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A New Variational Bayesian-based Kalman Filter with Random Measure-
ment Delay and Non-Gaussian Noises
Chenghao Shan, Weidong Zhou* � , Hanyu Shan, and Lu Liu

Abstract: To improve the estimation accuracy of the Kalman filter in the scenario of random measurement delay and
non-Gaussian process and measurement noises, a new variational Bayesian (VB)-based Kalman filter is proposed
in this paper. First, the state expansion method and Bernoulli random variable (BRV) are utilized to characterize
random measurement delay. Second, the one-step predicted probability density function (PDF) and measurement
noise vectors are modeled as Student’s t (ST) distributions. Third, the likelihood function of two ST distributions
is converted from a weighted sum to an exponential product to establish a hierarchical Gaussian state space model
(HGSSM). Finally, the system state, BRV and intermediate random variables (IRV) are simultaneously estimated
using the variational Bayesian (VB) method. Simulation experiment results indicate that the proposed filter has
superior estimation performance to current filters to address the filtering problem of random measurement delay
and non-Gaussian process and measurement noises.
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1. INTRODUCTION

For linear systems, the Kalman filter (KF) is the optimal
estimator under the minimum mean square error criterion
[1]. The KF assumes that the state-space model of signal
and noise is known, uses the estimated value of the pre-
vious moment and observed value of the current moment
to update the estimation of the state variable, and obtains
the estimated value of the current moment. KF is the best
and most efficient to solve a large part of the problem
[2]. On the issue of state estimation, KF and its deriva-
tive algorithms have been widely used in the applications
of navigation, control, sensor data fusion, and target track-
ing [3–12]. However, in actual signal transmission, due to
network congestion, transmission channel limitations, and
complex environmental factors, the system will generate
random measurement delays (RMD). In this case, the ac-
curacy of the traditional Kalman filter will significantly
decrease or even diverge [13,14].

To address the filtering problem of random measure-
ment delay, many improved filtering algorithms have been
proposed. Wang et al. proposed a randomly delayed mea-
surement Kalman filter (RDMKF), which recursively op-

erates by combining analytical calculations with Gaus-
sian weighted integration [15,16]. Wang et al. proposed a
variational Bayesian (VB)-based improved Kalman filter
(VBIKF) that introduced discrete Bernoulli random vari-
ables and converted the measurement likelihood function
of double Gaussian distributions from a weighted sum
to an exponential multiplication form. The state vector
and unknown parameters are simultaneously inferred us-
ing the VB method [17]. When the noise distributions are
Gaussian distributions with known parameters, these al-
gorithms have excellent performances.

Unfortunately, in actual applications such as coopera-
tive localization and target tracking by radar, measure-
ment outliers may occur, which induce non-Gaussian
heavy-tailed process and measurement noises (NHPMN)
[18–20]. In this case, the estimation accuracy of these
algorithms will be significantly reduced. Recently, some
algorithms have been proposed to process non-Gaussian
heavy-tailed noises, such as maximum correntropy-based
filters [21–23], Huber-based filters [24,25], and Student’s
t-based filters [20,26–28]. However, they are not designed
for linear systems with random measurement delay which
considered in this paper.

Manuscript received June 5, 2021; revised October 1, 2021; accepted October 18, 2021. Recommended by Associate Editor Le Van Hien
under the direction of Editor Jay H. Lee. This work was supported by the China Scholarship Council (CSC, No. 202006680080), and the
National Natural Science Foundation of China (61573113).

Chenghao Shan is with the Department of Intelligent Systems Science and Engineering, Harbin Engineering University, and the Depart-
ment of Electrical and Computer Engineering, National University of Singapore, Singapore (e-mail: shanchenghao123@hrbeu.edu.cn).
Weidong Zhou is with the Department of Intelligent Systems Science and Engineering, Harbin Engineering University, China (e-mail:
zhouweidong@hrbeu.edu.cn). Hanyu Shan is with the Department of Information and Communication Engineering, Harbin Engineering
University, China (e-mail: shy@hrbeu.edu.cn). Lu Liu is with the Beijing Institute of Control and Electronic Technology, China (e-mail:
douya@hrbeu.edu.cn).
* Corresponding author.

©ICROS, KIEE and Springer 2022

http://www.springer.com/12555
https://orcid.org/0000-0002-1234-1035


A New Variational Bayesian-based Kalman Filter with Random Measurement Delay and Non-Gaussian Noises 2595

In this paper, a new VB-based KF is proposed to ad-
dress random measurement delay and NHPMN. The state
expansion method and BRV are utilized to characterize
random measurement delay. The one-step predicted PDF
and measurement noise vectors are assumed to be Stu-
dent’s t (ST) distributions. The system state, BRV and
IRVs are simultaneously estimated using the VB method.
The target tracking simulation results illustrate the superi-
ority of the proposed filter. The contributions of this paper
are as follows:

1) ST distributions are utilized to model the one-step
predicted PDF and non-Gaussian heavy-tailed mea-
surement noise.

2) The likelihood function of two ST distributions is
converted from a weighted sum to an exponential
product, and the VB method can be used directly.

3) By introducing the state expansion method and
Bernoulli random variable, a new hierarchical Gaus-
sian state space model is derived.

4) The system state and unknown variables are si-
multaneously inferred by introducing a variational
Bayesian approach.

5) Target tracking simulation results indicate that the
proposed filter has higher estimation accuracy than
existing algorithms in the scenarios of random mea-
surement delay and NHPMN. The proposed filter is
also more robust than current algorithms under dif-
ferent delay probabilities.

