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Anomaly Detection with GRU Based Bi-autoencoder for Industrial Mul-
timode Process
Xinyao Xu � , Fangbo Qin � , Wenjun Zhao � , De Xu* � , Xingang Wang � , and Xihao Yang �

Abstract: The anomaly detection for multimode industrial process is a challenging problem, because the multiple
operation modes present various main distributions of monitored variables, and the dynamic sequential character-
istics exist within each operation mode. This paper proposes an anomaly detection method based on sequence-
to-sequence gated recurrent units (SGRU). First, to better model both the cross-mode trends and mode-specific
sequential characteristics, a main reconstruction module and residual reconstruction module are integrated to im-
prove the ability to represent complex process. Both modules are implemented by SGRUs. Second, a reconstruction
error prediction module is designed to estimate the mean values of mode-specific reconstruction errors, which helps
to determine the more reliable alarm thresholds. Third, the two anomaly indicators are utilized to represent the
deviation degree of monitored variables against the normal conditions, according to the statistical errors and biases
of reconstructions, respectively. The effectiveness of the proposed method is validated on simulations with multi-
mode process, and on the practical data set collected from the Cleaning-in-Place multimode process of an aseptic
beverage filling line in a real factory.
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1. INTRODUCTION

Modern industrial production facilities have complex
processes and large production scales. Anomaly detection
and forewarning are vital for preventing equipment fail-
ures, product quality problems, and even severe accidents.
Since extensive sensors are deployed in industrial process
monitoring, massive data can be collected for real-time
anomaly detection [1]. Anomaly detection is usually re-
alized by monitoring the deviation of current status from
normal conditions.

There could be a single operation mode or multiple
operation modes in an industrial process. The statistical
methods are usually applied to monitor the single-mode
process [2–9], among which the multivariate statistical
process monitoring (MSPM) methods are widely used.
Neural networks are widely used to describe complex sys-
tems that are difficult to be modeled mathematically. For
example, fuzzy neural networks are promising to describe
the complex systems with uncertain factors [10–12]. Neu-
ral network based methods are also proposed to monitor
the industrial process with single operation mode [13,14].

Real industrial production lines are generally adjusted
due to many factors such as production schedules and mar-
ket changes. Hence, an industrial process can include a
variety of operating modes. For the industrial processes
with multiple operation modes, working conditions can be
changed significantly according to the production strate-
gies. Thus, the monitored variables fluctuate in multiple
working ranges, making data multimodally distributed. K-
Nearest Neighbor [15] and kernel function method [16]
can be used to remove the mode-specific characteristics.
Then, traditional methods with unimodal data distribu-
tion assumptions can be applied to monitor the processes.
Deep neural network based autoencoders are widely ap-
plied to monitor multimode processes [17–20] as well. To
model the dynamic characteristics of industrial processes,
the sliding window strategy is generally used to sample
the sequences with sequential characteristics. Wu et al.
proposed an adaptive method to detect abnormal tenden-
cies [20]. The window-based local adaptive standardiza-
tion (LAS) strategy is developed to remove mode-specific
characteristics of data, then the process is monitored with
a Long Short-Term Memory (LSTM) network based au-
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toencoder [21]. The model keeps good performance when
encountering new operation modes. Multiple models can
be used to monitor the multimode process [22], by using
an individual model for each operation mode. Decision-
function based methods firstly classify the mode types,
then conduct the estimation according to the correspond-
ing mode [23–26]. However, the inaccurate classifica-
tion might lead to false detection. Bayesian-fusion meth-
ods fuse the results from multiple models in probabilistic
ways, to provide more robust results [27,28]. When the
distributions of different modes overlap with each other,
the multiple-model based methods might have degraded
accuracy, because of the ambiguity of mode identification.

Due to the complexity of multimode industrial pro-
cess, the monitoring of the multimode industrial process
is still challenging. Many industrial processes are consec-
utive production processes with various dynamic sequen-
tial characteristics. However, many methods only focus
on the industrial processes’ statistical features but neglect
the modeling of sequential characteristics. The sequential
characteristics are important to reflect the working states
of the industrial process, which should be modeled and
monitored properly. Moreover, the task goals of different
operation modes are different, so that the monitored vari-
ables usually switch among different working ranges. The
changes of working ranges lead to varying sequential char-
acteristics, which increases the complexity of the process
monitoring.

Autoencoders have good representation ability for se-
quential data, which is promising for modeling industrial
processes with complex characteristics. The sequence-to-
sequence based model [29] reconstructs the process with
only an initial state that contains the process dynamics.
However, 1) it’s challenging for a single model to con-
currently capture the cross-mode trends and the multi-
ple mode-specific sequential characteristics under differ-
ent ranges. 2) Reconstruction errors under different oper-
ation modes have different distributions, which might lead
to unreliable alarm thresholds.

Considering the above limitations, we propose a novel
anomaly detection method to detect the anomalies in
multimode industrial process. The main contributions are
listed as follows:

First, the Bi-SGRU model is proposed to analyze the
multimode industrial process with mode-specific sequen-
tial characteristics. 1) A main reconstruction module is
utilized to model the overall features. 2) A residual re-
construction module is utilized to capture the residual fea-
tures neglected by the main reconstruction module. Bi-
SGRU is the integration of the two modules, which fo-
cus on the cross-mode trends and mode-specific sequen-
tial details, respectively. Thus, the two-stage architecture
enables the model to gain better reconstruction precision
for multimode process with smaller network size.

