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Maximum Likelihood Recursive Generalized Extended Least Squares Es-
timation Methods for a Bilinear-parameter Systems with ARMA Noise
Based on the Over-parameterization Model
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Abstract: Maximum likelihood methods have wide applications in system modeling and parameter estimation. For
the purpose of improving the precision of parameter estimation, this paper presents a maximum likelihood recur-
sive generalized extended least squares (ML-RLS) algorithm for a bilinear-parameter system with autoregressive
moving average noise based on the over-parameterization identification model. An over-parameterization-based re-
cursive generalized extended least squares algorithm is presented to show the effectiveness of the proposed ML-RLS
algorithm for comparison. The simulation test shows that the proposed algorithm has a higher estimation accuracy
than the recursive least squares algorithm.
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1. INTRODUCTION

System identification constitutes a crucial part in con-
troller designs if the model parameters of a system are un-
known [1–3]. Parameter estimation is the foundation of
dynamic systems modeling [4–8], and has been widely
used in the fields of science and engineering. For decades,
the parameter estimation methods have received much
attention [9–11]. Some parameter estimation methods
such as the auxiliary model identification idea, the multi-
innovation identification theory and the data filtering tech-
nique have been developed to identify linear and nonlinear
systems [12–14]. Block-oriented nonlinear models con-
sisting of linear dynamic blocks and static nonlinear parts
are generally used for describing all sorts of nonlinear pro-
cesses [15,16]. When the output of nonlinear block can
be represented a linear combination of the unknown pa-
rameters and known basis functions, such a nonlinear sys-
tem can be transformed into a bilinear-parameter system.
These systems involve two product terms of the parame-
ter vectors, and the outputs are linear with respect to any
one of two parameter vectors [17]. For example, Ji et al.
considered the parameter estimation problems of block-
oriented nonlinear systems using the hierarchial identi-
fication principle and the multi-innovation identification
theory for improving the parameter estimation accuracy
[18].

The maximum likelihood principle is widely used in
the field of stochastic system identification such as lin-
ear systems, bilinear systems [19–22], nonlinear systems
[23–25] and multivariable systems [26–31], because it has
good statistical properties. The maximum likelihood iden-
tification method needs to construct a likelihood function
with respect to the observed data and the unknown pa-
rameters, and the parameter estimation can be obtained by
maximizing the likelihood function [32]. The objective of
maximum likelihood principle is to construct a likelihood
function with respect to the observed data and the unmea-
surable parameters, and to obtain the parameter estimation
by maximizing the likelihood function. The main contri-
butions of this paper are as follows:

• The identification model of the bilinear-parameter
systems is obtained based on the over-parameterization
method.

• Based on the over-parameterization model, a max-
imum likelihood recursive least squares (ML-RLS)
algorithm is derived for identifying the parameters.
Moreover, am over-parameterization-based recursive
least squares (RLS) algorithm is provided as a com-
parison.

• The simulation example showed the effectiveness of
the ML-RLS algorithm, which can give more accurate
parameter estimates than the RLS algorithm.
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Briefly, the rest of this paper is organized as follows:
Section 2 introduces the identification model of a bilinear-
parameter system with autoregressive moving average
noise based on the over-parameterization method. A ML-
RLS algorithm is introduced in Section 3. In Section 4,
a RLS algorithm is presented. Simulation examples are
provided to verify the effectiveness in Section 5. Finally,
some concluding remarks are given in Section 6.

2. SYSTEM DESCRIPTION AND
IDENTIFICATION MODEL

Let us introduce some symbols used in this paper. A=:X
stands for X is defined as A, or X :=A stands for A is defined
as X , the symbol IIIn denotes an identity matrix of appro-
priate size (n×n); 1n stands for an n-dimensional column
vector whose elements are 1, 1m×n represents a matrix of
size (m×n) whose elements are 1; the superscript T stands
for the vector/matrix transpose; the norm of a matrix XXX is
defined by ‖XXX‖2 := tr[XXXXXX T]; sgn(x) denotes the sign of x.