The remainder of the paper is organized as follows: The
problem formulation is given in Section 2. The construc-
tion of the hierarchical Gaussian state-space model and
VB approximations of the joint posterior PDFs are illus-
trated in Section 3. Simulation results are analyzed in Sec-
tion 4. Conclusions are drawn in Section 5.

2. PROBLEM FORMULATION

Consider the following linear state-space model with
random measurement delay and NHPMN

xt = Mt−1xt−1 +ωt−1, (1)

yt = Htxt + vt , (2)

yr
t = (1− τt)yt + τtyt−1, t ≥ 2, yr

1 = y1, (3)

where xt ∈ Rn is the system state vector; Mt ∈ Rn×n is
the state transform matrix; yt ∈ Rm is the idealized mea-
surement vector without random delay; Ht ∈ Rm×m is the
measurement matrix. ωt−1 and vt are the zero-mean non-
Gaussian white noises with the heavy-tailed form. The
nominal covariance matrix of process noise ωt−1 and mea-
surement noise vt are defined as Qt and Rt , respectively.
yr

t ∈Rm is the actual measurement vector with random de-
lay, and t is the discrete time. The BRV τt ∈ Rmis used to

capture the random measurement delay, and p(τt = 1) and
p(τt = 0) are defined as follows:

p(τt = 1) = Ep[τt ] = φt , (4)

p(τt = 0) = 1−Ep[τt ] = 1−φt , (5)

where φt ∈ [0, 1] is the fixed probability of random mea-
surement delay, and Ep[·] is the expectation operation. Ad-
ditionally, parameters xt , τt , ωt−1 and vt are mutually in-
dependent in this paper.

3. MAIN RESULTS

3.1. Construction of the hierarchical Gaussian state
space model (HGSSM)

By converting the form of the measurement likelihood
PDF and selecting prior PDFs, a new HGSSM will be con-
structed, and the VB method can be used directly.

3.1.1 Conversion of the likelihood PDF
According to (3)-(5), the following measurement likeli-

hood probability density function (PDF) can be obtained

p(yr
t |xt ,xt−1) =

1

∑
τt=0

p(yr
t ,τt |xt ,xt−1)

=p(τt = 0)p(yr
t |xt ,xt−1,τt = 0)

+ p(τt = 1)p(yr
t |xt ,xt−1,τt = 1)

=(1−φt)p(yr
t |xt ,xt−1,τt = 0)

+φt p(yr
t |xt ,xt−1,τt = 1). (6)

Based on (2)-(3), the likelihood PDF can be rewritten in
the following form

p(yr
t |xt ,xt−1,τt = 0) = pvr

t (y
r
t −Htxt), (7)

p(yr
t |xt ,xt−1,τt = 1) = pvr

t (y
r
t −Ht−1xt−1), (8)

where pvr
t (·) is the measurement noise PDF.

Bringing (7)-(8) into (6), the following equation is de-
rived

p(yr
t |xt ,xt−1) =

1

∑
τt=0

p(yr
t ,τt |xt ,xt−1)

=(1−φt)pvr
t (y

r
t −Htxt)

+φt pvr
t (y

r
t −Ht−1xt−1). (9)

Remark 1: The measurement conditional likelihood
PDF in (7) has nonclosed and nonconjugate properties,
and the variational inference cannot be directly used. To
solve this problem, the probability mass function (PMF)
of BRV τt is introduced to convert the form of (9) from a
weighted sum to an exponential product.

According to (4)-(5), the PMF of BRV is written as

p(τt) = (1−φt)
(1−τt )φ

τt
t . (10)
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Based on (7) and (8), the conditional PDF in (9) is

p(yr
t |xt ,xt−1) =

1

∑
τt=0

p(yr
t ,τt |xt ,xt−1)

=
1

∑
τt=0

p(τt)pvr
t (y

r
t −Htxt)

(1−τt )

× pvr
t (y

r
t −Ht−1xt−1)

τt . (11)

Using (11), the conditional likelihood PDF of measure-
ment is formulated as follows:

p(yr
t |xt ,xt−1,τt) = pvr

t (y
r
t −Htxt)

(1−τt )

× pvr
t (y

r
t −Ht−1xt−1)

τt . (12)

3.1.2 Selection of prior PDFs
To more reasonably model the heavy-tailed process

noise and improve the estimation accuracy, the one-step
predicted PDF can be modeled as the following ST distri-
bution [26]

p(xe
t |yr

1:t−1) = ST(xe
t ; x̂e

t ,ΣΣΣt ,ξ ) , (13)

where ST(·; µ , ε, δ ) is ST PDF, and µ , ε and δ are the
mean vector, scale matrix and degrees of freedom (DoF)
parameter, respectively. xe

t is the expanded state vector,
and x̂e

t is the one-step predicted estimation value of the
expanded state vector. In this paper, the predicted error co-
variance matrix Pee

t|t−1 is assumed to be the scale matrix ΣΣΣt

in (13). The formulas of xe
t , x̂e

t and ΣΣΣt are given as follows:

xe
t =

[
xT

t xT
t−1

]T
, (14)

x̂e
t|t−1 =

[
x̂t|t−1

x̂t−1|t−1

]
, (15)

ΣΣΣt =

[
Pt|t−1 PT

t−1,t|t−1
Pt−1,t|t−1 Pt−1|t−1

]
= Pee

t|t−1, (16)

where x̂t−1|t−1 is the one-step predictive estimation value
of the state vector, Pt|t−1 is the predicted error covariance,
and Pt−1,t|t−1 is the mutual covariance matrix. They can
be calculated by the time update of the standard Kalman
filter algorithm, i.e.,

x̂t|t−1 = Mt−1xt−1|t−1, (17)

