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Quasi-projective Synchronization for Caputo Type Fractional-order
Complex-valued Neural Networks with Mixed Delays
Jingshun Cheng, Hai Zhang* � , Weiwei Zhang � , and Hongmei Zhang �

Abstract: Without decomposing the complex-valued systems into two real-valued subsystems, this paper inves-
tigates quasi-projective synchronization (QPS) problem for Caputo type fractional-order complex-valued neural
networks (FOCVNNs) with mixed delays by choosing suitable controllers. To realize QPS, the linear feedback
controller and adaptive feedback controller are designed, by constructing suitable Lyapunov function, utilizing the
fractional Razumikhin theorem and the properties of Mittag-Leffler function and inequality technique, and several
sufficient criteria for QPS of FOCVNNs with mixed delays are derived. In addition, the upper bound of the error
of QPS is estimated. Finally, two numerical examples are simulated to verify the effectiveness and feasibility of the
proposed results.

Keywords: Adaptive feedback control, fractional Razumikhin theorem, fractional-order complex-valued neural
networks, linear feedback control, mixed delays, quasi-projection synchronization.

1. INTRODUCTION

In 1696, Leibniz extended the integral calculus in
the general sense to obtain fractional calculus. In recent
decades, in the wake of developments in science, frac-
tional calculus has been generally applied to many sci-
entific fields, such as viscoelastic materials [1,2], biology
[3–5], molecular diffusion theory [6,7], and image pro-
cessing [8,9]. The main advantages of fractional calculus
are infinite memory and more freedom. Therefore, it is
very meaningful to study fractional order systems.

The occurrence of synchronization is a collective be-
havior, due to its applications in signal processing [10],
secure communication [11], image encryption [12] and
so on. So far, many types of synchronization have been
studied, such as complete synchronization [13,14], phase
synchronization [15,16], exponential synchronization [17,
18]. As we all know, most networks can not realize syn-
chronization only by themselves, and some effective con-
trol strategies have been proposed including impulsive
control [19], intermittent control [20], adaptive control
[21–23]. In synchronization schemes, the feature of pro-
jective synchronization is that it can be synchronized in
proportion. The hybrid controllers are adopted in [24,25]
to discuss the projective synchronization. Evidently, the
complex controllers are inconvenient and undesirable in

the practical applications.
With the development of modern science and technol-

ogy, mathematician Pitts and neurologist Mcculloch first
proposed the concept of artificial neural network (ANN)
in 1943 [26]. ANN is a network system with parallel com-
puting capability in which many processing units are con-
nected to each other according to a certain topological
structure [27–32]. The advantage of NNs is that they can
process continuous analog signals and chaotic, incomplete
information [33,34]. The research results show that the
fractional calculus model can more accurately describe the
dynamic behavior of the actual systems [1–6], and is ben-
eficial to describe the memory and genetic properties of
neurons [13,14].

As is known to all, there are numerous types of delay,
such as time-varying delay [35,36], discrete delay [37],
distributed delay [38], leakage delay [39–41], etc. The oc-
currence of these delays usually causes oscillation, bifur-
cation and instability of the power system. Therefore, the
study of dynamic systems with time delays has become
a hot topic in the theoretical and application fields. How-
ever, to the best of our knowledge, the problem of QPS
for FOCVNNs with mixed delays has not been found in
the existing literature.

In the practical applications, NNs are related to com-
plex signals. In order to solve this problem, scholars have
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proposed CVNNs. The two feasible approaches have been
used to analyze the dynamical behaviors of CVNNs: one
is to handle the considered FOCVNNs as a compact en-
tirety [42–44], the other is to decompose the CVNNs
into two RVNNs [45–47]. In this paper, we use complex
function theory to discuss the stability or synchronization
of FOCVNNs without decomposing complex-valued sys-
tems into two real-valued systems, which not only greatly
decrease the difficulty of theoretical analysis, but also re-
duce the complexity of derived results.

It is well known that the Lyapunov direct method is the
most effective method to analyze the stability of system in
[48], where observer-based chaos synchronization using
Legendre polynomials has been presented and applied to
secure communications. In [49], a secure communication
system based on chaos synchronization using brain emo-
tional learning-based intelligent controller is presented.

By the aforementioned discussions, the main objective
of this paper is to investigate the problem of QPS of Ca-
puto type FOCVNNs with mixed delays. By construct-
ing an appropriate Lyapunov function, using the fractional
Razumikhin theorem, the properties of the Mittag-Leffler
function, and some inequality analysis techniques, using
linear feedback controllers and adaptive feedback con-
trollers, several sufficient criteria ensuring the QPS for the
concerned network models are derived. The main contri-
butions of this paper can be summarized as follows:
• In the existing QPS literature, the FOCVNNs models

almost focus on discrete delays. In this paper, we consider
the FOCVNNs with mixed delays including discrete delay
and the distributed delay, thus the considered model in this
article is more general and less conservative.
• Without decomposing the CVNNs into two RVNNs

for analysis, the CVNNs is handled directly as a whole,
which greatly reduces the difficulty of theoretical analysis
and the complexity of calculation.
• Adopting the linear feedback controller and adaptive

feedback controller respectively, two algebraic criteria of
QPS of the FOCVNNs with mixed delays are obtained,
which are easy to check and judge the synchronization.
Moreover, the upper bound of synchronization error is es-
timated. The comparison between the two cases of con-
trollers is presented by numerical simulation.