Consider a bilinear-parameter system with autoregres-
sive moving average noise [17,33],

y(t) = aaaTFFF(t)βββ +
D(z)
C(z)

v(t),

D(z) := 1+d1z−1 +d2z−2 + · · ·+dnd z−nd ,

C(z) := 1+ c1z−1 + c2z−2 + · · ·+ cnc z
−nc , (1)

where y(t) is the output, and v(t) is a Gaussian distributed
white noise with zero mean and variance σ 2, FFF(t) :=
FFF(u(t)) ∈Rm×n consists of available input u(t− j), j = 1,
2, · · · , n, aaa ∈ Rm and βββ ∈ Rn are the parameter vectors
to be identified, z−1 is a unit backward shift operator, i.e.,
z−1 [z−1y(t) = y(t− 1)]. Let aaa and βββ and the information
matrix FFF(t) as

aaa := [a1, a2, . . . , am]
T ∈ Rm,

βββ := [β1, β2, . . . , βn]
T ∈ Rn,

FFF(t) :=


f1(u(t−1)) · · · f1(u(t−n))
f2(u(t−1)) · · · f2(u(t−n))

...
...

fm(u(t−1)) · · · fm(u(t−n))

 ,
where u(t) is the input of the system, fff i(u(t − i))’s are
the known nonlinear basis functions. Here, introduce the
intermediate variable

w(t) :=
D(z)
C(z)

v(t), (2)

and define the parameter vector ρρρ and the noise vector
ψψψ(t) as

ρρρ := [c1, c2, . . . , cnc , d1, d2, . . . , dnd ]
T ∈ Rnc+nd ,

ψψψ(t) := [−w(t−1), −w(t−2), . . . , −w(t−nc),

v(t−1), v(t−2), . . . , v(t−nd)]
T ∈ Rnc+nd ,

where w(t) is an autoregressive moving average process.
Then, (2) can be rewritten as

w(t) = [1−C(z)]w(t)+ [D(z)−1]v(t)+ v(t)

=ψψψ
T(t)ρρρ + v(t). (3)

Let FFF i(t) be the ith row of the information matrix FFF(t).
Define the parameter vectors θθθ and ϑϑϑ and the information
vectors φφφ(t) and ΦΦΦ(t) as

θθθ := [a1βββ
T, a2βββ

T, . . . , amβββ
T]T ∈ Rmn,

φφφ(t) := [FFF1(t), FFF2(t), . . . , FFFm(t)]T ∈ Rmn,

ϑϑϑ := [θθθ T, ρρρ
T]T ∈ Rmn+nc+nd ,

ΦΦΦ(t) := [φφφ T(t), ψψψ
T(t)]T ∈ Rmn+nc+nd .

Then referring to the method in [17], equation (1) can be
written as

y(t) = φφφ
T(t)θθθ +w(t)

= φφφ
T(t)θθθ +ψψψ

T(t)ρρρ + v(t)

=ΦΦΦ
T(t)ϑϑϑ + v(t). (4)

For identifiability, we adopt the normalization constraint
on aaa or βββ . This paper uses the assumption: ‖βββ‖ = 1, and
the first nonzero element of the parameter vector βββ is pos-
itive, i.e., β1 > 0.

3. THE MAXIMUM LIKELIHOOD RECURSIVE
RECURSIVE GENERALIZED LEAST

SQUARES ALGORITHM

According to the maximum likelihood principle, define

J(ϑϑϑ) :=
1
2

t

∑
j=1

v2( j), (5)

v(t) = y(t)−ΦΦΦ
T(t)ϑϑϑ . (6)

The objective function can be written as a recursive form

J(ϑϑϑ , t) := J(ϑϑϑ , t−1)+
1
2

v2(t). (7)

Using the first-order Taylor expansion, v(t) at ϑϑϑ = ϑ̂ϑϑ(t−
1) can be approximately expressed as

v(t)≈ v(t)|ϑϑϑ(t−1)+

[
∂v(t)
∂ϑϑϑ

]T

ϑ̂ϑϑ(t−1)
[ϑϑϑ −ϑ̂ϑϑ(t−1)].