Pt|t−1 = Mt−1Pt−1|t−1MT
t−1 +Qt−1, (18)

Pt−1,t|t−1 = Pt−1|t−1MT
t−1. (19)

Remark 2: The estimated values of Pee
t|t−1 and ΣΣΣt are af-

fected by the outliers of process noise. To improve the per-
formance of the proposed filter, the conjugate prior PDF
of ΣΣΣt must be defined. In this paper, the inverse-Wishart
(IW) distribution is utilized to model the conjugate prior
PDF of ΣΣΣt , which is given as

p(ΣΣΣt) = IW(ΣΣΣt ; ut , UUU t), (20)

where IW(A; b, d) is the inverse-Wishart PDF of random
matrix A, b is the DoF parameter, and d is the inverse scale
matrix. The detailed definition of the IW distribution is

IW(A;b,d) =
|d|b/2|A|−(1+b+j)/2 exp[−0.5tr(dA−1)]

2 jb/2Γ(b/2)
,

(21)

where j is the dimension of random matrix A, tr(·) repre-
sents the trace operation, and Γ(·) is the gamma function
[29].

To capture the prior properties of ΣΣΣt , the mean value of
ΣΣΣt is assumed to be the nominal predicted error covariance
matrix Pee

t|t−1, which can be formulated as follows:

UUU t

ut −n−1
= Pee

t|t−1, (22)

where ut is defined as follows with tuning parameter γ ≥ 0,
i.e.,

ut = n+ γ +1. (23)

Using (21)-(22), we have

UUU t = γPee
t|t−1. (24)

The one-step predicted PDF in (13) can be rewritten as the
following hierarchical form

p(xe
t |yr

1:t−1,βt) = N
(

xe
t ; x̂e

t|t−1,ΣΣΣt/βt

)
, (25)

p(βt) = G(βt ;ξ/2,ξ/2), (26)

where G(·; π , σ) represents the Gamma PDF, π is the
shape parameter, σ is the rate parameter, and βt is the in-
termediate random variable (IRV).

In terms of measurement noise processing, the non-
Gaussian heavy-tailed measurement noise vectors are as-
sumed to be the following ST distributions

p(vt) = ST(vt ;0,Rt ,ht), (27)

p(vt−1) = ST(vt−1;0,Rt−1,ht−1), (28)

where p(vt) and p(vt−1) denote the PDF of the current
step and last step, respectively. Then, (27) and (28) can be
further derived as the following Gaussian-double-Gamma
hierarchical form

p(vt) =
∫∫

N(vt ;0,Rt/λt) p(λt) p(ht)dλtdht , (29)

p(λt) = G(λt ;ht/2,ht/2), (30)

p(ht) = G(ht ,et ,gt), (31)

p(vt−1) =
∫∫

N(vt−1;0,Rt−1/λt−1) p(λt−1)

× p(ht−1)dλt−1dht−1, (32)

p(λt−1) = G(λt−1;ht−1/2,ht−1/2), (33)
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p(ht−1) = G(ht−1,et−1,gt−1), (34)

where λt , λt−1, ht and ht−1 represent the IRVs.
Based on (12) and (27)-(34), the following likelihood

PDF can be obtained

p(yr
t |xe

t ,λt ,λt−1,τt) = N(yr
t ;Htxt ,Rt/λt)

(1−τt )

×N(yr
t ;Ht−1xt−1,Rt−1/λt−1)

τt .
(35)

Obviously, from (35), the expanded state vector xe
t ,

BRV τt and IRVs λt , λt−1, ht and ht−1 affect the mea-
surement vector yr

t . The following prior PDF with must
be calculated

p(xe
t ,ΣΣΣt ,βt ,λt ,λt−1,ht ,ht−1,τt |yr

1:t−1)

= p(ΣΣΣt) p(βt) p(xe
t |yr

1:t−1,βt) p(λt) p(ht) p(λt−1)

× p(ht−1) p(τt)

= N
(

xe
t ; x̂e

t|t−1,ΣΣΣt/βt

)
IW(ΣΣΣt ;ut ,Ut)G(βt ;ξ/2,ξ/2)

×G(λt ;ht/2,ht/2)G(ht ,et ,gt)

×G(λt−1;ht−1/2,ht−1/2)G(ht−1,et−1,gt−1)

× (1−φt)
(1−τt )

φt
τt . (36)

Thus far, the HGSSM consisting of (12), (14)-(19),
(25)-(26) and (29)-(36) is constructed. Next, the expanded
state vector, BRV, scale matrix and IRVs will be inferred
by introducing a variational Bayesian approach.

3.1.3 VB approximation of the joint posterior PDFs
The parameters in (36) are mutually coupled. It is dif-

ficult to calculate the analytic solution of the posterior
PDF p(ΘΘΘ|yr

1:t), ΘΘΘ = (xe
t , ΣΣΣt , βt , λt , λt−1, ht , ht−1, τt). The

free form factored approximate PDF for p
(
ΘΘΘ|yr

1;t

)
will be

solved using the VB approach as follows:

p(ΘΘΘ|yr
1:t)≈ q(xe

t )q(ΣΣΣt)q(βt)q(λt)

×q(λt−1)q(ht)q(ht−1)q(τt), (37)

where q(·) denote the approximate posterior PDFs of the
element in ΘΘΘ.

