

27/50
(54%)

14/50
(28%)

0/50
(0%)

Valid
grasping pose

10/50
(20%)

2/50
(4%)

-

Table 4. Reach-and-pick task success rate comparison
among different algorithms.

H-HSAC
(proposed)

TD3+HER TD3 [8]

Sim Real Sim Real Sim Real
Reach
(within
3cm)

50/50 32/50 35/50 10/50 2/50 0/50

Reach &
pick

27/50 14/50 9/50 0/50 0/50 -

Valid
grasping

pose
10/50 2/50 0/50 - - -

for achieving a specific task. However, the generalization
performance should be increased to guarantee the practi-
cality of the proposed method.

6.3. Applications to complex tasks
To further exemplify the performance of H-HSAC, we

conducted additional experiments on more complex tasks
than a reach-and-pick task. The additional tasks are shown
in Fig. 13. For the pick & place task involving multiple
objects (Fig. 13(a)), the reward function is a modification
of (17), which is designed in a curriculum fashion.

Before grasping the object, the reward is the sum of the
negated Euclidean distance to all targets, with a bonus of 5
if the agent picks the target object. If the object is grasped,
the reward changes to the summation of negated Euclidean
distance to the corresponding placing goal, which is cat-
egorized as the same color (blue, green, yellow). If the
agent successfully places the object, it also gets a bonus
reward of 5. Each episode has a maximum length of
5,000 steps (about 150 seconds). We conducted these ex-
periments and compared H-HSAC to the state-of-the-art
model-free, off-policy HRL algorithms (HIRO, hierarchi-
cal actor-critic (HAC)) [29,35], which fall into the same
category with H-HSAC, and the state-of-the-art non HRL
agents (SAC, TD3).

For more challenging tasks: peg-in-hole and block
stacking task, each episode has a maximum length of
1,000 steps. The reward function of a peg-in-hole task is
also designed in a similar way to that of a pick-and-place

3306 Cheol-Hui Min and Jae-Bok Song

Fig. 13. Simulated environment for solving complex
tasks. (a) Solving a pick-and-place task of mul-
tiple objects. The agent should sort blue, green,
and yellow objects into the blue, green, and yel-
low cups, respectively. For effective sim-to-real
transfer, while applying domain randomization,
the range of color randomiza-tion of target ob-
jects was limited. (b) The same task with (a) but
with a kinematically different robot arm (Panda).
(c) Variants of (a). The height of the cups is dif-
ferent from before. (d) Block stacking task. The
agent should stack cubic objects on the or-ange
cylinder. (e) Peg-in-hole task. The agent should
insert a blue peg into the orange assembly hole.
The clearance is about 1 mm.

task but has additional bonus of 10 for successful assem-
bly. For a block stacking task, the reward function is sim-
ilar to that of a pick-and-place task, with the difference of
goal position being set at the top of lastly stacked block.

6.4. Training results on complex tasks

Fig. 14 shows the training performance of H-HSAC
and other RL algorithms in various task environments dis-
cussed in the previous section. From Figs. 14(a) to 14(d),
the agents were trained for 10,000 episodes and evalu-
ated every 100 episodes with the averaged return over 3
runs. Moreover, all experiments were conducted for three
different random seeds with additional samples from the
demonstration data. First, H-HSAC was compared with its

variants whose combination of high- and low-level poli-
cies were different from H-HSAC. To begin, for all com-
parisons with other methods, H-HSAC (in purple curve)
shows the best stability for the random seed which is
demonstrated by less fluctuation of curves over the pro-
cedure of learning and small shaded area that implies low
performance variance for multiple experiments. It was ob-
served from Fig. 14(a) that, over the course of training,
H-HSAC (in blue curve) having a deterministic high-level
policy and a stochastic low-level policy outperformed the
other algorithms with better stability (lower variance in-
dicated by the shadow). This result justifies the choice of
the deterministic high-level and low-level policies with the
newly proposed off-policy correction method.