Second, the model is further applied to detect anoma-

lies in multimode processes. 1) A reconstruction error
prediction module is designed to estimate the mode-
specific reconstruction errors, to determine the alarm
thresholds more reliably when operation mode varies. 2)
Two anomaly indicators are proposed to indicate the de-
viations of reconstruction errors and biases, respectively.
The final detection result is determined jointly by the two
indicators, which is more accurate than the result using the
basic Mahalanobis distance.

The remainder of this paper is organized as follows:
Section 2 introduces preliminaries of the work. The pro-
posed method is presented in Section 3. Simulations and
experiments are conducted in Section 4. Finally, the con-
clusion is given in Section 5.

2. PRELIMINARIES

2.1. Anomaly detection with autoencoder
As a popular unsupervised framework, autoencoder has

been widely applied to extract representations from mas-
sive unlabeled data collected from industrial facilities
[30,31]. Similar to Principal Component Analysis (PCA)
and other dimension-reduction algorithms, autoencoder
networks are designed to extract concise low-dimension
features from complex processes. The original inputs can
be recovered from these features. Many works apply
autoencoder-based methods to monitor the status of indus-
trial equipment and processes [13,14,17–20,32]. Gener-
ally, these methods construct feature projection functions
and inverse projection functions based on neural networks,
which are trained only on normal samples. The distribu-
tions of reconstruction errors given the normal samples are
generally unimodal. Thus, given an abnormal sample as
input, the reconstruction error is expected to deviate from
the learned unimodal distribution, so that the anomaly can
be detected. The higher reconstruction error indicates the
larger deviation. Mahalanobis distance is a general indica-
tor to estimate the reconstruction errors. The Mahalanobis
distance score s between XXX and its reconstruction X̂̂X̂X can
be used as the anomaly indicator, as calculated by

eee =
∣∣X̂̂X̂X−XXX

∣∣ , (1)

s = (eee−µµµ)ΣΣΣ
−1 (eee−µµµ)T , (2)

where eee is the absolute difference between input XXX and its
reconstruction X̂̂X̂X . s is the anomaly score, µµµ and ΣΣΣ denote
the mean vector and covariance matrix of eee over all the
training samples. Some works also took models’ training
losses as indicators [14,20]. The alarm thresholds of the
anomaly indicators are estimated by Kernel Density Esti-
mation (KDE),

p(s) =
1

hn

n

∑
i=1

K
(

s− si

h

)
, (3)

∫ Ts

−∞

p(s)ds = α, (4)
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Fig. 1. Sliding window and autoencoder-based anomaly
detection for multimode process. The circled num-
bers on top of the curve show the three different
operation modes in the industrial process.

where p(s) is the probability density of anomaly score s,
si is the ith anomaly score, n is the number of samples, h is
the bandwidth parameter, and K(·) is the kernel function.
In this paper, we used the radial basis kernel function. Ts

is the alarm threshold, determined by the predefined con-
fidence level α .

To model the sequential characteristics, the sliding win-
dow strategy is utilized, as illustrated by Fig. 1. The n se-
quential data points

[
XXX t−n+1, XXX t−n+2, · · · , XXX t

]
within the

time window are used to monitor the status at time step t.

2.2. GRU based autoencoder
In recent years, various neural network models have

been widely applied to describe multivariate complex pro-
cesses. Among them, Recurrent Neural Network (RNN) is
one type of architectures specifically designed for sequen-
tial data processing [33]. It can take into account both the
morphological characteristics and dynamic trends of the
process data simultaneously. GRU is an RNN variant with
greater description capability and more concise structure.
It is the ideal model for multimode process description.
There are two typical RNN based autoencoder architec-
tures, whose unrolled structures are shown in Fig. 2. For
expression briefness, we assume the length of the sequen-
tial data is 3. Under the first architecture, the encoder E
firstly converts the time series input SSSt = [XXX t−2, XXX t−1, XXX t ]
to the time series of hidden states [hhht−2, hhht−1, hhht ], which is
further decoded as the series of hidden states [ĥ̂ĥht−2, ĥ̂ĥht−1,
ĥ̂ĥht ] by the decoder D, as illustrated in Fig. 2(a). Finally,
the reconstruction [X̂̂X̂X t−2, X̂̂X̂X t−1, X̂̂X̂X t ] is recovered from [ĥ̂ĥht−2,
ĥ̂ĥht−1, ĥ̂ĥht ] by the linear transformation WWWhhh+bbb. The second
RNN based autoencoder architecture has the sequence-to-
sequence form [29]. Differently, it firstly infers the hidden
state hhht at the latest time step t, according to the time se-
ries input SSSt = [XXX t−2, XXX t−1, XXX t ]. Then, the hidden states

(a) (b)

Fig. 2. Comparison of two autoencoder architectures. The
RNN structures are unrolled over time steps and
the sequence length is assumed as 3. D and E mean
the encoder and decoder, respectively. (a) Stan-
dard architecture, (b) Sequence-to-sequence archi-
tecture.