Define the filtered information vectors

Φ̂ΦΦ f (t) :=−∂v(t)
∂ϑϑϑ

∣∣∣∣
ϑ̂ϑϑ(t−1)

=

[
φ̂φφ f (t)
ψ̂ψψ f (t)

]
∈ Rmn+nc+nd ,
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φ̂φφ f (t) :=−∂v(t)
∂θθθ

∣∣∣∣
θ̂θθ(t−1)

=−



∂v(t)
a1βββ

∂v(t)
a2βββ

...
∂v(t)
amβββ


θ̂θθ(t−1)

= [ f̂1, f (u(t−1)), . . . , f̂1, f (u(t−n)), . . . ,

f̂m, f (u(t−1)), . . . , f̂m, f (u(t−n))]T,

ψ̂ψψ f (t) :=−∂v(t)
∂ρρρ

∣∣∣∣
ρ̂ρρ(t−1)

= [−ŵ f (t−1), − ŵ f (t−2), . . . , − ŵ f (t−nc),

v̂ f (t−1), v̂ f (t−2), . . . , v̂ f (t−nd)]
T,

where f̂i, f (u(t)), ŵ f (t) and v̂ f (t) are the filtered values of
fi(u(t)), w(t) and v(t), respectively, and defined as

f̂i, f (u(t)) := fi, f (u(t))+ ĉ1(t−1) fi, f (u(t−1))+ · · ·
+ ĉnc(t−1) fi, f (u(t−nc))

− d̂1(t−1) f̂i, f (u(t−1))−·· ·
− d̂nd (t−1) f̂i, f (u(t−nd)),

ŵ f (t) := ŵ(t)− d̂1(t−1)ŵ f (t−1)

−·· ·− d̂nd (t−1)ŵ f (t−nd)),

v̂ f (t) := v̂(t)− d̂1(t−1)v̂ f (t−1)

−·· ·− d̂nd (t−1)v̂ f (t−nd)).

Define the estimated information vector

Φ̂ΦΦ(t) =[φφφ T(t), − ŵ(t−1), − ŵ(t−2), . . . ,

− ŵ(t−nc), v̂(t−1), v̂(t−2), . . . ,

v̂(t−nd)]
T.

The the estimate ŵ(t) and v̂(t) can be computed by

ŵ(t) = y(t)−φφφ
T(t)θ̂θθ(t−1),

v̂(t) = y(t)−Φ̂ΦΦ
T
(t)ϑ̂ϑϑ(t−1).

Applying the Taylor series expansion to J(ϑϑϑ , t−1) gives

J(ϑϑϑ , t−1)≈∂J(ϑ̂ϑϑ(t−1), t−1)
∂ϑϑϑ

[ϑϑϑ −ϑ̂ϑϑ(t−1)]

+
1
2
[ϑϑϑ −ϑ̂ϑϑ(t−1)]T

∂ 2J(ϑ̂ϑϑ(t−1), t−1)
∂ϑϑϑ∂ϑϑϑ T

× [ϑϑϑ −ϑ̂ϑϑ(t−1)]+
1
2

η(t),

where the variable η(t) is the residual of the Taylor ex-
pansion of J(ϑϑϑ , t − 1). Since the first-order derivative of
J(ϑϑϑ , t−1) at ϑϑϑ = ϑ̂ϑϑ(t−1) approximately equals zero, and

PPP−1
f (t) :=

∂ 2J(ϑϑϑ , t−1)
∂ϑϑϑ∂ϑϑϑ T

∣∣∣∣
ϑ̂ϑϑ(t−1)

is a positive-definite matrix, equation (7) can be written as

J(ϑϑϑ , t)≈ 1
2
[ϑϑϑ −ϑ̂ϑϑ(t−1)]TPPP−1

f (t)[ϑϑϑ −ϑ̂ϑϑ(t−1)]

+
1
2

η(t)+
1
2

v2(t). (8)

From (8) and (7), we have

2J(ϑϑϑ , t)≈ [ϑϑϑ −ϑ̂ϑϑ(t−1)]TPPP−1
f (t)[ϑϑϑ −ϑ̂ϑϑ(t−1)]

+η(t)+ v2(t)

= [ϑϑϑ −ϑ̂ϑϑ(t−1)]TPPP−1
f (t)[ϑϑϑ −ϑ̂ϑϑ(t−1)]

+η(t)
[

v(t)|ϑϑϑ(t−1)+

[
∂v(t)
∂ϑϑϑ

]T

ϑ̂ϑϑ(t−1)

× [ϑϑϑ −ϑ̂ϑϑ(t−1)]
]2

= [ϑϑϑ −ϑ̂ϑϑ(t−1)]T[PPP−1
f (t)+Φ̂ΦΦ f (t)Φ̂ΦΦ

T

f (t)]

× [ϑϑϑ −ϑ̂ϑϑ(t−1)]−2v̂(t)Φ̂ΦΦ
T

f (t)

× [ϑϑϑ −ϑ̂ϑϑ(t−1)]+ v2(t)+η(t).