Figs. 14(b) and 14(c) show the training performance
among various algorithms for Sawyer and Panda robots.
In both experiments, H-HSAC (in purple) outperformed
all other algorithms. In addition, it was found that the
hierarchical RL agents (H-HSAC, HIRO, HAC) outper-
formed its counterparts that had a flat policy (SAC, TD3)
by large margin. Next, Fig. 14(d) demonstrates that for a
more kinematically complex task, the performance of H-
HSAC was better than other RL algorithms.

Fig. 14(e) shows the training performance of two more
complex tasks. The agent should infer the trajectory-force
relationship in an end-to-end manner in the peg-in-hole
task and should adapt to a varying kinematic goal for a
block stacking task. Only the performance of H-HSAC
was reported since the seemingly promising training re-
sults did not correspond to the successful achievement of
the two tasks. Thus, further experiments for other algo-
rithms were not conducted, and this will be discussed in
the next section.

6.5. Test results on complex tasks
With the trained agent discussed in the previous sec-

tion, the trained agents for solving the complex tasks were
evaluated. Fig. 15 shows the sampled trajectories from the
test in the real world. Figs. 15(a) and 15(b) show the ex-
perimental setup that the simulated environment in Fig. 13
emulates. Fig. 15(c) demonstrates the sampled trajectory
of a real-world pick-and-place task. The agent sorted the
blocks on the table according to its category of color. Fur-
thermore, Figs. 15(d) and 15(e) show the peg-in-hole and
block stacking tasks conducted in the real world.

The qualitative results are summarized in Tables 5-7.
The ‘#’ in the table indicates the number of blocks that
have been successfully picked and placed at the target. Ta-
ble 5 lists the test results of the pick-and-place task for
various settings. In the leftmost column, the first two rows
compare the pick-and-place operation between Sawyer
and Panda in simulated environments, as illustrated in
Figs. 13(a) and 13(b). The result describes that H-HSAC
works well for both robot arms with different kinematic
configurations. This proves that the proposed method is

Hierarchical End-to-end Control Policy for Multi-degree-of-freedom Manipulators 3307

(a) (b)

(c) (d)

(e)

Fig. 14. Training performance on complex tasks. (horizontal axis: pro-cedure of training. vertical axis: cumulative return
value for a single episode. solid line denotes average over 3 runs and shaded area is the variance): (a) Pick-and-
place task of multiple targets for different combination of hierarchy. (b) Pick-and-place task of multiple targets
with Sawyer arm. (c) The same task with Panda arm. (d) Pick-and-place task at varying heights. (e) Left: peg-in-
hole task; right: block stacking task.

applicable to general robot arms. Moreover, the 3rd row
showing the test result on the pick-and-place task at dif-
ferent goal heights demonstrates that H-HSAC can solve
complex kinematic problems in an end-to-end manner.

Next, Table 6 compares H-HSAC to two different HRL
algorithms (i.e., HIRO, HAC) on a pick-and-place task

trained in Fig. 14(b). The result demonstrates that H-
HSAC is competitive with those two state-of-the-art al-
gorithms.

Finally, Table 7 lists the resulting performance on the
peg-in-hole and block stacking tasks. As mentioned in
Subsection 6.3, the test results do not comply with the

3308 Cheol-Hui Min and Jae-Bok Song

Fig. 15. Qualitative test results of complex tasks in the
real world. (a), (b) Experimental setup with real
robots. (c) Successful trajectory of the pick-and-
place operation on goals at different heights. (d),
(e) Sampled trajectory of the peg-in-hole and
block stacking tasks.

good training performance reported in Fig. 13(e). It shows
the limitation of the proposed method in that the peg-in-

Table 5. Quantitative evaluation of H-HSAC in the pick-
and-place task.