2. PRELIMINARIES AND MODEL
DESCRIPTION

This section introduces some definitions, lemmas and
Caputo type FOCVNNs with mixed delays.

Definition 1 [50]: The fractional integral of order p for
a function m(t) ∈C [[0,+∞) ,R] is defined as

0D−p
t m(t) =

1
Γ(p)

∫ t

0
(t− s)p−1m(s)ds,

where p > 0, and Γ(·) is the gamma function defined as

Γ(p) =
∫ +∞

0
e−tt p−1dt.

Definition 2 [50]: The Caputo fractional derivative of
order p for a function m(t) ∈C [[0,+∞) ,R] is defined as

C
t0 Dp

t f (t) =
1

Γ(k− p)

∫ t

t0

f (k)(τ)
(t− τ)p−k+1 dτ,

where t ≥ t0, and k is a positive integer such that k− 1 <
p < k.

Definition 3 [50]: The two-parameter Mittag-Leffler
function is defined as

Eυ ,ω(z) =
∞

∑
k=0

zk

Γ(kυ +ω)
, υ > 0, ω > 0, z ∈ C.

The one- parameters Mittag-Leffler function is defined as

Eυ = Eυ ,1(z) =
∞

∑
k=0

zk

Γ(kυ +1)
, υ > 0, z ∈ C.

Lemma 1 [39]: The following inequality holds if
m(t) ∈ C is a continuous analytic function, then

C
t0 Dp

t m(t)m(t)≤ m(t)C
t0 Dp

t m(t)+m(t)C
t0 Dp

t m(t),

where t ≥ t0, 0 < p < 1.

Lemma 2 [39]: For any two complex numbers η and
µ , the inequality holds

ηµ +ηµ ≤ γηη +
1
γ

µµ,

where γ > 0.

Lemma 3 [42]: Let t ≥ t0, then Ep(ϖ(t − t0)p) is
monotonically non-increasing and 0≤Ep(ϖ(t−t0)p)≤ 1,
where ϖ ≤ 0.

Lemma 4 [51]: Let U(t) and V (t) be two nonnegative
continuous functions, and satisfy

C
t0 Dp

t (V (t)+U(t))≤−σV (t)+ρ,

where 0 < p < 1, σ > 0, ρ > 0, then

V (t)≤ (V (t0)+U(t0)−
ρ

σ
)Ep(−σ(t− t0)p)+

ρ

σ
,

where t ≥ t0 +
(

Γ(p)
σ

) 1
1−p

.

Lemma 5 [53]: For nondecreasing and differentiable
function m(t) on t ∈ [t0,+∞), then

C
t0 Dp

t (m(t)−λ )2 ≤ 2(m(t)−λ )C
t0 Dp

t m(t),

where 0 < p < 1, λ is any constant.
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Lemma 6 [42]: For ∀β ∈ C, the following inequality
holds:

β +β ≤ 2 |β | ,

where C denotes complex field.

In this article, we discuss a class of FOCVNNs with
mixed delays as follows:

C
t0 Dp

t xi(t) =−dixi(t)+
n

∑
k=1

aik fk(xk(t))

+
n

∑
k=1

bikgk(xk(t− τ1))

+
n

∑
k=1

mik

∫ t

t−τ2

hk(xk(s))ds+ Ji(t), (1)

where 0 < p < 1, xi(t) = (xi1(t), xi2(t), · · · , xin(t))T ∈ Cn

represents the state variable of the ith neuron, f (x), g(x),
h(x) denote the activation functions without and with de-
lay respectively, di ∈ C denote the connection weight, aik,
bik, mik ∈C respectively expression the connection weight
of the kth neuron to the ith neuron at time t, t − τ1 and
t− τ2, respectively, where τ1, τ2 is non-negative constant
transmission delay, Ji is bias. The initial state with system
(1) is

xi(s) = φi(s), t ∈ [−γ,0) , γ ∈max{τ1,τ2} ,

where ‖φ(t)‖= sup
s∈[−γ,0]

‖φ(s)‖, i = 1, 2, · · · , n. To investi-

gate the synchronization, the response system is

C
t0 Dp

t yi(t) =−diyi(t)+
n

∑
k=1

aik fk(yk(t))

+
n

∑
k=1

bikgk(yk(t− τ1))

+
n

∑
k=1

mik

∫ t

t−τ2

hk(yk(s))ds

+ Ji(t)+ vi(t), (2)

where yi(t) = (yi1(t),yi2(t), · · · ,yin(t))T ∈ Cn represents
the state variable of the response system (2), others are
the same as for the drive system (1), vi(t) is the controller.
The initial state with system (2) is

yi(s) = ϕi(s), t ∈ [−γ,0) , γ ∈max{τ1,τ2} ,

where ‖φ(t)‖= sup
s∈[−γ,0]

‖φ(s)‖ , i = 1,2, · · · ,n.