The second-order derivative of J(ϑϑϑ , t) in (7) with respect
to ϑϑϑ at ϑϑϑ = ϑ̂ϑϑ(t) is

PPP−1
f (t) =

∂ 2J(ϑϑϑ , t)
∂ϑϑϑ∂ϑϑϑ T

=
∂ 2J(ϑϑϑ , t−1)

∂ϑϑϑ∂ϑϑϑ T
+ v̂(t)

∂ 2v̂(t)
∂ϑϑϑ∂ϑϑϑ T

+
∂ v̂(t)
∂ϑϑϑ

[
∂ v̂(t)
∂ϑϑϑ

]T

. (9)

Since the second-order derivative of v(t) with respect to ϑϑϑ

at ϑϑϑ = ϑ̂ϑϑ(t−1) is zero, equation (9) can be written as

PPP−1
f (t) =PPP−1

f (t−1)+Φ̂ΦΦ f (t)Φ̂ΦΦ
T

f (t). (10)

Furthermore, applying the matrix inversion

(AAA+BBBCCC)−1 =AAA−1−AAA−1BBB(III +CCCAAA−1BBB)−1CCCAAA−1,

to (10) gives

PPP f (t) =PPP f (t−1)−
PPP f (t−1)Φ̂ΦΦ f (t)Φ̂ΦΦ

T

f (t)PPP f (t−1)

1+Φ̂ΦΦ
T

f (t)PPP f (t−1)Φ̂ΦΦ f (t)
.

(11)

Define the filtered gain vector LLL f (t) :=PPP f (t)Φ̂ΦΦ f (t). Then

LLL f (t) =PPP f (t−1)Φ̂ΦΦ f (t)

−
PPP f (t−1)Φ̂ΦΦ f (t)Φ̂ΦΦ

T

f (t)PPP f (t−1)Φ̂ΦΦ f (t)

1+Φ̂ΦΦ
T

f (t)PPP f (t−1)Φ̂ΦΦ f (t)

=
PPP f (t−1)Φ̂ΦΦ f (t)

1+Φ̂ΦΦ
T

f (t)PPP f (t−1)Φ̂ΦΦ f (t)
.

Bring LLL f (t) into (11), we have

PPP f (t) =PPP f (t−1)−LLL(t)Φ̂ΦΦ
T

f (t)PPP f (t−1)
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= [III−LLL f (t)Φ̂ΦΦ
T

f (t)]PPP f (t−1).

The objective function J(ϑϑϑ , t) can be written as

2J(ϑϑϑ , t)≈ [ϑϑϑ −ϑ̂ϑϑ(t−1)−LLL(t)v̂(t)]TPPP−1
f (t)

× [ϑϑϑ −ϑ̂ϑϑ(t−1)−LLL(t)v̂(t)]

+ [LLL(t)v̂(t)]TPPP−1
f (t)[LLL(t)v̂(t)]+ v̂2(t)

+η(t).

Minimizing 2J(ϑϑϑ , t) gives the estimate ϑ̂ϑϑ(t) of ϑϑϑ as

ϑ̂ϑϑ(t) = ϑ̂ϑϑ(t−1)+LLL(t)v̂(t).