Task Simulated
environment

Real
environment

with DR

Pick-and-place
with Sawyer
(H-HSAC)

Successful placing over 20 trials
0 - 2
1 - 5
2 5 7
3 11 6
4 2 -
5 2 -

Pick-and-place
with Panda
(H-HSAC)

0 -

-

1 -
2 4
3 14
4 1
5 1

Pick-and-place
at different heights

with Panda
(H-HSAC)

0 - 2
1 - 4
2 5 8
3 14 6
4 1 0
5 0 0

Table 6. Quantitative test performance of H-SHAC,
HIRO, and HAC.

H-HSAC
(proposed)

HIRO HAC

Suc. # Suc. # Suc.

Pick-and-
place with

Panda
in simulated
environment

0 - 1 3
1 - 1 4
2 5 5 6
3 11 12 7
4 2 1 -
5 2 - -

Table 7. Performance of H-HSAC on peg-in-hole and
block stacking tasks.

H-HSAC
of success / blocks over 10 trials

Sim Real
Peg-in-hole 2/10 - /10

Block
stacking

0 1 3
1 7 7
2 2 -

hole and block stacking operations require the inference of
the physical dynamics properties of the environment. In
other words, the hierarchical decomposition of H-HSAC
has limitations in figuring out the unknown physical laws
of the environment.

Hierarchical End-to-end Control Policy for Multi-degree-of-freedom Manipulators 3309

7. CONCLUSION AND FUTURE WORK

In this study, we presented a H-HSAC algorithm, which
is a goal-conditioned hierarchical control policy for con-
trolling a multi-DOF robot manipulator using the camera
and the joint encoder information. The proposed algorithm
overcome three difficulties associated with RL on robotics
by adopting hierarchical, human demonstration, and sim-
ulated learning.

The experimental results on the training performance
indicate that H-HSAC was able to learn the end-to-end
control policy that was robust to a change in the random
seed. Utilizing human demonstrations improved the per-
formance over the entire course of learning. Finally, H-
HSAC outperformed the pure TD3 and TD3+HER algo-
rithm on both training and test performances. During the
training, H-HSAC scored higher mean and lower variance
return, while the other two received substantially lower
value and unstable return.

The evaluation results on the test performance suggest
that domain randomization played a critical role in sim-to-
real transfer learning. Additionally, H-HSAC could con-
trol a real-world robot in an end-to-end manner with suc-
cess rates of 64% and 28% success rates for the reach and
the reach-and-pick tasks, respectively, while the pure TD3
and TD3+HER algorithms almost failed to achieve both
tasks.

The test results indicate that the generalization of the
end-to-end control policy for various tasks and the im-
provement on the qualitative performance (e.g., increasing
the number of valid grasps) both remain issues.

Furthermore, in more complex tasks such as pick-and-
place operations of multiple objects with different kine-
matic conditions, the performance of H-HSAC was gen-
eralized to be applied to two different types of robots.
In addition, H-HSAC outperformed other state-of-the-art
model-free, off-policy hierarchical RL algorithms in such
tasks. However, its limitation was demonstrated by the en-
vironments where implicit physical laws affect the agent-
environment interaction.

In future research, we will train the policy networks
through variational inference to achieve a better under-
standing of the visual information and hidden physics
model.

REFERENCES

[1] S. Xiao and J. Dong, “Adaptive fault-tolerant control for a
class of uncertain TS fuzzy systems with guaranteed time-
varying performance,” Fuzzy Sets and Systems, vol. 385,
pp. 1-19, April 2020.

[2] R. Raul-Cristian, R.-E. Precup, and E. M. Petri, “Hybrid
data-driven fuzzy active disturbance rejection control for
tower crane systems,” European Journal of Control, vol.
58, pp. 373-387, March 2021.

[3] A. Turnip and J. H. Panggabean, “Hybrid controller design
based magneto-rheological damper lookup table for quarter
car suspension,” International Journal of Artificial Intelli-
gence, vol. 18, no. 1, pp. 193-206, March 2020.

[4] R. Bellman, “Dynamic programming and Lagrange multi-
pliers,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 42, no. 10, p. 767,
October 1956.

[5] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement
learning in robotics: A survey,” The International Jour-
nal of Robotics Research, vol. 32, no. 11, pp. 1238-1274,
September 2013.