[ĥ̂ĥht−2, ĥ̂ĥht−1, ĥ̂ĥht ] are recovered based on only the single vec-
tor hhht , as is illustrated in Fig. 2(b). The final reconstruc-
tion is also obtained by the linear transformation. In com-
parison, using the first architecture, the reconstruction at
time step t highly relies on the current input, lacks the
awareness of the dynamic sequential characteristics. Us-
ing the second architecture, the model is forced to encode
the dynamic sequential characteristics into a single vector,
so that the time series can be reconstructed from this vec-
tor. Therefore, we prefer to use the sequence-to-sequence
architecture to form the autoencoder with better represen-
tation ability of sequential characteristics.

3. METHODS

3.1. Bi-SGRU autoencoder for multimode process
In many industrial processes, the multimode operations,

such as heating, sterilization, and cooling, are combined to
realize the whole production. Between the different oper-
ation modes, the monitored variables have different dis-
tributions. Moreover, within a single operation mode, the
monitored variables can also present the specific sequen-
tial characteristics, which are called detail features and are
important for anomaly recognition, as shown in Fig. 1.
The variation scale of the detail features might be rela-
tively small compared to the cross-mode variation scale.
Thus, it is difficult to jointly reconstruct the main cross-
mode features and the detail features with a single autoen-
coder.

Inspired by the idea of boosting algorithm, we propose
a Bi-SGRU autoencoder to reconstruct the sequential vari-
ables monitored in multimode process, which consists of
a main reconstruction module, a residual reconstruction
module, and a reconstruction error prediction module, as
shown in Fig. 3.

First, the main reconstruction module is a SGRU based
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Fig. 3. Architecture of Bi-SGRU. The sequential length is assumed as 3. (a) Main reconstruction module. EM, DM are
its encoder and decoder, respectively. (b) Residual reconstruction module. ER, DR are its encoder and decoder,
respectively. hhhR

i , hhhM
i , ĥ̂ĥhR

i , and ĥ̂ĥhM
i are the hidden states. (c) Reconstruction error prediction module, eeept denotes the

predicted error at time t. nh and nX are the dimensions of the hidden state hhh and the input XXX , respectively.

autoencoder for main feature reconstruction. For expres-
sion briefness, the input sequential length is assumed as
3. The main reconstruction module’s input and output are
SSSt = [XXX t−2,XXX t−1,XXX t ] and Ŝ̂ŜSM

t = [X̂̂X̂XM
t−2, X̂̂X̂X

M
t−1, X̂̂X̂X

M
t ], respec-

tively. The main reconstruction is realized by

hhhM
t = fme (SSSt) , (5)

X̂̂X̂XM
t−k =

 fMLP

[
fmd

(
ĥ̂ĥh

M
t−k+1, X̂̂X̂X

M
t−k+1

)]
, (k > 0),

fMLP
(
hhhM

t

)
, (k = 0),

(6)

where fme(·), fmd(·) and fMLP(·) denote the functions im-
plemented by the SGRU encoder, SGRU decoder and
multi-layer perceptron (MLP) net of the main reconstruc-
tion module, respectively. fme(·) involves the whole en-
coding process. fmd(·) and fMLP(·) only involve the calcu-
lation of single time step.

When k = 0, since X̂̂X̂XM
t+1 is lacked in the first inferring

step of decoder, X̂̂X̂XM
t is directly calculated by the MLP

net with ĥ̂ĥhM
t = hhhM

t , as shown by the dashed rectangle in
Fig. 3(a).

Second, the residual reconstruction module is designed
to capture the residual detail features neglected by the
main reconstruction module. The residual feature RRRt is
given by

RRRt =XXX t − X̂̂X̂XM
t . (7)

Thus, after the main features are removed from the raw
input, the residual features are more significant for mod-
eling. The residual reconstruction module is also imple-
mented by SGRU, whose structure is different from the
main reconstruction module. As shown in Fig. 3(b), the re-
constructed main feature X̂̂X̂XM

t−k+1 is also fed to the decoder

to predict the residual feature at time t−k. The sequential
characteristics of different modes are different. To provide
the awareness of the specific mode for residual decoding,
X̂̂X̂XM

t−k+1 and R̂̂R̂Rt−k+1 are concatenated and input to the de-
coder of R̂̂R̂Rt−k. The residual reconstruction is expressed by

hhhR
t = fre

(
SSSt − Ŝ̂ŜSM

t

)
. (8)

X̂̂X̂Xnew
t−k+1 =

[
X̂̂X̂XM

t−k+1, R̂̂R̂Rt−k+1
]
, (9)

R̂̂R̂Rt−k =

 fMLP

(
frd

(
ĥ̂ĥhR

t−k+1, X̂̂X̂X
new
t−k+1

))
, (k > 0),

fMLP
(
hhhR

t

)
, (k = 0),

(10)

where fre(·) and frd(·) denote the functions implemented
by the SGRU encoder and SGRU decoder of the residual
reconstruction module.

Third, the final reconstruction is the sum of the main
reconstruction and the residual reconstruction, as given by

X̂̂X̂X t = X̂̂X̂XM
t + R̂̂R̂Rt . (11)

3.2. Reconstruction error prediction for anomaly de-
tection

For industrial multimode process, the feature scales and
noise levels of the same monitored variables are usually
different under different operation modes. Consequen-
tially, the reconstruction error distribution varies between
different operation modes, which affects the calculation of
alarm thresholds of anomaly indicators.