Definition 4 [51]: System (1) and system (2) achieve
QPS, provided that for any initial values xi(s) = φi(s) ∈
C, yi(s) = ϕi(s) ∈C, there exists a small error bound δ >
0 such that

lim
t→∞
|yi(t)−αxi(t)| ≤ δ ,

where t ≥ t0 and α ∈ C is the projective coefficient. Es-
pecially, systems (1) and (2) achieve quasi-complete syn-
chronized if α = 1 and achieve quasi-anti synchronized if
α =−1.

Let the synchronization error between system (1) and
system (2) be ui(t) = yi(t)−αxi(t), then

C
t0 Dp

t ui(t)

=−diui(t)+
n

∑
k=1

aik [ fk(yk(t))− fk(αxk(t))]

+
n

∑
k=1

aik [ fk(αxk(t))−α fk(xk(t))]

+
n

∑
k=1

bik [gk(yk(t− τ1))−gk(αxk(t− τ1))]

+
n

∑
k=1

bik [gk(αxk(t− τ1))−αgk(xk(t− τ1)]

+
n

∑
k=1

mik

∫ t

t−τ2

[hk(yk(s))−hk(αxk(s))]ds

+
n

∑
k=1

mik

∫ t

t−τ2

[hk(αxk(s))−αhk(xk(s))]ds

+(1−α)Ji(t)+ vi(t). (3)

The initial state with system (3) is

ui(s) = ψi(s) = ϕi(s)−φi(s), t ∈ [−γ,0) ,

where γ ∈max{τ1,τ2}, i = 1, · · · , n.
Assumption 1: Assume that f (x),g(x) and h(x) are ac-

tivation functions, p, q ∈ C such that

| f (p)− f (q)| ≤ Λ1 |p−q| ,
|g(p)−g(q)| ≤ Λ2 |p−q| ,
|h(p)−h(q)| ≤ Λ3 |p−q| ,

where Λ1, Λ2, Λ3 > 0 are Lipschitz constants.
Assumption 2: For any θ ∈ C, the real numbers l1, l2,

l3, l4 > 0 exist such that

| f (θ)| ≤ l1, |g(θ)| ≤ l2, |h(θ)| ≤ l3, |J(θ)| ≤ l4.

3. MAIN RESULTS

In this section, we mainly construct the Lyapunov func-
tions, by using the fractional Razumikhin theorem, the
properties of Mittag-Leffler function and some skills of
inequality. The sufficient criteria of QPS for Caputo type
FONNs with mixed delays are derived under the linear
feedback controller and adaptive feedback controller re-
spectively.

The linear feedback controller is proposed as follows:

vi(t) =−ki(yi(t)−αxi(t)), (4)
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Fig. 1. Control framework of linear feedback controller.

where ki ∈ C is the gain. Fig. 1 represents the control
framework of linear feedback controller.

For convenience, we introduce the following denota-
tions

ϖ = min
1≤i≤n

{
di + ki +di + ki− l2

4 −nΛ
2
1−nΛ

2
3τ

2
2

−
n

∑
k=1

2
(
aikaik +bikbik +mikmik

)}
,

ϑ = 2(1+αα)
(
l2
1 + l2

2 + l2
3τ

2
2

)
+(1−α)(1−α),

η = max
1≤i≤n

Λ
2
2

n

∑
k=1

(
bkibki

) 1
2 ,

µ = min
1≤i≤n

{
di +di +2k∗i − l4−2

n

∑
k=1

[
(aikaik)

1
2

+
(
bikbik

) 1
2 +(mikmik)

1
2

]
−Λ

2
1

n

∑
k=1

(akiaki)
1
2

−Λ
2
3τ

2
2

n

∑
k=1

(mkimki)
1
2

}
,

δ = 2
n

∑
i=1

n

∑
k=1

(1+αα)
[
(aikaik)

1
2 l2

1 +
(
bikbik

) 1
2 l2

2

+(mikmik)
1
2 l2

3τ
2
2

]
+ l4 (1−α)(1−α).

Theorem 1: Under Assumptions 1 and 2, if ki satisfies
the inequality ϖ > nΛ2

2ς , ς > 1, then the drive system
(1) is QPS with the response system (2) under the linear
feedback controller (4). In addition, the error bound can
be estimated by

√
ϑ

ϖ−nΛ2
2ς
.