[6] F. Zhang, J. Leitner, M. Milford, and P. Corke, “Mod-
ular deep Q networks for sim-to-real transfer of visuo-
motor policies,” arXiv preprint, arXiv:1610.06781, Octo-
ber 2016.

[7] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learn-
ing and generalization of motor skills by learning from
demonstration,” Proc. of IEEE International Conference
on Robotics and Automation (ICRA), pp. 763-768, May
2009.

[8] B. D. Argall, S. Chernova, M. Veloso, and B. Browning,
“A survey of robot learning from demonstration,” Robotics
and Autonomous Systems, vol. 57, no. 5, pp. 469-483, May
2009.

[9] C. Daniel, G. Neumann, and J. Peters, “Hierarchical rel-
ative entropy policy search,” Artificial Intelligence and
Statistics, PMLR, pp. 273-281, March 2012.

[10] S. Levine and V. Koltun, “Guided policy search,” Proc.
of International Conference on Machine Learning, PMLR,
pp. 1-9, May 2013.

[11] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S.
Savarese, “Neural task programming: Learning to general-
ize across hierarchical tasks,” Proc. of IEEE International
Conference on Robotics and Automation (ICRA), pp. 3795-
3802, May 2018.

[12] R. Julian, E. Heiden, Z. He, H. Zhang, S. Schaal, J. Lim.
G. Sukhatme, and K. Hausman, “Scaling simulation-to-real
transfer by learning composable robot skills,” Proc. of In-
ternational Symposium on Experimental Robotics, pp. 267-
279, Springer, Cham, November 2018.

[13] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine,
“Learning modular neural network policies for multi-task
and multi-robot transfer,” Proc. of IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 2169-
2176, May 2017.

[14] D. A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei,
S. Savarese, and J. C. Niebles, “Neural task graphs: Gen-
eralizing to unseen tasks from a single video demonstra-
tion,” Proc. of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pp. 8565-8574, 2019.

[15] S. Sohn, J. Oh, and H. Lee, “Hierarchical reinforcement
learning for zero-shot generalization with subtask depen-
dencies,” Advances in Neural Information Processing Sys-
tems, pp. 7156-7166, December 2018.

https://doi.org/10.1016/j.fss.2019.04.007
https://doi.org/10.1016/j.fss.2019.04.007
https://doi.org/10.1016/j.fss.2019.04.007
https://doi.org/10.1016/j.fss.2019.04.007
https://doi.org/10.1016/j.ejcon.2020.08.001
https://doi.org/10.1016/j.ejcon.2020.08.001
https://doi.org/10.1016/j.ejcon.2020.08.001
https://doi.org/10.1016/j.ejcon.2020.08.001
https://doi.org/10.1073/pnas.42.10.767
https://doi.org/10.1073/pnas.42.10.767
https://doi.org/10.1073/pnas.42.10.767
https://doi.org/10.1073/pnas.42.10.767
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.48550/arXiv.1610.06781
https://doi.org/10.48550/arXiv.1610.06781
https://doi.org/10.48550/arXiv.1610.06781
https://doi.org/10.48550/arXiv.1610.06781
https://doi.org/10.1109/ROBOT.2009.5152385
https://doi.org/10.1109/ROBOT.2009.5152385
https://doi.org/10.1109/ROBOT.2009.5152385
https://doi.org/10.1109/ROBOT.2009.5152385
https://doi.org/10.1109/ROBOT.2009.5152385
https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1016/j.robot.2008.10.024
https://doi.org/10.1109/ICRA.2018.8460689
https://doi.org/10.1109/ICRA.2018.8460689
https://doi.org/10.1109/ICRA.2018.8460689
https://doi.org/10.1109/ICRA.2018.8460689
https://doi.org/10.1109/ICRA.2018.8460689
https://doi.org/10.1007/978-3-030-33950-0_24
https://doi.org/10.1007/978-3-030-33950-0_24
https://doi.org/10.1007/978-3-030-33950-0_24
https://doi.org/10.1007/978-3-030-33950-0_24
https://doi.org/10.1007/978-3-030-33950-0_24
https://doi.org/10.1109/ICRA.2017.7989250
https://doi.org/10.1109/ICRA.2017.7989250
https://doi.org/10.1109/ICRA.2017.7989250
https://doi.org/10.1109/ICRA.2017.7989250
https://doi.org/10.1109/ICRA.2017.7989250
https://doi.org/10.48550/arXiv.1807.03480
https://doi.org/10.48550/arXiv.1807.03480
https://doi.org/10.48550/arXiv.1807.03480
https://doi.org/10.48550/arXiv.1807.03480
https://doi.org/10.48550/arXiv.1807.03480
https://doi.org/10.5555/3327757.3327818
https://doi.org/10.5555/3327757.3327818
https://doi.org/10.5555/3327757.3327818
https://doi.org/10.5555/3327757.3327818