Therefore, we additionally design a reconstruction error
prediction module, utilizing hidden states of the decoders
of the main and residual reconstruction modules to predict
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the mean values of the reconstruction errors,

eeept = fREP

([
ĥ̂ĥhM

t , ĥ̂ĥhR
t

])
, (12)

where fREP denotes the function of reconstruction error
prediction module.

The actual reconstruction error is given by the absolute
difference

eeet =
∣∣X̂̂X̂X t −XXX t

∣∣ . (13)

By subtracting the predicted mean error from the actual
error, eeet − eeept is considered zero-centered, which can be
used to determine the alarm thresholds more accurately.

3.3. Training loss
The main reconstruction module, residual reconstruc-

tion module, and reconstruction error prediction module
are optimized one by one: First, the main reconstruction
module is trained individually. Second, the residual recon-
struction module is trained while the weights of the main
reconstruction module are frozen. Finally, the reconstruc-
tion error prediction module is trained, while the weights
of the above two modules are frozen. The training loss
functions for the three modules are as follows:

LM =
1
n

n

∑
i=1

(
XXX i− X̂̂X̂XM

i

)2
, (14)

LR =
1
n

n

∑
i=1

(
XXX i− X̂̂X̂XM

i − R̂̂R̂Ri
)2
, (15)

LREP =
1
n

n

∑
i=1

(∣∣XXX i− X̂̂X̂XM
i − R̂̂R̂Ri

∣∣−eeepi

)2
, (16)

where n is the sequence length of the input sample.

3.4. Measurement of anomalies
The anomaly degree of samples can be indicated by

their reconstruction errors. The higher reconstruction er-
ror indicates the larger probability of anomaly. The Maha-
lanobis distance is a popular indicator [29,32]. However,
Mahalanobis distance might be affected by the fluctua-
tions and noises. As shown by the 2D example in Fig. 4,
the samples in set 1 (blue) and set 2 (red) have similar
average Mahalanobis distance values to the zero-centered
basic Gaussian distribution (green). The samples in set 1
are generated from the basic Gaussian distribution, and the
average distance is 1.846. The samples in set 2 are gener-
ated from a different Gaussian distribution with a biased
center, and the average Mahalanobis distance is 1.772.
Therefore, the distinction ability of Mahalanobis distance
might degrade under noisy fluctuations.

To overcome the problem, we proposed the two indica-
tors, the statistical reconstruction error based distance set
and the statistical reconstruction bias based distance sbt ,

-4 -2 0 2 4

-4

-2

0

2

4

basic

set1

set2

center

Fig. 4. Example to illustrate the limitation of Mahalanobis
distance based indicator. The average deviation
scores of the samples in set 1 and set 2 are simi-
lar using Mahalanobis distance.

which are calculated by

eeeet =
1
n

n−1

∑
k=0

(∣∣X̂̂X̂X t−k−XXX t−k
∣∣−eeept−k

)
, (17)

set = (eeeet −µµµ1)ΣΣΣ
−1
1 (eeeet −µµµ1)

T , (18)

eeebt =
1
n

n−1

∑
k=0

(
X̂̂X̂X t−k−XXX t−k

)
, (19)

sbt = (eeebt −µµµ2)ΣΣΣ
−1
2 (eeebt −µµµ2)

T , (20)

where eeeet , eeebt represent the statistical error and statistical
bias of reconstruction. set and sbt are anomaly indicators.
µµµ1, ΣΣΣ1 and µµµ2, ΣΣΣ2 are the mean vectors and covariance
matrices of eeeet and eeebt , respectively.

The alarm thresholds of set and sbt are estimated by
Kernel Density Estimation. Besides, the smoothing filter
is applied to the sequential anomaly scores, as realized by

Set =
∑

m−1
k=0 ckset−k

∑
m−1
k=0 ck

, (21)

Sbt =
∑

m−1
k=0 cksbt−k

∑
m−1
k=0 ck

, (22)

where m is the length of the filtering time window, and c is
a decay parameter. Set and Sbt are the final anomaly scores
output by the filters.

The anomaly detection process is summarized in Fig. 5.
Anomaly signals are emitted when one or both indica-
tor values exceed the corresponding alarm thresholds. In
Fig. 5, the upper thresholds and the lower thresholds of
monitored variables are predefined, which are calculated
by the working ranges of those variables.

4. SIMULATIONS AND EXPERIMENTS

Simulations and experiments were conducted to ver-
ify the effectiveness of the proposed model. The exper-
iments were based on the temperature monitoring data,
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Fig. 5. The flow chart of the method.

which was collected from a practical aseptic beverage fill-
ing line. The hardware configurations include an Intel i9-
9900 CPU and an NVIDIA 2080ti GPU. The deep learn-
ing framework is Pytorch 1.6.0.

4.1. Anomaly detection with multimode simulation
process

The simulation process is generated by (23). It includes
four observation variablesYYY (t) = [y1(t), y2(t), y3(t), y4(t)]
and four source variables UUU(t) = [u1(t), u2(t), u3(t),
u4(t)].