Then, we can summarize the maximum likelihood recur-
sive generalized extended least squares (ML-RLS) iden-
tification algorithm based on the over-parameterization
model as

ϑ̂ϑϑ(t) = ϑ̂ϑϑ(t−1)+LLL f (t)v̂(t), (12)

LLL f (t) =
PPP f (t−1)Φ̂ΦΦ f (t)

1+Φ̂ΦΦ
T

f (t)PPP f (t−1)Φ̂ΦΦ f (t)
, (13)

PPP f (t) = [III−LLL f (t)Φ̂ΦΦ
T

f (t)]PPP f (t−1), (14)

v̂(t) = y(t)−Φ̂ΦΦ
T
(t)ϑ̂ϑϑ(t−1), (15)

Φ̂ΦΦ f (t) =
[

φ̂φφ f (t)
ψ̂ψψ f (t)

]
, (16)

Φ̂ΦΦ(t) =
[

φφφ(t)
ψ̂ψψ(t)

]
, (17)

φ̂φφ f (t) = [ f̂1, f (u(t−1)), . . . , f̂1, f (u(t−n)), . . . ,

f̂m, f (u(t−1)), . . . , f̂m, f (u(t−n))]T, (18)

ψ̂ψψ f (t) = [−ŵ f (t−1), . . . , − ŵ f (t−nc),

v̂ f (t−1), . . . , v̂ f (t−nd)]
T, (19)

φφφ(t) = [FFF1(t), FFF2(t), . . . , FFFm(t)]T, (20)

ψ̂ψψ(t) = [−ŵ(t−1), . . . , − ŵ(t−nc),

v̂(t−1), . . . , v̂(t−nd)]
T, (21)

f̂i, f (u(t)) = fi, f (u(t))+ ĉ1(t−1) fi, f (u(t−1))+ · · ·
+ ĉnc(t−1) fi, f (u(t−nc))

− d̂1(t−1) f̂i, f (u(t−1))−·· ·
− d̂nd (t−1) f̂i, f (u(t−nd)), (22)

ŵ f (t) = ŵ(t)− d̂1(t−1)ŵ f (t−1)

−·· ·− d̂nd (t−1)ŵ f (t−nd)), (23)

v̂ f (t) = v̂(t)− d̂1(t−1)v̂ f (t−1)

−·· ·− d̂nd (t−1)v̂ f (t−nd)), (24)

ŵ(t) = y(t)−φφφ
T(t)θ̂θθ(t−1), (25)

ϑ̂ϑϑ(t) = [θ̂θθ
T
(t),ρ̂ρρT(t)]T, (26)

θ̂θθ(t) = [â1βββ
T(t), â2βββ

T(t), . . . , âmβββ T(t)]T, (27)

ρ̂ρρ(t) = [ĉ1(t), . . . , ĉnc(t), d̂1, . . . , d̂nd (t)]
T. (28)

The parameter vector θ̂θθ(t) contains the products of ai and
βl (i = 1, 2, . . ., m, l = 1, 2, . . ., n). Then we have

m

∑
l=1

âiβl(t)
2
= âiβ1(t)

2
+ âiβ2(t)

2
+ · · ·+ âiβn(t)

2

=(âi(t)β̂1(t))2 + · · ·+(âm(t)β̂n(t))2

= â2
i (t)‖β̂ββ (t)‖2.

From the normalization hypothesis ‖βββ‖ = 1, β1 > 0. The
estimate âi(t) can be computed by

âi(t) = sgn[âiβ1(t)]

√
m

∑
l=1

âiβl(t). (29)

Then we can obtain the estimates β̂1,i(t), β̂2,i(t), . . ., β̂n,i(t)
of β1, β2, . . ., βn as

β̂1,i(t) =
âiβ1(t)
âi(t)

, . . . , β̂n,i(t) =
âiβn(t)
âi(t)

. (30)

In order to improve the estimation accuracy, take their av-
erage as the estimates of β1, β2, . . . , βn, that is

β̂1(t) =
1
m

m

∑
i=1

β̂1,i(t), . . . , β̂n(t) =
1
m

m

∑
i=1

β̂n,i(t). (31)

The steps for implementing the ML-RLS algorithm in
(12)-(31) are as follows:

1) To initialize: set the parameter estimation accuracy
ε . Set the initial values ϑ̂ϑϑ(0) = 1(mn+nc+nd)×1/p0,
f̂i, f (u(t − j)) = 1/p0, ŵ f (t − j) = 1/p0, ŵ(t − j) =
1/p0, v̂ f (t− j) = 1/p0, v̂(t− j) = 1/p0 and PPP f (0) =
p0III(mn+nc+nd), j = 1, 2, . . ., max[nc, nd ], i = 1, 2, . . .,
m, p0 = 106.