3310 Cheol-Hui Min and Jae-Bok Song

[16] R. Parr and S. Russell, “Reinforcement learning with hier-
archies of machines,” Advances in Neural Information Pro-
cessing Systems, vol. 10, pp. 1043-1049, 1997.

[17] Z. J. Pang, R. Z. Liu, Z. Y. Meng, Y. Zhang, Y. Yu, and
T. Lu, “On reinforcement learning for full-length game of
starcraft,” Proc. of the AAAI Conference on Artificial Intel-
ligence, vol. 33, no. 1, pp. 4691-4698, July 2019.

[18] S. Nair and C. Finn, “Hierarchical foresight: Self-
supervised learning of long-horizon tasks via visual
subgoal generation,” arXiv preprint, arXiv:1909.05829,
September 2019.

[19] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and
semi-MDPs: A framework for temporal abstraction in rein-
forcement learning,” Artificial Intelligence, vol. 112, no. 1,
pp. 181-211, August 1999.

[20] T. G. Dietterich, “Hierarchical reinforcement learning with
the MAXQ value function decomposition,” Journal of Ar-
tificial Intelligence Research, vol. 13, pp. 227-303, 2000.

[21] D. Precup, Temporal Abstraction in Reinforcement Learn-
ing, University of Massachusetts Amherst, 2000.

[22] P. Dayan and G. E. Hinton, “Feudal reinforcement learn-
ing,” Advances in Neural Information Processing Systems,
vol. 5, pp. 271-278, 1992.

[23] M. Klimek, H. Michalewski, and P. Mi, “Hierarchical rein-
forcement learning with parameters,” Proc. of Conference
on Robot Learning, PMLR, pp. 301-313, October 2017.

[24] P. L. Bacon, J. Harb, and D. Precup, “The option-critic ar-
chitecture,” Proc. of the AAAI Conference on Artificial In-
telligence, vol. 31, no. 1, pp. 1726-1734, February 2017.

[25] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M.
Jaderberg, D. Silver, and K. Kavukcuoglu, “FeUdal net-
works for hierarchical reinforcement learning,” Proc. of In-
ternational Conference on Machine Learning, PMLR, pp.
3540-3549, July 2017.

[26] J. Co-Reyes, Y. Liu, A. Gupta, B. Eysenbach, P. Abbeel,
and S. Levine, “Self-consistent trajectory autoencoder: Hi-
erarchical reinforcement learning with trajectory embed-
dings,” Proc. of International Conference on Machine
Learning, PMLR, pp. 1009-1018, July 2018.

[27] A. Levy, G. Konidaris, R. Platt, and K. Saenko, “Learn-
ing multi-level hierarchies with hindsight,” arXiv preprint,
arXiv:1712.00948, December 2017.

[28] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R.
Fong, R. P. Welinder, B. McGrew, J. Tobin, O. Pieter
Abbeel, W. Zaremba, “Hindsight experience replay,” Ad-
vances in Neural Information Processing Systems, vol. 30,
2017.