YYY (t) = (1− γ)YYY (t−1)+ γAAAUUU (t) , (23)

AAA =


0.5 0.0 0.5 1
0.0 0.5 0.5 1
0.2 0.2 0.6 1
0.5 0.5 0 1

 , (24)

where AAA is the transform matrix, γ is a weight, which was
set as 0.8 in this simulation.

u1(t) = H1 sin(ωt +b)+n1(t), (25)

u2(t) =

{
H2∆t +n2(t), ∆t < 2 p1,

H2(2 2 p1−∆t)+n2(t), ∆t ≥2 p1,
(26)

(∆t = t−bt/2 p2c2 p2),

u3(t) =

{
−H3 +n3(t), ∆t < 3 p1,

H3 +n3(t), ∆t≥ 3 p1,
(27)

(∆t = t−bt/3 p2c3 p2),

u4(t) = bias, (28)

Table 1. Parameter settings of three modes.

Mode no. H1 ω(/s) b H2(/s) 2 p1(s)
1 0.2 0.8π 0.5π 0.0 0.0
2 0.3 1.6π 0.25π 0.2 2.4
3 0.1 1.5π -0.25π 0.2 0.8

Mode no. 2 p2(s) H3
3 p1(s) 3 p2(s) bias

1 0.0 0.2 4.5 9.0 0.2
2 4.8 0.0 0.0 0.0 0.5
3 1.6 0.2 5.4 9.0 0.7

0 50 100 150

T (s)

-0.5

0

0.5

1

y
1

y
2

y
3

y
4

Fig. 6. Visualization of the simulation process.

where u1(t), u2(t), u3(t), u4(t) are signal sources: u1(t),
u2(t), u3(t) are three dynamic sources: u1(t) is a sinu-
soidal signal. u2(t) is a saw-tooth signal with period 2 p2,
signal reaches its peak value at ∆t = 2 p1. u3(t) is a step
signal with period 3 p2 and duty ratio (1− 3 p1/

3 p2). b·c
denotes the rounding down operation. u4(t) is a static bias
signal that is specific to each mode. n1(t), n2(t), n3(t) are
mode-specific noise items with distribution N(µ,σ): n1(t)
∼ N(0,0.1), n2(t) ∼ N(0,0.05) and n3(t) ∼ N(0,0.01).

The parameters used in the simulation process include
[H1, ω , b, H2, 2 p1, 2 p2, H3, 3 p1, 3 p2, bias], whose values
under the three operation modes are shown in Table 1. The
physical units are listed in brackets beside the parameters’
names. The simulation process is visualized in Fig. 6. The
sampling interval is 0.05 seconds.

The Diff-PCA [15], LAS-VB [20], GRU-AE, SGRU
[29] and the proposed Bi-SGRU were compared in this
section. GRU-AE was a GRU autoencoder with the stan-
dard structure. Since the functions of LSTM and GRU are
similar, the method with LSTM in [29] was replaced with
SGRU in order to compare more fairly. Models’ structure
configurations are displayed in Table 2. The two numbers
in the brackets denote the [input dimension, output di-
mension] of the network. The MLP based reconstruction
error prediction module had three layers, whose dimen-
sions were 48, 24, and 4, respectively. The filter size of
Bi-SGRU was 20 and the decay parameter c was 0.8.

The training set was a normal sequence collected within
4000 seconds. Data switched among three modes periodi-
cally. Each mode continued for 100 seconds. Another nor-
mal sequence lasting for 4000 seconds was used to calcu-
late the alarm thresholds. The initial states of the observed
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Table 2. Configurations of different autoencoders.

Model Encoder struc. Decoder struc.
LAS-VB [20] LSTM [4,48] LSTM [48,4]

GRU-AE GRU [4,48] GRU [48,4]
SGRU [29] GRU [4,48] GRU [4,48]

Bi-SGRU (main) GRU [4,48] GRU [4,48]
Bi-SGRU (residual) GRU [4,48] GRU [8,48]

variables were set as [y1(0), y2(0), y3(0), y4(0)] = [0,
0, 0, 0], and the initial time was set as tini = 0 second.
The mode switching order of the process followed the
cycle of “Mode 1→Mode 2→Mode 3”. All the thresh-
olds were calculated by Kernel Density Estimation with
α = 0.95. Diff-PCA’s inputs were individual multivariate
data, which were represented by 4D vectors. The num-
ber of principal components was determined by cumula-
tive percent variance (CPV), which was set as CPV≥ 0.85.
Except for Diff-PCA, the other four autoencoders used
the sequential inputs segmented by a sliding window with
length 80 and step 10. Thus, each sample was expressed as
an 80*4 matrix. The first 80% samples in the training set
were used for model training and the rest samples for val-
idation. The Adam optimizer was adopted, and the max
training iteration was 800. The initial learning rate was
0.001 and decayed by 0.8 every 80 iterations. The train-
ing process ended when the training procedure reached the
max iteration or the loss on the validation set converged.

The sequential signal y2 and its reconstruction with the
proposed Bi-SGRU are shown in Fig. 7. The main re-
construction module reconstructed the main trends of the
curve, but it could not capture the jagged detail features.
With the residual reconstruction module, the residual fea-
tures neglected by the main reconstruction module could
be precisely reconstructed, so that the final reconstruction
results reflected both the main trends and the detailed se-
quential characteristics. Fig. 8 shows the reconstruction
errors eeee before and after using the reconstruction error
prediction and subtraction. After predicted mean recon-
struction errors were subtracted from eeee, the results were
zero-centered and more suitable for anomaly detection.