Proof: Consider the following Lyapunov function

V1(t) =
n

∑
i=1

ui(t)ui(t). (5)

By Lemma 1, we can obtain the p-order Caputo derivative
of V1(t) as follows:

C
t0 Dp

t V1(t)

≤
n

∑
i=1

[
ui(t)Dpui(t)+ui(t)Dpui(t)

]
=−

n

∑
i=1

(
di + ki +di + ki

)
ui(t)ui(t)

+
n

∑
i=1

[
(1−α)Ji(t)ui(t)+(1−α)Ji(t)ui(t)

]

+
n

∑
i=1

n

∑
k=1

[
aikui(t)( fk(yk(t))− fk(αxk(t)))

+aikui(t)( fk(yk(t))− fk(αxk(t)))
]

+
n

∑
i=1

n

∑
k=1

[
aikui(t)( fk(αxk(t))−α fk(xk(t)))

+aikui(t)( fk(αxk(t))−α fk(xk(t)))
]

+
n

∑
i=1

n

∑
k=1

[
bikui(t)

(
gk(yk(t−τ1))−gk(αxk(t−τ1))

)
+bikui(t)(gk(yk(t− τ1))−gk(αxk(t− τ1)))

]
+

n

∑
i=1

n

∑
k=1

[
bikui(t)

(
gk(αxk(t−τ1))−αgk(xk(t−τ1))

)
+bikui(t)(gk(αxk(t− τ1))−αgk(xk(t− τ1)))

]
+

n

∑
i=1

n

∑
k=1

[mikui(t)
∫ t

t−τ2

(hk(yk(s))−hk(αxk(s)))ds

+ mikui(t)
∫ t

t−τ2

(hk(yk(s))−hk(αxk(s)))ds
]

+
n

∑
i=1

n

∑
k=1

[mikui(t)
∫ t

t−τ2

(hk(αxk(s))−αhk(xk(s)))ds

+ mikui(t)
∫ t

t−τ2

(hk(αxk(s))−αhk(xk(s)))ds
]
.

(6)

According to Lemma 2 and Assumption 1, we have

n

∑
i=1

n

∑
k=1

[
aikui(t)( fk(yk(t))− fk(αxk(t)))

+aikui(t)( fk(yk(t))− fk(αxk(t)))
]

≤
n

∑
i=1

n

∑
k=1

[
aikaikui(t)ui(t)

+( fk(yk(t))− fk(αxk(t)))

× ( fk(yk(t))− fk(αxk(t)))
]

≤
n

∑
i=1

n

∑
k=1

[
aikaikui(t)ui(t)+Λ

2
1uk(t)uk(t)

]
≤

n

∑
i=1

n

∑
k=1

aikaikui(t)ui(t)+n
n

∑
i=1

Λ
2
1ui(t)ui(t). (7)

Similarly,

n

∑
i=1

n

∑
k=1

[
bikui(t)

(
gk(yk(t− τ1))−gk(αxk(t− τ1))

)
+bikui(t)(gk(yk(t− τ1))−gk(αxk(t− τ1)))

]
≤

n

∑
i=1

n

∑
k=1

bikbikui(t)ui(t)

+nΛ
2
3

n

∑
i=1

ei(t− τ1)ei(t− τ1), (8)



Quasi-projective Synchronization for Caputo Type Fractional-order Complex-valued Neural Networks with ... 1727

n

∑
i=1

n

∑
k=1

[mikui(t)
∫ t

t−τ2

(hk(yk(s))−hk(αxk(s)))ds

+ mikui(t)
∫ t

t−τ2

(hk(yk(s))−hk(αxk(s)))ds
]

≤
n

∑
i=1

n

∑
k=1

mikmikui(t)ui(t)+n
n

∑
i=1

Λ
2
3τ

2
2 ui(t)ui(t). (9)

According to Lemma 2 and Assumption 2, we get
n

∑
i=1

n

∑
k=1

[
aikui(t)( fk(αxk(t))−α fk(xk(t)))

+aikui(t)( fk(αxk(t))−α fk(xk(t)))
]

≤
n

∑
i=1

n

∑
k=1

[
aikaikui(t)ui(t)+ ( fk(αxk(t))−α fk(xk(t)))

× ( fk(αxk(t))−α fk(xk(t)))]

≤
n

∑
i=1

n

∑
k=1

[
aikaikui(t)ui(t)+2

(
fk(αxk(t)) fk(αxk(t))

+αα fk(xk(t)) fk(xk(t))
)]

≤
n

∑
i=1

n

∑
k=1

[
aikaikui(t)ui(t)+2

(
l2
1 +ααl2

1

)]
=

n

∑
i=1

n

∑
k=1

aikaikui(t)ui(t)+2(1+αα)l2
1 . (10)

Similarly,
n

∑
i=1

n

∑
k=1

[
bikui(t)

(
gk(αxk(t− τ1))−αgk(xk(t− τ1))

)
+bikui(t)(gk(αxk(t− τ1))−αgk(xk(t− τ1)))