Remark 3: In the framework of the VB method, the
indicator of the distance between the true joint PDF and
the factored approximate PDF is Kullback–Leibler diver-
gence (KLD). By minimizing the KLD, the optimal solu-
tion can be calculated. The closed-form solution for the
approximate PDF can be obtained by the VB method,
which can also guarantee the local convergence of the
fixed-point iterations.

According to Remark 3, the approximate posterior
PDFs in (37) can be obtained by minimizing the KLD,
i.e., [30],

{q(xe
t )q(ΣΣΣt)q(βt)q(λt)q(λt−1)q(ht)q(ht−1)q(τt)}

= argmin KLD{q(xe
t )q(ΣΣΣt)q(βt)q(λt)q(λt−1)

×q(ht)q(ht−1)q(τt) ||p(ΘΘΘ|yr
1:t)} , (38)

where KLD is defined as

KLD [q(x) ‖ p(x)] ∆
=
∫

q(x) log [q(x)/p(x)]dx.

(39)

The optimal solution of (39) is calculated as

logq(θ) = Ep Θ−θ [log p(ΘΘΘ|yr
1:t)]+ cθ , (40)

where logq(θ) is the natural logarithmic operation of
q(θ). ΘΘΘ−θ is the collection of all elements in ΘΘΘ apart from
θ , and cθ is the constant with respect to θ . Next, the fixed-
point iterations method is employed to calculate the ap-
proximate formation of the parameters that are coupled in
(28).

Furthermore, the joint PDF p(ΘΘΘ|yr
1;t) is derived as

p(ΘΘΘ,yr
1:t)

= p(yr
1:t−1)N(yr

t ;Htxt ,Rt/λt)
(1−τt )

×N(yr
t ;Ht−1xt−1,Rt−1/λt−1)

τt N
(

xe
t ; x̂e

t|t−1,ΣΣΣt/βt

)
× IW(ΣΣΣt ;ut ,Ut)G(βt ;ξ/2,ξ/2)(1−φt)

(1−τt )
φt

τt

×G(λt−1;ht−1/2,ht−1/2)G(ht−1,et−1,gt−1)

×G(λt ;ht/2,ht/2)G(ht ,et ,gt) . (41)

Using (41), log p(ΘΘΘ,yr
1;t) is derived as follows:

log p(ΘΘΘ,yr
1:t)

=

(
ξ +n

2
−1
)

logβt −0.5ξ βt −0.5βt

×
(

xe
t − x̂e

t|t−1

)T
ΣΣΣt

(
xe

t − x̂e
t|t−1

)
−0.5tr

(
AtΣΣΣ

−1
t

)
− log |ΣΣΣt |(ξ +2n+1)

+0.5 [m(1− τt)+ht −2] logλt −0.5htλt

−0.5(1− τt)λt(yr
t −Htxt)

T R−1
t (yr

t −Htxt)

+0.5(mτt +ht−1−2) logλt −0.5ht−1λt−1

−0.5τtλt−1(yr
t −Ht−1xt−1)

T R−1
t−1 (y

r
t −Ht−1xt−1)

+0.5ht log
ht

2
+(et −1) loght − logΓ(0.5ht)

−gtht +0.5ht−1 log
ht−1

2
+(et−1−1) loght−1

− logΓ(0.5ht−1)−gt−1ht−1 +(1− τt) log(1−φt)

+ τt logφt + cΘΘΘ. (42)

Proposition 1: Let θ = xe
t and using (40) in (42), the

following equation can be obtained

logq(s+1) (xe
t )

=−0.5E(s)
p [βt ]

(
xe

t − x̂e
t|t−1

)T
E(s)

p

[
ΣΣΣ
−1
t

](
xe

t − x̂e
t|t−1

)
−0.5E(s)

p [(1− τt)]E(s)
p [λt ] (yr

t −Htxt)
T R−1

t
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× (yr
t −Htxt)−0.5E(s)

p [τt ]E(s)
p [λt−1]

×(yr
t −Ht−1xt−1)

T R−1
t (yr

t −Ht−1xt−1)+ cxe
t . (43)

where q(s+1)(·) is the approximation of PDF q(·) at the
(s+ 1)th iteration, and E(s)

p [D] is the expectation of vari-
able D at the sth iteration.

Furthermore, (43) can be rewritten as follows:

logq(s+1) (xe
t )

=−0.5E(s)
p [βt ]

(
xe

t − x̂e
t|t−1

)T
E(s)

p

[
ΣΣΣ
−1
t

](
xe

t − x̂e
t|t−1

)
−0.5(yer

t −He
t xe

t )
T R̃−1

t (yer
t −He

t xe
t )+ cxe

t . (44)

The expanded real measurement vector yer
t , expanded

measurement matrix He
t , and modified measurement noise

covariance matrix R̃t are given as

yer
t =

[
yr

t
T yr

t
T ]T , (45)

He
t =

[
Ht 0
0 Ht−1

]
, (46)

R̃(s+1)
t =

[ Rt

E(s)
p [(1−τt )]E

(s)
p [λt ]

0

0 Rt−1

E(s)
p [τt ]E

(s)
p [λt−1]

]
. (47)