[29] O. Nachum, S. Gu, H. Lee, and S. Levine, “Data-efficient
hierarchical reinforcement learning,” Advances in Neural
Information Processing Systems, vol. 31, 2018.

[30] Y. Jiang, S. Gu, K. Murphy, and C. Finn, “Language as an
abstraction for hierarchical deep reinforcement learning,”
Advances in Neural Information Processing Systems, vol.
32, 2019.

[31] C. Li, F. Xia, R. Martin-Martin, and S. Savarese, “HRL4IN:
Hierarchical reinforcement learning for interactive navi-
gation with mobile manipulators,” Conference on Robot
Learning, PMLR, pp. 603-616, May 2020.

[32] D. Jain, A. Iscen, and K. Caluwaerts, “Hierarchical rein-
forcement learning for quadruped locomotion,” Proc. of
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 7551-7557, November 2019.

[33] O. Nachum, M. Ahn, H. Ponte, S. Gu, and V. Kumar,
“Multi-agent manipulation via locomotion using hierarchi-
cal sim2real,” arXiv preprint, arXiv:1908.05224, August
2019.

[34] M. Wulfmeier, A. Abdolmaleki, R. Hafner, J. T. Sprin-
genberg, M. Neunert, T. Hertweck, T. Lampe, N. Siegel,
N. Heess, and M. Riedmiller, “Compositional transfer
in hierarchical reinforcement learning,” arXiv preprint,
arXiv:1906.11228, June 2019.

[35] A. Levy, G. Konidaris, R. Platt, and K. Saenko, “Learn-
ing multi-level hierarchies with hindsight,” arXiv preprint,
arXiv:1712.00948, December 2017.

[36] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” Proc. of In-
ternational Conference on Machine Learning, PMLR, pp.
1587-1596, July 2018.

[37] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha,
J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel, and
S. Levine, “Soft actor-critic algorithms and applications,”
arXiv preprint, arXiv:1812.05905, December 2018.

[38] S. Nasiriany, V. Pong, S. Lin, S. Levine, “Planning with
goal-conditioned policies,” Advances in Neural Informa-
tion Processing Systems, vol. 32, 2019.

[39] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous con-
trol with deep reinforcement learning,” arXiv preprint,
arXiv:1509.02971, September 2015.

[40] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidje-
land, G. Ostrovski, and S. Petersen, “Human-level control
through deep reinforcement learning,” Nature, vol. 518, no.
7540, pp. 529-533, February 2015.

[41] N. Chentanez, A. Barto, and S. Singh, “Intrinsically moti-
vated reinforcement learning,” Advances in Neural Infor-
mation Processing Systems, vol. 17, 2004.

[42] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba,
and P. Abbeel, “Asymmetric actor critic for image-based
robot learning,” arXiv preprint, arXiv:1710.06542, Octo-
ber 2017.

[43] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, MIT Press, November 2018.

[44] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P.
Abbeel, “Domain randomization for transferring deep neu-
ral networks from simulation to the real world,” Proc. of
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 23-30, September 2017.