]
≤

n

∑
i=1

n

∑
k=1

bikbikui(t)ui(t)+2(1+αα) l2
2 , (11)

n

∑
i=1

n

∑
k=1

[mikui(t)
∫ t

t−τ2

(hk(αxk(s))−αhk(xk(s)))ds

+ mikui(t)
∫ t

t−τ2

(hk(αxk(s))−αhk(xk(s)))ds
]

≤
n

∑
i=1

n

∑
k=1

mikmikui(t)ui(t)+2(1+αα) l2
3τ

2
2 , (12)

n

∑
i=1

[
(1−α)Ji(t)ui(t)+(1−α)Ji(t)ui(t)

]
≤ (1−α)(1−α)+

n

∑
i=1

l2
4ui(t)ui(t). (13)

Submitting (7)-(13) into (6), by fractional Razumikhin
theorem [44], we can get

C
t0 Dp

t V1(t)

≤−
n

∑
i=1

(
di + ki +di + ki− l2

4 −nΛ
2
1−nΛ

2
3τ

2
2

−
n

∑
k=1

2
(
aikaik +bikbik +mikmik

))
ui(t)ui(t)

+n
n

∑
i=1

Λ
2
2ui(t− τ1)ui(t− τ1)+2(1+αα)

×
(
l2
1 + l2

2 + l2
3 τ

2
2

)
+(1−α)(1−α)

≤−ϖV1(t)+nΛ
2
2V1(t− τ1)+ϑ

≤−
(
ϖ −nΛ

2
2ς
)

V1(t)+ϑ , (14)

where ς > 1. According to Lemma 4 and (14), there exists

t1 = t0 +
(

Γ(p)
ϖ−nΛ2

2ς

) 1
1−p

, such that

V1(t)≤
(

V1(t0)−
ϑ

ϖ −nΛ2
2ς

)
×Ep

(
−
(
ϖ −nΛ

2
2ς
)
(t− t0)

p)
+

ϑ

ϖ −nΛ2
2ς

, t ≥ t1.

Then,

‖u(t)‖

≤

√
AEp

[
−
(
ϖ −nΛ2

2ς
)
(t− t0)

p]+ ϑ

ϖ −nΛ2
2ς

,

(15)

where t ≥ t1, A =V1(t0)− ϑ

ϖ−nΛ2
2ς
. Finally, from Lemma 3

and (15), it could be found that

lim
t→+∞

‖u(t)‖ ≤

√
ϑ

ϖ −nΛ2
2ς

.

Hence, systems (1) and (2) are QPS under the linear feed-
back controller (4). The proof of Theorem 1 is completed.

Next, the adaptive controller is proposed{
vi(t) =−ki(t)(yi(t)−αxi(t)) ,
C
t0 Dp

t ki(t) = ρiei(t)ei(t),
(16)

where ki(t) is the adaptive feedback strength, ρi is a posi-
tive constant. Fig. 2 shows the control framework of adap-
tive feedback controller.

Theorem 2: Under Assumptions 1 and 2, if k∗i satis-
fies the inequality µ > ηξ , where ξ > 1, then the drive
system (1) is QPS with the response system (2) under the

Fig. 2. Control framework of adaptive feedback controller.
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adaptive controller (16). In addition, the error bound can
be estimated by

√
δ

µ−ηξ
.

Proof: Consider the following Lyapunov function:

V2(t) =V21(t)+V22(t)

=
n

∑
i=1

ui(t)ui(t)+
n

∑
i=1

1
ρi
(ki(t)− k∗i )

2. (17)

By Lemmas 1 and 5, the p-order Caputo derivative of
V2(t) can be estimated as follows:

C
t0 Dp

t V2(t)

≤
n

∑
i=1

[
ui(t)Dpui(t)+ui(t)Dpui(t)

]
+

n

∑
i=1

2
ρi
(ki(t)− k∗i )D

pki(t)

≤−
n

∑
i=1

(
di +di +2k∗i

)
ui(t)ui(t)

+
n

∑
i=1

[
(1−α)Ji(t)ui(t) +(1−α)Ji(t)ui(t)

]
+

n

∑
i=1

n

∑
k=1

[
aikui(t)( fk(yk(t))− fk(αxk(t)))

+aikui(t)( fk(yk(t))− fk(αxk(t)))
]

+
n

∑
i=1

n

∑
k=1

[
aikui(t)( fk(αxk(t))−α fk(xk(t)))

+aikui(t)( fk(αxk(t))−α fk(xk(t)))
]

+
n

∑
i=1

n

∑
k=1

[
bikui(t)

(
gk(yk(t−τ1))−gk(αxk(t−τ1))

)
+bikui(t)(gk(yk(t− τ1))−gk(αxk(t− τ1)))

]
+

n

∑
i=1

n

∑
k=1

[
bikui(t)

(
gk(αxk(t−τ1))−αgk(xk(t−τ1))

)
+bikui(t)(gk(αxk(t− τ1))−αgk(xk(t− τ1)))

]
+

n

∑
i=1

n

∑
k=1

[mikui(t)
∫ t

t−τ2

(hk(yk(s))−hk(αxk(s)))ds

+ mikui(t)
∫ t

t−τ2

(hk(yk(s))−hk(αxk(s)))ds
]

+
n

∑
i=1

n

∑
k=1

[mikui(t)
∫ t

t−τ2

(hk(αxk(s))−αhk(xk(s)))ds

+ mikui(t)
∫ t

t−τ2

(hk(αxk(s))−αhk(xk(s)))ds
]
.