Next, the modified one-step predicted PDF p(xe
t |yr

1;t−1)
and modified likelihood PDF p(yer

t |xe
t ) are defined by the

following Gaissian distributions

p(s+1) (xe
t |yr

1:t−1) = N
(

xe
t ; x̂e

t|t−1, Σ̃̃Σ̃Σ
(s+1)
t

)
, (48)

p(s+1) (yer
t |xe

t ) = N
(

yer
t ;He

t xe
t , R̃

(s+1)
t

)
, (49)

where Σ̃ΣΣ
(s+1)
t is the modified predicted error covariance

matrix, which is formulated as

Σ̃̃Σ̃Σ
(s+1)
t =

{
E(s)

p
[
ΣΣΣ
−1
t

]}−1

E(s)
p [βt ]

=

 P(s+1)
t|t−1 P(s+1)

t−1,t|t−1(
P(s+1)

t−1,t|t−1

)T
P(s+1)

t−1|t−1

T

. (50)

Based on (44)-(50), the approximate PDF q(s+1)(xe
t ) can

be updated as follows:

q(s+1) (xe
t ) = N

(
xe

t ; x̂e(s+1)
t|t ,ΣΣΣ

(s+1)
t|t

)
, (51)

where x̂e(s+1)
t|t−1 and ΣΣΣ

(s+1)
t|t are defined by

x̂e(s+1)
t|t =

[
x̂(s+1)

t|t x̂(s+1)
t−1|t

]
, (52)

ΣΣΣ
(s+1)
t|t =

 P(s+1)
t|t P(s+1)

t−1,t|t(
P(s+1)

t−1,t|t

)T
P(s+1)

t−1|t

T

. (53)

The state estimate x̂(s+1)
t|t and the corresponding covari-

ance matrix of estimation error P(s+1)
t|t can be calculated by

the traditional Kalman filter as follows:

x̂(s+1)
t|t = x̂(s+1)

t|t−1 +K(s+1)
t

(
yer

t − ŷer
t|t−1

)
, (54)

P(s+1)
t|t = P(s+1)

t|t−1 −K(s+1)
t Pyy(s+1)

t|t−1

(
K(s+1)

t

)T
, (55)

K(s+1)
t = Pxyxyxy(s+1)

t|t−1

(
Pxyxyxy(s+1)

t|t−1

)−1
, (56)

Pxyerxyerxyer(s+1)
t|t−1 =

[
P(s+1)

t|t−1

(
P(s+1)

t−1,t|t−1

)T
]
(He

t )
T , (57)

Pyeryeryeryeryeryer(s+1)
t|t−1 = He

t Σ̃̃Σ̃Σ
(s+1)
t (He

t )
T + R̃(s+1)

t , (58)

where K(s+1)
t is the gain of the Kalman filter; Pxyxyxy(s+1)

t|t−1 and

Pyeryeryeryeryeryer(s+1)
t|t−1 are the cross-covariance matrix and innovation

covariance matrix, respectively.
The state estimation x̂(s+1)

t−1|t of the one-step smoothing

and the related estimation error covariance matrix P(s+1)
t−1|t

can be obtained as follows:

x̂(s+1)
t−1|t = x̂t−1|t−1 +Ko(s+1)

t−1

(
yer

t − ŷer
t|t−1

)
, (59)

P(s+1)
t−1|t = P(s+1)

t−1|t−1−Ko(s+1)
t−1 Pyeryeryeryeryeryer(s+1)

t|t−1

(
Ko(s+1)

t−1

)T
,

(60)

Ko(s+1)
t−1 = Pxyerxyerxyer(s+1)

t−1,t|t−1

(
Pyeryeryeryeryeryer(s+1)

t|t−1

)−1
, (61)

Pxyerxyerxyer(s+1)
t−1,t|t−1 =

[
P(s+1)

t−1,t|t−1

(
P(s+1)

t−1|t−1

)T
]
(Me

t )
T , (62)

where Ko(s+1)
t−1 is the gain matrix of the one-step smooth-

ing; Pxyerxyerxyer(s+1)
t−1,t|t−1 is the cross-covariance matrix.

Additionally, matrix P(s+1)
t−1,t|t of (53) is calculated as

P(s+1)
t−1,t|t = P(s+1)

t−1,t|t−1−Ko(s+1)
t−1 Pyeryer(s+1)

t|t−1

(
Ko(s+1)

t−1

)T
.

(63)

Proposition 2: Let θ = ΣΣΣt and using (40) in (42), the
following equation can be obtained

logq(s+1) (ΣΣΣt) =−0.5(n+ξ +2) log |ΣΣΣt |

−0.5tr
[(

Ut +E(s)
p [βt ]A

(s+1)
t

)
ΣΣΣ
−1
t

]
+ cΣΣΣt , (64)

where the required expectation A(s+1)
t is formulated as

A(s+1)
t = E(s+1)

p

[(
xe

t − x̂e
t|t−1

)(
xe

t − x̂e
t|t−1

)T
]

= E(s+1)
p

[(
xe

t − x̂e(s+1)
t|t + x̂e(s+1)

t|t − x̂e
t|t−1

)
×
(

xe
t − x̂e(s+1)

t|t + x̂e(s+1)
t|t − x̂e

t|t−1

)T
]
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=
(

x̂e(s+1)
t|t − x̂e

t|t−1

)(
x̂e(s+1)

t|t − x̂e
t|t−1

)T

+ΣΣΣ
(s+1)
t|t . (65)

According to (64), q(s+1)(ΣΣΣt) is uploaded as the follow-
ing inverse-Wishart distribution, i.e.,

q(s+1) (ΣΣΣt) = IW
(

ΣΣΣt ; û(s+1)
t ,ÛUU

(s+1)
t

)
, (66)

û(s+1)
t = ut +1, (67)

ÛUU
(s+1)
t =UUU t +E(s)

p [βt ]A
(s+1)
t . (68)