Four types of anomalies were designed, including two
deviations of frequency parameters and two deviations of
amplitude parameters. For each anomaly type, 10 devi-
ation settings were used, which denote different degrees
of deviation. Details of anomalies are described in Ta-
ble 3. The length of the test sequence was 1100 seconds
(2192 samples). The initial settings of the simulation sys-
tem were the same as for the training set, except for the
mode type. The formal records started from the 50th sec-
ond (92nd sample) to avoid the initial unstable switching
process. Anomalies started from the 300th second (592nd
sample). The fault detection rate (FDR) was used as the
evaluation metric.
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Fig. 7. Reconstructions of sequential signal y2. ‘ori’ de-
notes the raw input sequence. ‘main’ denotes the
signal reconstructed by the main reconstruction
module. ‘total’ denotes the final reconstructions
determined by both the main and residual recon-
struction modules.
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Fig. 8. Comparison of reconstruction error ee of y1 before
and after using the reconstruction error prediction
and subtraction.

Table 3. Deviations to generate simulated anomalies.

No. Mode Para. Deviations

1 2 ω
-π , -0.8π , -0.6π , -0.4π , -0.2π ,

+0.2π , +0.4π , +0.8π , +1.2π , +1.6π

2 3 3 p1
-3.0, -2.4, -1.8, -1.2, -0.6,

+0.6, +1.2, +1.8, +2.4, +3.0

3 2 H1
-0.25, -0.20, -0.15, -0.10, -0.05,

+0.10, +0.15, +0.20, +0.25, +0.30

4 1 bias -0.15, -0.10, -0.08, -0.05, -0.02,
+0.10, +0.20, +0.30, +0.40, +0.50

Table 4. Average FDR (%) of different models for 4 sim-
ulated anomalies.

Model A1 A2 A3 A4
Diff-PCA (T2-diff) 0.0 0.0 0.0 19.37
Diff-PCA (q-diff) 6.70 0.33 24.09 42.99

LAS-VB 0.73 0.41 12.30 5.47
GRU-AE 36.82 19.54 52.90 61.82

SGRU 99.81 16.57 21.48 89.97
Bi-SGRU 99.96 85.59 78.69 94.32

The average anomaly detection rates of models under
different simulation settings are shown in Table 4. ‘Ai’ de-
notes the anomaly type i. The proposed model achieved
the best average performance. The detailed detection per-
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Fig. 9. Detection results for 4 kinds of anomalies under different simulated deviation degrees. (a) Anomaly 1, caused by
frequency deviation. (b) Anomaly 2, caused by duty-ratio deviation. (c) Anomaly 3, caused by amplitude deviation.
(d) Anomaly 4, caused by static bias deviation. ‘LAS-VB(*)’ shows the LAS-VB’s detection results for the first
40 anomaly samples.

formances under different deviation degrees are shown in
Fig. 9. Each sub-figure shows the models’ performances
for an anomaly under different deviation settings.

The deviations of frequency parameters are simulated
as the abnormal sequence characteristics, which could not
be modeled by Diff-PCA. Therefore, Diff-PCA failed to
detect anomaly 1 and anomaly 2, as shown in Figs. 9(a)
and 9(b). The LAS-VB could only detect the abnor-
mal biases with significant deviation degree, as shown in
Figs. 9(c) and 9(d). With the window-based standardiza-
tion strategy LAS, the LAS-VB removed stable abnormal
features of static bias signal u4. Therefore, the LAS-VB
only detected the first few abnormal samples with abnor-
mal tendencies. Under the setting of anomaly 4 with the
deviation 0.5, the detection accuracy of LAS-VB(*) was
significantly higher than LAS-VB, as shown in Fig. 9(d).
The GRU-AE with the standard autoencoder structure was
compared to the SGRU with the sequence-to-sequence
structure. The SGRU could detect the abnormal sequen-
tial characteristics caused by the deviation of frequency
parameter ω . In contrast, the GRU-AE with the standard
autoencoder structure had a lower detection accuracy, as
shown in Fig. 9(a). In comparison, the Bi-SGRU had the
best overall anomaly detection accuracy.

Fig. 10 displays the detection results of three different
methods under the five anomaly deviation settings. The

Diff-PCA could not distinguish the samples with abnor-
mal sequential characteristics from normal ones, as shown
in Fig. 10(a). The sinusoidal signal u1 data points with
the abnormal amplitude H1 were partially misidentified
as normal ones, causing the periodic alarms shown in
Fig. 10(b).

For the SGRU, the training samples from different oper-
ation modes had reconstruction errors with different distri-
butions, which affected the estimation of the alarm thresh-
old. The calculated alarm threshold of SGRU was too
high to detect the anomalies in Fig. 10(c). Meanwhile, the
alarm threshold was too low for the samples from opera-
tion mode 1, the model gave frequently false alarms to the
normal samples in Fig. 10(d). After the subtraction of pre-
dicted reconstruction errors, this influence of distribution
changes on the alarm threshold calculation was greatly re-
lieved. The comparison of Figs. 10(e) and 10(f) shows that
the indicator Sb had the ability to detect the abnormal bi-
ases, which could not be reflected by Se.