(18)

According to Lemma 6 and Assumption 1, we derive

n

∑
i=1

n

∑
k=1

[
aikui(t)( fk(yk(t))− fk(αxk(t)))

+aikui(t)( fk(yk(t))− fk(αxk(t)))
]

≤ 2
n

∑
i=1

n

∑
k=1

(
aikaikui(t)ui(t)

) 1
2

[ fk(yk(t))

− fk(αxk(t))( fk(yk(t))− fk(αxk(t)))
] 1

2

≤ 2
n

∑
i=1

n

∑
k=1

(aikaik)
1
2

[
1
2

(
ui(t)ui(t)

)
+

1
2

×( fk(yk(t))− fk(αxk(t)))( fk(yk(t))− fk(αxk(t)))
]

≤
n

∑
i=1

n

∑
k=1

(aikaik)
1
2

(
ui(t)ui(t)+Λ

2
1uk(t)uk(t)

)
≤

n

∑
i=1

n

∑
k=1

(aikaik)
1
2 ui(t)ui(t)

+Λ
2
1

n

∑
i=1

n

∑
k=1

(akiaki)
1
2 ui(t)ui(t). (19)

Similarly,

n

∑
i=1

n

∑
k=1

[
bikui(t)

(
gk(yk(t− τ1))−gk(αxk(t− τ1))

)
+bikui(t)(gk(yk(t− τ1))−gk(αxk(t− τ1)))

]
≤

n

∑
i=1

n

∑
k=1

(
bikbik

) 1
2 ui(t)ui(t)+Λ

2
2

n

∑
i=1

n

∑
k=1

(
bkibki

) 1
2

×ui(t− τ1)ui(t− τ1), (20)
n

∑
i=1

n

∑
k=1

[mikui(t)
∫ t

t−τ2

(hk(yk(s))−hk(αxk(s)))ds

+ mikui(t)
∫ t

t−τ2

(hk(yk(s))−hk(αxk(s)))ds
]

≤
n

∑
i=1

n

∑
k=1

(mikmik)
1
2 ui(t)ui(t)

+Λ
2
3τ

2
2

n

∑
i=1

n

∑
k=1

(mkimki)
1
2 ui(t)ui(t). (21)

According to Lemma 6 and Assumption 2, we derive

n

∑
i=1

n

∑
k=1

[
aikui(t)( fk(αxk(t))−α fk(xk(t)))

+aikui(t)( fk(αxk(t))−α fk(xk(t)))
]

≤
n

∑
i=1

n

∑
k=1

(aikaik)
1
2

[
ui(t)ui(t)

+( fk(αxk(t))−α fk(xk(t)))

× ( fk(αxk(t))−α fk(xk(t)))]

≤
n

∑
i=1

n

∑
k=1

(aikaik)
1
2

[
ui(t)ui(t)+2(1+αα) l2

1

]
≤

n

∑
i=1

n

∑
k=1

(aikaik)
1
2 ui(t)ui(t)

+2
n

∑
i=1

n

∑
k=1

(aikaik)
1
2 (1+αα)l2

1 . (22)
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Similarly,

n

∑
i=1

n

∑
k=1

[
bikui(t)

(
gk(αxk(t− τ1))−αgk(xk(t− τ1))

)
+bikui(t)(gk(αxk(t− τ1))−αgk(xk(t− τ1)))

]
≤

n

∑
i=1

n

∑
k=1

(
bikbik

) 1
2 ui(t)ui(t)+2

n

∑
i=1

n

∑
k=1

(
bikbik

) 1
2

× (1+αα)l2
2 , (23)

n

∑
i=1

n

∑
k=1

[mikui(t)
∫ t

t−τ2

(hk(αxk(s))−αhk(xk(s)))ds

+ mikui(t)
∫ t

t−τ2

(hk(αxk(s))−αhk(xk(s)))ds
]

≤
n

∑
i=1

n

∑
k=1

(mikmik)
1
2 ui(t)ui(t)+2

n

∑
i=1

n

∑
k=1

(mikmik)
1
2

× (1+αα)l2
3τ

2
2 , (24)

n

∑
i=1

[
(1−α)Ji(t)ui(t)+(1−α)Ji(t)ui(t)

]
≤ 2

n

∑
i=1

(
Ji(t)Ji(t)