2) Collect the observation data u(t) and y(t), form the
information vector Φ̂ΦΦ(t) by (17) and form the filtered
information vector Φ̂ΦΦ f (t) by (16).

3) Compute the gain vector LLL f (t) by (13) and the covari-
ance matrix PPP f (t) by (14).

4) Update the parameter estimation vector ϑ̂ϑϑ(t) by (12).
5) Compute the residual v̂(t) and ŵ(t) by (15), (25).

Compute the filtered variables f̂i, f (u(t)), ŵ f (t) and
v̂ f (t) by (22)-(24). Compute âi(t), β̂l(t) in (29)-(31).

6) If ‖ϑ̂ϑϑ(t)−ϑ̂ϑϑ(t−1)‖> ε , increase t by 1 go to Step 4;
Otherwise, terminate the recursive calculation proce-
dure and obtain the parameter estimate ϑ̂ϑϑ(t).

4. THE RECURSIVE GENERALIZED
EXTENDED LEAST SQUARES ALGORITHM

In order to illustrate the advantage of the ML-RLS
identification algorithm proposed in Section 3, we derive
an over-parameterization-based recursive generalized ex-
tended least squares identification algorithm as a compar-
ison.
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Define a quadratic criterion function

J(ϑϑϑ) =
1
2

t

∑
j=1

[y(t)−ΦΦΦ
T(t)ϑϑϑ(t−1)]2.

Minimizing J(ϑϑϑ) and letting the derivatives of J(ϑϑϑ) with
respect to ϑϑϑ be zero, the estimate of the parameter vector
ϑϑϑ at time t is given by

ϑ̂ϑϑ(t) =
[ t

∑
j=1

ΦΦΦ(t)ΦΦΦT(t)
]−1 t

∑
j=1

ΦΦΦ(t)y(t). (32)

The parameter estimation vector ϑ̂ϑϑ(t) in (32) can be writ-
ten as a recursive least squares algorithm

ϑ̂ϑϑ(t) = ϑ̂ϑϑ(t−1)+LLL(t)[y(t)−ΦΦΦ
T(t)ϑ̂ϑϑ(t−1)],

LLL(t) =
PPP(t−1)Φ̂ΦΦ(t)

1+Φ̂ΦΦ
T
(t)PPP(t−1)Φ̂ΦΦ(t)

,

PPP(t) = [III−LLL(t)Φ̂ΦΦ
T
(t)]PPP(t−1).

Similarly, replacing the unknown information ψψψ(t) in
ΦΦΦ(t) with its estimate ψ̂ψψ(t), we can obtain the recur-
sive generalized extended least squares (RLS) parameter
estimation algorithm based on the over-parameterization
model as follows:

ϑ̂ϑϑ(t) = ϑ̂ϑϑ(t−1)+LLL(t)[y(t)−Φ̂ΦΦ
T
(t)ϑ̂ϑϑ(t−1)], (33)

LLL(t) =
PPP(t−1)Φ̂ΦΦ(t)

1+Φ̂ΦΦ
T
(t)PPP(t−1)Φ̂ΦΦ(t)

, (34)

PPP(t) = [III−LLL(t)Φ̂ΦΦ
T
(t)]PPP(t−1), (35)

Φ̂ΦΦ(t) =
[

φφφ(t)
ψ̂ψψ(t)

]
, (36)

φφφ(t) = [FFF1(t),FFF2(t), . . . ,FFFm(t)]T, (37)

ψ̂ψψ(t) = [−ŵ(t−1), . . . , − ŵ(t−nc),

v̂(t−1), . . . , v̂(t−nd)]
T, (38)

ŵ(t) = y(t)−φφφ
T(t)θ̂θθ(t−1), (39)

v̂(t) = y(t)−Φ̂ΦΦ
T
(t)ϑ̂ϑϑ(t−1), (40)

ϑ̂ϑϑ(t) = [θ̂θθ
T
(t),ρ̂ρρT(t)]T, (41)

θ̂θθ(t) = [â1βββ
T(t), â2βββ

T(t), . . . , âmβββ T(t)]T, (42)

ρ̂ρρ(t) = [ĉ1(t), . . . , ĉnc(t), d̂1(t), . . . , d̂nd (t)]
T. (43)

The steps for implementing the RLS algorithm in (33)-
(43) are as follows:

1) To initialize: Set the parameter estimation accuracy ε

and the initial values ŵ(t− j) = 1/p0, v̂(t− j) = 1/p0

and PPP(0) = p0III(mn+nc+nd), j = 1, 2, . . ., max[nc, nd ],
p0 = 106.