And the expectation of ΣΣΣ−1
t is formulated as

E(s+1)
p

[
ΣΣΣ
−1
t

]
=

(
û(s+1)

t|t −2n−1
)

ÛUU
(s+1)
t|t

. (69)

Proposition 3: Let θ = βt and using (40) in (42), the
following equation can be obtained

logq(s+1) (βt) =

(
ξ +n

2
−1
)

logβt

−0.5βt

{
ξ+tr

(
A(s+1)

t E(s+1)
p

[
ΣΣΣ
−1
t

])}
+ cβt . (70)

According to (70), q(s+1)(βt) is uploaded as the follow-
ing Gamma distribution

q(s+1) (βt) = G
(

βt ; t
(s+1)
t ,T (s+1)

t

)
, (71)

t(s+1)
t = n+0.5ξ , (72)

TTT (s+1)
t = 0.5

{
ξ + tr

(
A(s+1)

t E(s+1)
p

[
ΣΣΣ
−1
t

])}
. (73)

The required expectation of βt is

E(s+1)
p [βt ] = t(s+1)

t

(
TTT (s+1)

t

)−1
. (74)

Proposition 4: Let θ = λt and using (40) in (42), the
following equation can be obtained

logq(s+1) (λt)

=

(
mE(s)

p [1− τt ]+E(s)
p [ht ]

2
−1

)
logλt

−0.5λtE(s)
p [1− τt ] (yr

t −Htxt)
T R−1

t (yr
t −Htxt)

−0.5λtE(s)
p [ht ]+ cλt . (75)

According to (75), q(s+1)(λt) is uploaded as the follow-
ing Gamma distribution

q(s+1) (λt) = G
(

λt ;ε
(s+1)
t ,%

(s+1)
t

)
, (76)

ε
(s+1)
t = 0.5

(
E(s)

p [ht ]+mE(s)
p [1− τt ]

)
, (77)

%
(s+1)
t = 0.5

{
E(s)

p [ht ]+tr
(

B(s+1)
t Y1

(
F(s+1)

t

)−1
)}

,

(78)

B(s+1)
t = E(s+1)

p

[
(yr

t −Htxt)(yr
t −Htxt)

T
]
, (79)

Y1 =

[
ID 0
0 0

]
, (80)

F(s+1)
t =

[ Rt

E(s+1)
p [(1−τt )]

0

0 Rt−1

E(s+1)
p [τt ]

]
, (81)

where the element ID in (80) is the m-dimensional iden-
tity matrix. The required expectations of λt and logλt are
given as

E(s+1)
p [λt ] =

ε
(s+1)
t

%
(s+1)
t

, (82)

E(s+1)
p [log(λt)] = ψ

(
ε
(s+1)
t

)
− log

(
%
(s+1)
t

)
, (83)

where ψ(·) represents the digamma function.
Proposition 5: Let θ = λt−1 and using (40) in (42), the

following equation can be obtained

logq(s+1) (λt−1)

=

(
mE(s)

p [τt ]+E(s)
p [ht−1]

2
−1

)
logλt−1

−0.5λt−1

{
E(s)

p [τt ] (yr
t −Ht−1xt−1)

T

×R−1
t−1 (y

r
t −Ht−1xt−1)+E(s)

p [ht−1]
}
+ cλt−1 . (84)

According to (84), q(s+1)(λt−1) is also uploaded as the
following Gamma distribution

q(s+1) (λt−1) = G
(

λt−1;ε(s+1)
t−1 ,%

(s+1)
t−1

)
, (85)

ε
(s+1)
t−1 = 0.5

(
E(s)

p [ht−1]+mE(s)
p [τt ]

)
, (86)

%
(s+1)
t−1 = 0.5

{
E(s)

p [ht−1]+tr
(

B(s+1)
t Y2

(
F(s+1)

t

)−1
)}
,

(87)

Y2 =

[
0 0
0 ID

]
. (88)

The required expectations of λt−1 and logλt−1 are

E(s+1)
p [λt−1] =

ε
(s+1)
t−1

%
(s+1)
t−1

, (89)

E(s+1)
p [log(λt−1)] = ψ

(
ε
(s+1)
t−1

)
− log

(
%
(s+1)
t−1

)
. (90)

Proposition 6: Let θ = ht and using (40) in (42), the
following equation can be obtained

logq(s+1) (ht)
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= log(ht)(et −0.5)−htgt −ht

{
0.5E(s+1)

p [λt ]

−0.5E(s+1)
p [log(λt)]+0.5

}
+ cht . (91)

According to (91), q(s+1)(ht) is uploaded as the follow-
ing Gamma distribution

q(s+1) (ht) = G
(

ht ; ê(s+1)
t , ĝ(s+1)

t

)
, (92)

ê(s+1)
t = 0.5+ e(s+1)

t , (93)

ĝ(s+1)
t = 0.5+0.5E(s+1)

p [λt ]

−0.5E(s+1)
p [log(λt)]+g(s+1)

t . (94)

The required expectation of ht is given as

E(s+1)
p [ht ] =

ê(s+1)
t

ĝ(s+1)
t

. (95)

Proposition 7: Let θ = ht−1 and using (40) in (42), the
following equation can be obtained

logq(s+1) (ht−1) = log(ht−1)(et−1−0.5)−ht−1gt−1

−0.5ht−1E(s+1)
p [λt−1]

+0.5ht−1E(s+1)
p [log(λt−1)]

−0.5ht−1 + cht−1 . (96)