) 1
2
(
(1−α)(1−α)ui(t)ui(t)

) 1
2

≤ l4
n

∑
i=1

ui(t)ui(t)+l4 (1−α)(1−α). (25)

Submitting (19)-(25) into (18), by fractional Razumikhin
theorem [52], we can get

C
t0 Dp

t V2(t)

=−
n

∑
i=1

{
di +di +2k∗i − l4−2

n

∑
k=1

[
(aikaik)

1
2

+
(
bikbik

) 1
2 +(mikmik)

1
2

]
−Λ

2
1

n

∑
k=1

(akiaki)
1
2

−Λ
2
3τ

2
2

n

∑
k=1

(mkimki)
1
2

}
ui(t)ui(t)

+Λ
2
2

n

∑
i=1

n

∑
k=1

(
bkibki

) 1
2 ui(t− τ1)ui(t− τ1)

+2
n

∑
i=1

n

∑
k=1

(1+αα)
[
(aikaik)

1
2 l2

1 +
(
bikbik

) 1
2 l2

2

+(mikmik)
1
2 l2

3τ
2
2

]
+ l4 (1−α)(1−α)

≤−(µ−ηξ )V21(t)+δ , (26)

where ξ > 1, according to Lemma 4 and (26), there exists

t2 = t0 +
(

Γ(p)
µ−ηξ

) 1
1−p

such that

V21(t)≤
(

V21(t0)+V22(t0)−
δ

µ−ηξ

)
×Ep (−(µ−ηξ )(t− t0)

p)+
δ

µ−ηξ
,

t ≥ t2.

Then,

‖u(t)‖ ≤

√
BEp (−(µ−ηξ )(t− t0)

p)+
δ

µ−ηξ
,

(27)

where t ≥ t2, B = V21(t0)+V22(t0)− δ

µ−ηξ
. Finally, from

Lemma 3 and (27), it could be found that

lim
t→+∞

‖u(t)‖ ≤

√
δ

µ−ηξ
.

Therefore, systems (1) and (2) are QPS under the con-
troller (16).

Remark 1: When τ1 = 0, τ2 = 0, system (1) degener-
ates into a FOCVNNs, whose QPS has been studied in
[42]. When τ1 6= 0, τ2 = 0, system (1) degenerates into a
FOCVNNs with delay, the QPS has been studied in [43].
Therefore, the model used in this paper is more general.

Remark 2: The problem of QPS of fractional-order
neural networks with adaptive controllers has not been dis-
cussed. Therefore, the research of this paper is meaning-
ful.

Remark 3: In most of the existing literature, it is cus-
tomary to decompose the complex-valued system into two
real-valued systems for discussion, such as [39–41]. How-
ever, in this paper, the complex-valued system is discussed
as a compact whole, which greatly reduces the difficulty
of theoretical analysis and the complexity of calculation.
Therefore, the method used in this paper is of more re-
search significance.

Remark 4: In [24,25], the hybrid controllers are used,
which is inconvenient and undesirable in applications. In
this paper we adopt linear controllers and adaptive con-
trollers to discuss the QPS of FOCVNNs with mixed de-
lays, where the used methods are very convenient and ap-
plicable.

4. NUMERICAL SIMULATIONS

In this section, two numerical examples are given to ver-
ify the above results.

Example 1: Consider the following 2-dimensional
FOCVNNMD as the drive system

C
t0 Dp

t xi(t) =−dixi(t)+
2

∑
k=1

aik fk(xk(t))

+
2

∑
k=1

bikgk(xk(t− τ1))

+
2

∑
k=1

mik

∫ t

t−τ2

hk(xk(s))ds

+ Ji(t), i = 1, 2. (28)

The corresponding response system is described as
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C
t0 Dp

t yi(t) =−diyi(t)+
2

∑
k=1

aik fk(yk(t))

+
2

∑
k=1

bikgk(yk(t− τ1))

+
2

∑
k=1

mik

∫ t

t−τ2

hk(xk(s))ds

+ Ji(t)+ vi(t), i = 1, 2. (29)

where p = 0.7, xi(t) = mi(t)+ iqi(t), mi(t), qi(t)∈ R, τ1 =
1, τ2 = 0.5,

C = diag(c1,c2) = (1+ i,1+ i),

Ji(t) = (J1(t),J2(t))T = (0,0),

A = (ai j)2×2 =

(
0.2+0.2i −0.1−0.1i
0.1+0.1i −0.2−0.2i

)
,

B = (bi j)2×2 =

(
−0.5−0.5i −1− i
−2−2i 1+ i

)
,

M = (mi j)2×2 =

(
3+3i −1− i
1+ i 2+2i

)
.