Fig. 11 visualizes the data distributions of the nor-
mal data points and abnormal data points under differ-
ent anomaly settings. The normal data points displayed
a complex non-unimodal distribution in the original data
space, as shown in Fig. 11(a). After reconstruction, the
reconstruction errors of the normal data fitted an ap-
proximate unimodal distribution, as the red clusters in
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Fig. 10. Anomaly detection results using three different methods. The horizontal red dashed lines indicate the alarm
thresholds. The vertical green lines indicate the start time of anomalies. (a) Diff-PCA (q-diff) (anomaly 1,
deviation= 0.8π) (b) Diff-PCA (q-diff) (anomaly 3, deviation= 0.2). (c) SGRU (anomaly 3, deviation= −0.2)
(d) SGRU (anomaly 4, deviation= −0.1). (e) Bi-SGRU (Se) (anomaly 4, deviation= −0.05). (f) Bi-SGRU (Sb)
(anomaly 4, deviation=−0.05).
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Fig. 11. Data distribution of original records, reconstruction errors, and reconstruction biases along axes y1,y2, and y4.
The normal data points are shown in red.There are 8 different anomaly settings, and the abnormal data points
under each anomaly setting are shown by a different color. ‘Ai_d’ denotes the simulation setting of Anomaly type
i with the deviation d. (a) Distributions of the original records. (b) Distributions of the reconstruction error ee. (c)
Distributions of the reconstruction bias eb.

Fig. 11(b) and Fig. 11(c). Moreover, although abnormal
data points heavily overlapped with normal data points in
the original data space, they were distinguishable in recon-
struction error space. Consequently, the anomalies could
be identified by relatively simple borders.

The fitting abilities of SGRU and Bi-SGRU were fur-
ther compared under the different hidden node number
configurations. The network’s size was denoted with the
number of parameters, as the values under the points in
Fig. 12. The fitting ability was evaluated by the recon-
struction errors, indicated by Mean Square Error (MSE).
The lower error means the better fitting ability. As shown
in Fig. 12, the proposed Bi-SGRU provided significantly
lower reconstruction errors with smaller network sizes,

compared to the SGRU, which demonstrated that the Bi-
SGRU had the improved fitting ability for the sequential
data of the multimode process.

4.2. Anomaly detection experiment with real multi-
mode process

The anomaly detection experiment on the real industrial
multimode process was conducted on the Cleaning in
place (CIP) process of an aseptic filling line of a beverage
factory. CIP is the process of cleaning the inner surface
of the production equipment and transportation pipelines.
It is a necessary step before performing beverage filling
operations. The CIP process is executed by the CIP auto-
matic washer, which mainly consists of acid storage tanks,
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Fig. 13. CIP procedure with five steps.

lye storage tanks, water storage tanks, and related control
valves.

As shown in Fig. 13, the CIP process mainly consists of
five steps, including 3 operation modes. Firstly, the warm
water flows through the equipment to rinse the residue
inside equipment and pipelines. Secondly, NaOH solu-
tion in the lye storage tank flows through the equipment
to decompose residual protein and fat scaling. Thirdly,
warm water is flowed through again to remove the resid-
ual NaOH solution inside the equipment. Afterward, nitric
acid solution is used to remove the scaling of the inorganic
salts. Finally, a washing process is conducted to remove
residual nitric acid solution. The temperature settings of
the alkaline cleaning process and the acid cleaning pro-
cess range between 80-85◦C and 70-75◦C, respectively.

Records of four temperature sensors were used in this
experiment. These sensors corresponded to the CIP pro-
cesses of a balance tank. Only the records during CIP
processes were analyzed. The sampling interval was 10
seconds. Fig. 14 shows the normal temperature trends of
a CIP process. Values had been normalized to [0, 1] in
advance. The process could be divided into three stable
cleaning modes and the transitions among them. The valve
monitored by signal 2 opened periodically, which caused
periodic fluctuations of signal 2. During the transition be-
tween the first washing process and the alkaline washing
process, water was gradually flowed out from the turbines
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Fig. 14. Normal trends of 4 temperature sensors.

Table 5. Configurations of different autoencoders.

Model Encoder struc. Decoder struc.
LAS-VB [20] LSTM [4,72,36] LSTM [36,72,4]

GRU-AE GRU [4,72,36] GRU [36,72,4]
SGRU [29] GRU [4,72,72] GRU [4,72,72]

Bi-SGRU (global) GRU [4,72,72] GRU [4,72,72]
Bi-SGRU (detail) GRU [4,72,72] GRU [8,72,72]

and tank by nitrate solution, which caused the temperature
fluctuations during the transition.

We collected the records of 27 entire normal CIP pro-
cesses on the production line, to construct the training set.
After data normalization, the sliding window method was
used to convert the original record data to sequential sam-
ples. The length of the sliding window was 40 and the slid-
ing step was 3. Thus, about 2800 samples were extracted
in total. Among them, 2500 normal samples were used for
model training and another 300 normal samples were used
for validation. The validation set was applied to estimate
the alarm threshold as well. Another 60 completely doc-
umented records collected within 8 months were used for
model testing. 20 records among them were normal and
the rest included anomalies. Moreover, with time shifted,
the working states of the production line drifted from the
initial states. Within the 40 abnormal records, approximate
20 records with drifted values were considered as abnor-
mal ones. Alarm to the abnormal record was considered
as true positive detection. Alarm to the normal record was
considered as false positive detection.

Since the transition duration between different opera-
tion modes is short, the samples describing transition are
inadequate in number for training. As a result, the trained
model might incorrectly output alarm during transitions.
Therefore, only when at least L consecutive alarms are
given, the alarm for the current record is considered valid.