According to (96), q(s+1)(ht−1) is also uploaded as the
following Gamma distribution

q(s+1) (ht−1) = G
(

ht−1; ê(s+1)
t−1 , ĝ(s+1)

t−1

)
, (97)

ê(s+1)
t−1 = 0.5+ e(s+1)

t−1 , (98)

ĝ(s+1)
t−1 = 0.5+0.5E(s+1)

p [λt−1]

−0.5E(s+1)
p [log(λt−1)]+g(s+1)

t−1 . (99)

The required expectation of ht−1 is

E(s+1)
p [ht−1] =

ê(s+1)
t−1

ĝ(s+1)
t−1

. (100)

Proposition 8: Let θ = τt and using (40) in (42), the
following equation can be obtained

logq(s+1) (τt)

= τt

{
logφt +0.5

[
mE(s+1)

p [log(λt−1)]−E(s+1)
p [λt−1]

×(yr
t −Ht−1xt−1)

T R−1
t−1 (y

r
t −Ht−1xt−1)

]}
+0.5

[
mE(s+1)

p [log(λt)]−E(s+1)
p [λt ] (yr

t −Htxt)
T

×R−1
t (yr

t −Ht−1xt−1)
]
(1− τt)

+ log(1−φt)(1− τt)+ cτt . (101)

According to (101), the probability of BRV is

p(τt = 0) = exp
{

log(1−φt)+E(s+1)
p [log(λt)]

−0.5tr
(

A(s+1)
t Y1

(
L(s+1)

t

)−1
)}

∆
(s+1)
t ,

(102)

p(τt = 1) = exp
{

log(φt)+E(s+1)
p [log(λt−1)]

−0.5tr
(

A(s+1)
t Y2

(
L(s+1)

t

)−1
)}

∆
(s+1)
t ,

(103)

L(s+1)
t =

[ Rt

E(s+1)
p [λt ]

0

0 Rt−1

E(s+1)
p [λt−1]

]
, (104)

where exp(·) represents an exponential calculation, and
∆
(s+1)
t is the normalizing constant.
The required expectations of τt and (1−τt) are given as

E(s+1)
p [τt ] =

p(s+1) (τt = 1)
p(s+1) (τt = 1)+ p(s+1) (τt = 0)

, (105)

E(s+1)
p [1− τt ] = 1−E(s+1)

p [τt ]. (106)

The proposed filter in this paper consists of (14)-(19),
(50), (52)-(63), (65)-(69), (71)-(74), (76)-(83), (85)-(90),
(92)-(95), (97)-(100), and (102)-(106). The implementa-
tion is listed in Algorithm 1.

4. SIMULATIONS

The proposed filter is contrasted with the current fil-
ter algorithms in a simulation of a target tracking envi-
ronment, which is given as the following linear stochastic
system

xt =

[
ID2 ∆tID2

02 ID2

]
xt−1 +ωt−1, (107)

yr
t =
[
ID2 02

]
+ vt , (108)

where ∆t denotes the interval of sampling, and 02 repre-
sents 2-dimensional zero matrix. The initial state vector x0

and the corresponding error covariance matrix P0 are set
as follows:

x0 =
[
0 0 0 0

]T
, (109)

P0 = diag
[
1000 1000 100 100

]T
. (110)

The true NHPMN are given as

ωt =

{
N(0,Q)1− prp = 0.95,

N(0,100Q) prp = 0.05,
(111)

vt =

{
N(0,R)1− prm = 0.95,

N(0,100R) prm = 0.05,
(112)

where prp and prm are the probability of the outliers in
process noise and measurement noise, respectively. Nom-
inal process noise Q and nominal measurement noise R
are set as
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Algorithm 1: The proposed VB-based Kalman filter with
random measurement delay and non-Gaussian heavy-
tailed process and measurement noises.
Inputs: x̂t−1|t−1, Pt−1|t−1, Mt−1, Ht , yr

t , Qt−1, Rt , m, n, et ,
gt , φt , ξ , γ , N, ε .

Time update:
1: Obtain x̂e

t|t−1 and ΣΣΣt utilizing (14)-(19).

Variational update:
2: Parameter Initialization: x̂e(0)

t|t−1 = xe
t|t−1, ΣΣΣ

(0)
t =ΣΣΣt ,

E(0)
p [λt−1] = 1, E(0)

p [λt ] = 1, E(0)
p [τt ] = 0.5,

E(0)
p [1− τt ] = 0.5, û(0)t|t−1 = n+ γ +1, ÛUU

(0)
t|t−1 = γPee

t|t−1,

E(0)
p [ht−1] = 5, E(0)

p [ht ] = 5.
for s = 0: N−1

Update q(s+1)(xe
t ) as (51):

3: Obtain x̂(s+1)
t|t and ΣΣΣ

(s+1)
t|t utilizing (45)-(47), (50),

(54)-(63), (69), (74), (82)-(83), (89)-(90), (95), (100)
and (105)-(106).
Update q(s+1)(ΣΣΣt) as (66).

4: Obtain û(s+1)
t and ÛUU

(s+1)
t utilizing (65) and (67)-(69).

Update q(s+1)(βt) as (71).
5: Obtain t(s+1)

t and TTT (s+1)
t utilizing (65) and (72)-(74).

Update q(s+1)(λt) as (76):
6: Obtain ε(s+1)

t and %(s+1)
t utilizing (77)-(83).

Update q(s+1)(λt−1) as (85):
7: Obtain ε(s+1)

t−1 and %(s+1)
t−1 utilizing (86)-(90).