2) Collect the observation data u(t) and y(t), form the
information vector Φ̂ΦΦ(t) by (36).

3) Compute the gain vector LLL(t) by (34) and the covari-
ance matrix PPP(t) by (35).

4) Update the parameter estimation vector ϑ̂ϑϑ(t) by (33).
5) Compute the residual v̂(t) and ŵ(t) by (39) and (40).

Compute âi(t) and β̂l(t) using (29)-(31).
6) Compare ϑ̂ϑϑ(t) with ϑ̂ϑϑ(t−1): if ‖ϑ̂ϑϑ(t)− ϑ̂ϑϑ(t−1)‖ >

ε , increase t by 1 go to Step 3; Otherwise, terminate
the recursive calculation procedure and obtain the pa-
rameter estimate ϑ̂ϑϑ(t).

The proposed algorithms in this paper can combine other
methods [34–38] to study parameter identification of dif-
ferent systems [39–41] and can be applied to other fields
[42–47] such as chemical engineering systems. In prac-
tice, the design of many fault detection and control algo-
rithms assume that the parameters of the considered sys-
tem models are known [48–51]. If the case is not so, then
some identification methods can be used first for obtaining
the parameters of the systems from observation informa-
tion.

5. EXAMPLE

Consider the following simulation system

y(t) = aaaTFFF(t)βββ +
D(z)
C(z)

v(t),

FFF(t) =
[

u(t−1) u2(t−1)
u(t−2) u2(t−2)

]
,

aaa = [a1, a2]
T = [−2.1, 1]T,

βββ = [β1, β2]
T = [0.912, −0.41]T,

D(z) = 1+d1z−1 = 1+0.1z−1,

C(z) = 1+ c1z−1 = 1−0.4z−1,

ϒϒϒ = [a1, a2, β1, β2, d1, c1]
T

= [−2.1, 1.0, 0.912, −0.41, −0.4, 0.1]T.

The inputs {u(t)} is taken as an independent persistent
signal sequence with zero mean and unit variance, {v(t)}
is an uncorrelated noise sequence with zero mean and
variance σ 2 = 0.502, σ 2 = 1.002 and σ 2 = 1.502, respec-
tively. Applying the ML-RLS algorithm and the RLS al-
gorithm to estimate the parameters of this example sys-
tem, the parameter estimates and their estimation errors
δ := ‖ϒ̂ϒϒ t −ϒϒϒ‖/‖ϒϒϒ‖ of the RLS algorithm and the ML-
RLS algorithm are shown in Tables 1-3 and Figs. 1-4. The
ML-RLS parameter estimates versus k with σ 2 = 0.502

are shown in Fig. 5.
From Tables 1-3 and Figs. 1-5, we can draw the follow-

ing conclusions.

1) It can be seen that the estimation errors are becoming
smaller as t increases, and then tends to be stationary.
This shows that the ML-RLS algorithm and the RLS
algorithm are effective.

2) The estimation errors are becoming smaller as the
noise variance decreases in the ML-RLS algorithm
and the RLS algorithm.
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Table 1. The RLS and ML-RLS estimates and their errors with σ 2 = 0.502.

Algorithms t a1 a2 β1 β2 c1 d1 δ (%)

RLS

100 -1.97966 0.75807 0.94943 -0.28672 -0.12451 0.27310 17.23563
200 -2.05863 0.91699 0.92993 -0.35685 -0.25117 0.21996 8.56679
500 -2.03982 0.98246 0.91952 -0.38971 -0.33661 0.18206 4.79855
1000 -2.05026 1.01979 0.92039 -0.39000 -0.37145 0.02228 3.93572
2000 -2.07973 1.00311 0.91645 -0.40001 -0.39202 0.03507 2.70655

ML-RLS

100 -2.12771 0.99331 0.92520 -0.37917 -0.39068 0.23794 5.65630
200 -2.09912 1.04162 0.91904 -0.39403 -0.40103 0.15360 2.73205
500 -2.07329 0.99781 0.91751 -0.39737 -0.38119 0.15704 2.61963
1000 -2.08792 1.00071 0.91734 -0.39795 -0.38776 0.04826 2.18695
2000 -2.09465 1.00653 0.91438 -0.40486 -0.40718 0.08380 0.79657

True values -2.10000 1.00000 0.91200 -0.41000 -0.40000 0.10000

Table 2. The RLS and ML-RLS estimates and their errors with σ 2 = 1.002.