The linear feedback controller vi(t) is designed as (4),
choose k1 = 25+ 25i, k2 = 30+ 30i, ς = 1.2 The initial
conditions of system (28) and (29) are selected as φ1(s) =
−0.3+ 0.4i, φ2(s) = 0.7− 0.6i, ϕ1 = 0.9+ 0.4i, ϕ2(s) =
0.8 − 0.5i, s ∈ [−1,0). f (x(t)) = g(x(t)) = h(x(t)) =
1−e−mi(t)

1+e−mi(t)
+ i 1

1+e−qi(t)
. By calculation, we have Λ1 = Λ2 =

Λ3 = 1, l1 = l2 = l3 =
√

2, l4 = 0, α = 0.3+0.8i,

ϖ = min
1≤i≤n

{
di + ki +di + ki− l2

4 −nΛ
2
1−nΛ

2
3τ

2
2

−
n

∑
k=1

2
(
aikaik +bikbik +mikmik

)}
= 9.3,

and 9.3 = ϖ > nΛ2
2ς = 2.4, then the condition and as-

sumption of Theorem 1 are satisfied. Moreover, the error
bounded is estimated as follows:√

ϑ

ϖ −nΛ2
2ς
≈ 1.56.

Fig. 3 shows the state trajectory of the error system
when α = 0.3+0.8i, Fig. 4 shows the trajectory of the er-
ror norm ‖u(t)‖ when α = 0.3+0.8i, illustrating that the
(28)-(29) can achieve QPS under the condition of Theo-
rem 1. The phase trajectories of real and imaginary part of
system (28) are shown in Figs. 5 and 6, respectively.

Example 2: About the 2-dimensional FOCVNNMD
given by (28) and (29), we consider the QPS of Theo-
rem 2. Take the same system parameters as Example 1.
The adaptive controller vi(t) is designed as (17), where
the initial value of ki(t) are set as k1(0) = 1+0.2i, k2(0) =
0.2+ i, k∗1 = 25, k∗2 = 20, α = 0.4+0.5i, ξ = 1.5.

The initial conditions of system (28) and (29) are cho-
sen as φ1(s) = −0.3 + 0.4i, φ2(s) = 0.2 − 0.7i, ϕ1 =

Fig. 3. The state trajectory of the error system when α =
0.3+0.8i.

Fig. 4. The trajectory of the error norm ‖u(t)‖ when α =
0.3+0.8i.

Fig. 5. The phase trajectories of real part and imaginary
part of system (28).
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Fig. 6. The phase trajectories of real part and imaginary
part of system (28).

Fig. 7. The state trajectory of the error system when α =
1.

−1.2+ 0.7i, ϕ2(s) = 0.8− 1.3i, s ∈ [−1,0). By calcula-
tion, we have

η = max
1≤i≤n

Λ
2
2

n

∑
k=1

(
bkibki

) 1
2 ≈ 2.83,

µ = min
1≤i≤n

{
di +di +2k∗i − l4−2

n

∑
k=1

[
(aikaik)

1
2

+
(
bikbik

) 1
2 +(mikmik)

1
2

]
−Λ

2
1

n

∑
k=1

(akiaki)
1
2

−Λ
2
3τ

2
2

n

∑
k=1

(mkimki)
1
2

}
≈ 22.70,

22.70 = µ > ηξ = 4.245, then the condition and as-
sumptions of Theorem 2 are satisfied. Moreover, the error

Fig. 8. The trajectory of the error norm ‖u(t)‖ when α =
1.

Fig. 9. The state trajectory of the error system when α =
0.4+0.5i.

bounded is estimated as follows:√
δ

µ−ηξ
≈ 2.49.

Figs. 7 and 8 respectively show the state trajectory of
the error system and the trajectory of the error norm ‖u(t)‖
when α = 1, illustrating that the (28)-(29) can achieve
quasi-complete synchronization under the condition of
Theorem 2. Figs. 9 and 10 respectively show the state tra-
jectory of the error system and the trajectory of the er-
ror norm ‖u(t)‖ when α = 0.4+0.5i, illustrating that the
(28)-(29) can achieve QPS synchronization under the con-
dition of Theorem 2.

Remark 5: Examples 1 and 2 show that the synchro-
nization time of linear controller is about 0.0033, while
that of the adaptive controller is about 0.00014. As we
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Fig. 10. The trajectory of the error norm ‖u(t)‖ when α =
0.4+0.5i.

all know, the shorter the synchronization time, the better.
Therefore, the synchronization effect is better under adap-
tive control.

Remark 6: The MATLAB numerical simulations in ex-
amples 1 and 2 show that the synchronization error under
the linear controller tends to 0, and the simulation error
upper bound is much smaller than the estimated error up-
per bound. However, the synchronization error of adaptive
controller tends to 1. Therefore, the synchronization con-
vergence of linear feedback controller is better.

5. CONCLUSIONS

In this paper, by constructing the Lyapunov function,
using the fractional Razumikhin theorem, the proper-
ties of the Mittag-Leffler function and some inequality
techniques, the sufficient conditions for the QPS of the
FOCVNNs with mixed delays are obtained. The feasibil-
ity of the results are verified by two numerical simulation
examples.
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