https://doi.org/10.5555/302528.302894
https://doi.org/10.5555/302528.302894
https://doi.org/10.5555/302528.302894
https://doi.org/10.1609/aaai.v33i01.33014691
https://doi.org/10.1609/aaai.v33i01.33014691
https://doi.org/10.1609/aaai.v33i01.33014691
https://doi.org/10.1609/aaai.v33i01.33014691
https://doi.org/10.48550/arXiv.1909.05829
https://doi.org/10.48550/arXiv.1909.05829
https://doi.org/10.48550/arXiv.1909.05829
https://doi.org/10.48550/arXiv.1909.05829
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1613/jair.639
https://doi.org/10.1613/jair.639
https://doi.org/10.1613/jair.639
https://doi.org/10.5555/3298483.3298491
https://doi.org/10.5555/3298483.3298491
https://doi.org/10.5555/3298483.3298491
https://doi.org/10.5555/3305890.3306047
https://doi.org/10.5555/3305890.3306047
https://doi.org/10.5555/3305890.3306047
https://doi.org/10.5555/3305890.3306047
https://doi.org/10.5555/3305890.3306047
https://doi.org/10.48550/arXiv.1806.02813
https://doi.org/10.48550/arXiv.1806.02813
https://doi.org/10.48550/arXiv.1806.02813
https://doi.org/10.48550/arXiv.1806.02813
https://doi.org/10.48550/arXiv.1806.02813
https://doi.org/10.48550/arXiv.1712.00948
https://doi.org/10.48550/arXiv.1712.00948
https://doi.org/10.48550/arXiv.1712.00948
https://doi.org/10.48550/arXiv.1707.01495
https://doi.org/10.48550/arXiv.1707.01495
https://doi.org/10.48550/arXiv.1707.01495
https://doi.org/10.48550/arXiv.1707.01495
https://doi.org/10.48550/arXiv.1707.01495
https://doi.org/10.48550/arXiv.1805.08296
https://doi.org/10.48550/arXiv.1805.08296
https://doi.org/10.48550/arXiv.1805.08296
https://doi.org/10.48550/arXiv.1906.07343
https://doi.org/10.48550/arXiv.1906.07343
https://doi.org/10.48550/arXiv.1906.07343
https://doi.org/10.48550/arXiv.1906.07343
https://doi.org/10.48550/arXiv.1910.11432
https://doi.org/10.48550/arXiv.1910.11432
https://doi.org/10.48550/arXiv.1910.11432
https://doi.org/10.48550/arXiv.1910.11432
https://doi.org/10.48550/arXiv.1908.05224
https://doi.org/10.48550/arXiv.1908.05224
https://doi.org/10.48550/arXiv.1908.05224
https://doi.org/10.48550/arXiv.1908.05224
https://doi.org/10.48550/arXiv.1906.11228
https://doi.org/10.48550/arXiv.1906.11228
https://doi.org/10.48550/arXiv.1906.11228
https://doi.org/10.48550/arXiv.1906.11228
https://doi.org/10.48550/arXiv.1906.11228
https://doi.org/10.48550/arXiv.1712.00948
https://doi.org/10.48550/arXiv.1712.00948
https://doi.org/10.48550/arXiv.1712.00948
https://doi.org/10.48550/arXiv.1802.09477
https://doi.org/10.48550/arXiv.1802.09477
https://doi.org/10.48550/arXiv.1802.09477
https://doi.org/10.48550/arXiv.1802.09477
https://doi.org/10.48550/arXiv.1812.05905
https://doi.org/10.48550/arXiv.1812.05905
https://doi.org/10.48550/arXiv.1812.05905
https://doi.org/10.48550/arXiv.1812.05905
https://doi.org/10.48550/arXiv.1911.08453
https://doi.org/10.48550/arXiv.1911.08453
https://doi.org/10.48550/arXiv.1911.08453
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://doi.org/10.48550/arXiv.1710.06542
https://doi.org/10.48550/arXiv.1710.06542
https://doi.org/10.48550/arXiv.1710.06542
https://doi.org/10.48550/arXiv.1710.06542
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS.2017.8202133

Hierarchical End-to-end Control Policy for Multi-degree-of-freedom Manipulators 3311

Cheol-Hui Min received his B.S. degree
in mechanical engineering from Korea
University, in 2017, and an M.S. degree in
mechanical engineering from Korea Uni-
versity, in 2019. He is currently pursuing
a Ph.D. degree in electrical and computer
engineering at Seoul National University.
His research interests include 3D vision
for robotics, model-based deep reinforce-

ment learning, and optimal control.

Jae-Bok Song received his B.S. and M.S.
degrees in mechanical engineering from
Seoul National University, in 1983 and
1985, respectively. He was awarded his
Ph.D. degree from M.I.T., in 1992. He is
currently a Professor at the School of Me-
chanical Engineering at Korea University.
He has served as a director of Intelligent
Robotics Laboratory since 1993. His re-

search interests include robot safety and robotic system design
and control.

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