Algorithms t a1 a2 β1 β2 c1 d1 δ (%)

RLS

100 -1.94222 0.69348 0.95564 -0.22540 -0.02833 0.32741 22.88745
200 -2.04614 0.89668 0.93394 -0.33637 -0.19965 0.25234 11.21966
500 -2.01989 0.97964 0.92129 -0.38283 -0.31323 0.19420 6.04699
1000 -2.03343 1.02786 0.92278 -0.38356 -0.35932 -0.02114 5.82843
2000 -2.07277 1.00459 0.91789 -0.39662 -0.38620 0.00474 3.94526

ML-RLS

100 -2.22207 0.95829 0.94742 -0.31815 -0.33599 0.24764 8.90927
200 -2.08815 1.12630 0.93050 -0.36568 -0.38978 0.19292 6.42219
500 -2.01288 0.99549 0.92769 -0.37003 -0.32236 0.15786 5.34948
1000 -2.06217 1.00590 0.92703 -0.37344 -0.34383 -0.01816 5.53326
2000 -2.08319 1.02103 0.91891 -0.39446 -0.40130 0.01899 3.39379

True values -2.10000 1.00000 0.91200 -0.41000 -0.40000 0.10000

Table 3. The RLS and ML-RLS estimates and their errors with σ 2 = 1.502.

Algorithms t a1 a2 β1 β2 c1 d1 δ (%)

RLS

100 -2.28337 0.92833 0.96289 -0.26585 -0.28844 0.00378 11.28758
200 -2.07573 1.20737 0.93803 -0.34525 -0.38274 0.00203 9.41775
500 -1.96215 1.00186 0.93436 -0.34745 -0.27382 0.00445 8.58289
1000 -2.04112 1.01266 0.93471 -0.35123 -0.30415 -0.03099 7.18253
2000 -2.07471 1.03439 0.92286 -0.38512 -0.39596 -0.01823 5.01563

ML-RLS

100 -2.25222 0.92296 0.96124 -0.27244 -0.28908 0.01824 10.27323
200 -2.06935 1.18723 0.93696 -0.34829 -0.38224 0.01431 8.54847
500 -1.97019 0.99942 0.93333 -0.35149 -0.28283 0.01613 7.94086
1000 -2.04466 1.01043 0.93295 -0.35650 -0.31297 0.00157 6.00622
2000 -2.07584 1.03129 0.92195 -0.38731 -0.39718 0.00385 4.16785

True values -2.10000 1.00000 0.91200 -0.41000 -0.40000 0.10000

3) Under the same noise variances, compared with the
RLS algorithm, the ML-RLS algorithm produces
higher parameter estimation accuracy. Thus, the ML-
RLS algorithm shows better performance.

6. CONCLUSIONS

This paper derives an ML-RLS algorithm and an
RLS algorithm for identifying the bilinear-parameter sys-

tems with ARMA noise using the over-parameterization
method and the maximum likelihood principle. The sim-
ulation results show that the ML-RLS algorithm has a
higher estimation accuracy compared with the RLS algo-
rithm. The proposed identification algorithm for bilinear-
parameter stochastic systems with ARMA noises in this
paper can joint some recirsive and iterative schemes [52–
60] to explored new estimation algorithms for linear and
nonlinear systems and can be applied to other control and
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Fig. 1. The ML-RLS and RLS estimation errors versus t
(σ 2 = 0.502).
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Fig. 2. The ML-RLS and RLS estimation errors versus t
(σ 2 = 1.002).
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Fig. 3. The ML-RLS and RLS estimation errors versus t
(σ 2 = 1.502).

schedule areas [61–68] such as the information processing
and engineering systems by means of some mathematical
tools [69–74].
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Fig. 4. The ML-RLS parameter estimation errors versus t
with different σ 2.
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