Update q(s+1)(ht) as (92):
8: Obtain ê(s+1)

t and ĝ(s+1)
t utilizing (93)-(95).

Update q(s+1)(ht−1) as (97):
9: Obtain ê(s+1)

t−1 and ĝ(s+1)
t−1 utilizing (98)-(100).

Update q(s+1)(τt) as Bernoulli distribution:
10: Obtain p(τt = 1) and p(τt = 0) utilizing (102)-(106).

11: If

∥∥∥x̂e(s+1)
t|t −x̂e(s)

t|t

∥∥∥∥∥∥x̂e(s)
t|t

∥∥∥ ≤ ε , stop iteration.

end for
12: x̂e

t|t = x̂e(N)
t|t , ΣΣΣt|t =ΣΣΣ

(N)
t|t .

Outputs: x̂t|t and Pt|t .

Q = a

[
∆t3

3 ID2
∆t2

2 ID2
∆t2

2 ID2 ∆tID2

]
, (113)

R = b× ID2, (114)

where the parameters are set as a = 1 m2/s3 and b = 100
m2.

The proposed filter is compared with the traditional
KF, RDMKF, and VBIKF. All algorithms are coded with
MALAB 2018a. The simulations are run on a computer
with Intel Core i5-6300HQ. The parameters in the pro-
posed filter are set as ξ = 5, γ = 3, et = 5, gt = 1, φt = 0.5,
N = 10, and ε = 10−18.

To evaluate the estimation performance of each filter,

the root mean square error (RMSE) and averaged RMSE
(AGRMSE) are utilized as performance indices, and the
RMSE and AGRMSE in positions are defined as

RMSEpos =

(
1

Mc

Mc

∑
i=1

(
xi

post − x̂i
post

)2

+
(
yi

post − ŷi
post

)2
)1/2

, (115)

AGRMSEpos =

(
1

McT

T

∑
t=1

Mc

∑
i=1

(
xi

post − x̂i
post

)2

+
(
yi

post − ŷi
post

)2
)1/2

, (116)

where
(
xi

post , yi
post

)
is the true position of the target at the

i-th Monte Carlo run;
(
x̂i

post , ŷi
post

)
represents the corre-

sponding estimated position of each filter at the i-th Monte
Carlo (MC) run; Mc = 250 is the total number of MC runs;
T = 100 s is the total simulation time. The RMSE and
AGRMSE of velocity can be obtained in a similar form.

Figs. 1 and 2 indicate the performance of different fil-
ters with delay probability φt = 0.5. The proposed filter
has better target position and velocity estimations than the
existing algorithms in the scenario of random measure-
ment delay and NHPMN. Table 1 lists the AGRMSEpos,
AGRMSEvel and single-step running times of different
filters under the delay probability φt = 0.5. Obviously,
compared with the existing algorithms, the proposed fil-
ter in this paper has smaller AGRMSEs. Compared with
VBIKF, which uses the same VB method, the accuracy of
AGRMSE in position and velocity is improved by 29.8%
and 17.0%, respectively. However, the proposed filter has
higher computational complexity than the existing algo-
rithms.

Figs. 3 and 4 show the AGRMSE curves of the pro-
posed filter and existing filters with different probabilities

Fig. 1. RMSEpos with different filters.
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Fig. 2. RMSEvel with different filters.

Table 1. AGRMSEpos, AGRMSEvel and single-step run-
ning times of different filters.

Filters KF RDMKF VBIKF Proposed
filter

AGRMSEpos 28.64 28.25 26.71 18.74
AGRMSEvel 8.09 8.24 7.94 6.59
Times (ms) 0.038 0.078 1.009 1.847

Fig. 3. AGRMSEpos of each filter with different probabil-
ities of outliers in process noise.

of outliers in process noise prp = 0.05, 0.1, ..., 0.3. The
proposed filter performs better than existing filters when
prp = 0.05, 0.1, ..., 0.3.

The AGRMSE curves of the proposed filter and exist-
ing filters with different probabilities of outliers in mea-
surement noise prm = 0.05, 0.1, ..., 0.3 are shown in Figs.
5 and 6. The proposed filter performs better than existing
filters when prm = 0.05, 0.1, ..., 0.3.

Fig. 4. AGRMSEvel of each filter with different probabili-
ties of outliers in process noise.

Fig. 5. AGRMSEpos of each filter with different probabil-
ities of outliers in measurement noise.

Fig. 6. AGRMSEvel of each filter with different probabili-
ties of outliers in measurement noise.
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Fig. 7. AGRMSEpos of each filter under different delay
probabilities.

Fig. 8. AGRMSEvel of each filter under different delay
probabilities.

In order to compare the estimation performance of the
existing algorithms and proposed filter under different de-
lay probabilities, the AGRMSE curves of each filter with
different delay probabilities φt = 0.1, 0.2, ..., 0.9 are simu-
lated in Figs. 7 and 8. Obviously, in the scenario with NH-
PMN, the proposed filter has better position and velocity
estimations under different delay probabilities.

5. CONCLUSION

In this paper, a new VB-based Kalman filter is pro-
posed to address the issue of a linear stochastic system
with random measurement delay and non-Gaussian pro-
cess and measurement noises. The system state, BRV and
IRVs are simultaneously estimated by utilizing the vari-

ational Bayesian method. The target tracking simulation
results illustrate that the proposed filter has better estima-
tion performance and robustness than current filters to ad-
dress the filtering issue for a linear system with random
measurement delay and non-Gaussian process and mea-
surement noises.
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