The autoencoder-based anomaly detection methods
used in Subsection 4.1 were compared with the afore-
mentioned real data of CIP process. The configurations of
model structures are listed in Table 5. The values in brack-
ets denote the [input dimension, hidden dimension, output
dimension] of SGRUs. The reconstruction error predic-
tion network of Bi-SGRU was a MLP with three layers,
whose dimensions were [72,36,4]. The training settings of
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Table 6. Training parameter configurations.

Parameters Settings
Optimizer Adam optimizer

Maximum iteration 500
Batch size 40

Initial learning rate 0.001
Decay ratio of learning rate 0.8

Decay period 40 iterations

Table 7. Anomaly detection accuracies (%) of different
models for abnormal records under different set-
tings of L.

Model L = 1 L = 3 L = 5 L = 7 L = 9
LAS-VB 55 30 17.5 17.5 7.5
GRU-AE 100 100 100 97.5 87.5

SGRU 100 100 100 100 90
Bi-SGRU 100 100 100 97.5 97.5

Table 8. False detection rates (%) of different models for
normal records under different settings of L.

Model L = 1 L = 3 L = 5 L = 7 L = 9
LAS-VB 70 0 0 0 0
GRU-AE 65 65 60 45 5

SGRU 90 50 50 30 0
Bi-SGRU 50 35 20 5 0

all methods were the same, as shown in Table 6. The alarm
thresholds were calculated by Kernel Density Estimation
with α = 0.99. A filter window was applied to calculate
the smoothed results. Its window size was 20. The decay
parameter c was 0.8.

Tables 7 and 8 show the detection performances using
the metrics of detection accuracy and false detection rate.
Note that the alarm thresholds of GRU-AE and SGRU
were calculated by all the 2800 samples using traditional
indicators of Mahalanobis distance. As L increased, the
false detection rate of each model decreased, meanwhile,
some abnormal records were also missed in detection. Al-
though the LAS-VB had the lowest false detection rates
under the 5 settings, it had low detection accuracy for ab-
normal records as well. The Bi-SGRU achieved the high-
est detection accuracy for abnormal records, and the rela-
tive low false detection rates for normal records.

Fig. 15 shows the detailed detection results of three ab-
normal records. All the alarm thresholds were calculated
with merely the validation set. As shown in Figs. 15(a)-
15(c), the 3 sequential records had different abnormal se-
quential characteristics, which are abbreviated as ‘R_a1’,
‘R_a2’ and ‘R_a3’, respectively. Signal 2 in ‘R_a1’ had no
response during the whole process, namely deviated from
the normal working range. In Fig. 15(b), an obviously un-

stable transition occurred between the first washing pro-
cess and the alkaline washing process. In Fig. 15(c), two
anomalies occurred: First, the unstable records occurred
during the alkaline washing process. Second, compared
with the normal values during the water washing pro-
cess (around 0.4), the records after the alkaline process
dropped to 0.2 rapidly, showing the significantly irregular
trends.

The rest sub-figures Figs. 15(d)-15(r) show the anomaly
detection results of the four different models. Since the
monitored sequences were segmented by a sliding win-
dow with size 40, the evaluation started from the 40th
time step of the original records. For LAS-VB, the lo-
cal adaptive standardization (LAS) strategy could remove
the mode-specific statistical biases from the multimode
process data, however, it might also remove the abnor-
mal bias of Signal 2 in ‘R_a1’. This limitation led to the
false detection results in Fig. 15(d). Although LAS-VB
precisely reconstructed process records, it failed to extract
the valid features of process dynamics, and failed to de-
tect the abnormal trend, as is shown by the similar detec-
tion results of normal and abnormal samples in Figs. 15(e)
and 15(f). GRU-AE and SGRU based methods could de-
tect all the anomalies. However, the low alarm thresholds
caused many false alarms in ‘R_a2’ and ‘R_a3’, as shown
in Figs. 15(g)-15(i). In comparison, Bi-SGRU provided
the most precise indications of anomalies with sequential
characteristics, as shown in Figs. 15(m)-15(r). All abnor-
mal biases and trends were effectively detected with Bi-
SGRU via the combination of Se and Sb.

5. CONCLUSION

In this paper, a Bi-SGRU based anomaly detection
method is proposed to detect the abnormal sequential
characteristics in multimode industrial process. Bi-SGRU
utilizes the main and residual reconstruction modules to
concurrently model the cross-mode trends and the model-
specific sequential characteristics. Moreover, a recon-
struction error prediction module is designed to estimate
the mean reconstruction errors under specific modes, to
determine alarm thresholds more reliably under varying
operation modes. The two Mahalanobis-based anomaly
indicators are proposed according to the statistical errors
and biases of reconstructions, respectively, and jointly uti-
lized to reflect the anomaly degree. The simulations and
experiments with multiple operation modes are conducted
to verify the effectiveness of the proposed methods.

In future research, we will focus on the increment up-
dating techniques of the anomaly detection model, aiming
to enable the model to adapt to new operation mode timely
and efficiently.
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Fig. 15. Records with anomalies and models’ detection results. The black solid line shows the anomaly scores. The red
dashed line shows the alarm threshold. The first row show the original records. The second to fifth rows show the
anomaly scores over time, given by the different methods including LAS-VB, GRU-AE, SGRU and Bi-SGRU.
The three columns correspond to the three CIP processes, labeled as (R_a1), (R_a2), and (R_a3), respectively.
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