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Fuzzy Adaptive Control Law for Trajectory Tracking Based on a Fuzzy
Adaptive Neural PID Controller of a Multi-rotor Unmanned Aerial Vehi-
cle
Abigail María Elena Ramírez Mendoza � and Wen Yu* �

Abstract: This article presents a fuzzy adaptive control law (FACL) designed for tracking the trajectory of a
low-scale unmanned aerial vehicle (UAV), based on a new fuzzy adaptive neural proportional integral derivative
(FANPID) controller. FACL estimates the angles of rotation, if the reference trajectory is proposed, applying the
adaptivity of the new FANPID-Lyapunov controller. UAV parameters were previously identified using the fuzzy
adaptive neurons (FAN) method and experimental aerodynamic data. FANPID-Lyapunov controller optimizes tra-
jectory tracking and stability analysis is performed. The FACL simulation results obtained in Matlab®/Simulink
show the effectiveness, adaptivity and optimization of the flight control system, because it self-tunes the angles
satisfactorily, adapts the gains and parameter for the FANPID-Lyapunov-Fuzzy controller, and reduces the error
considerably compared to the controllers PID-Fixed gains, PID-Fuzzy adaptive gains, PID-Lyapunov-Fixed gains,
and FOPID-Lyapunov-Fuzzy adaptive gains and parameters.

Keywords: FANPID, fuzzy adaptive control law, fuzzy adaptive neurons, stability analysis, trajectory tracking,
unmanned aerial vehicle.

NOMENCLATURE

a real number 0 < a

b real number 0 < b

c real number 0 < c

c1 constant

D derivative constant

d(k) unmodeled dynamic

e(k) error

Fx, Fy, Fz forces on x, y, z axis

Fzmodel thrust force on the z axis

g acceleration of gravity

g1, g2, g3 constant gains

I integration constant

Ix, Iy, Iz moments of inertia on x, y, z axis

k time variable

kl , kp, kq, kr parameters identified in [17]

kv1, kv2, kv3, kv4 angular velocities of the propellers
[rad/second], estimated in [17]

m UAV mass

Mpmodel , Mqmodel ,
Mr model

moments with respect to the x, y, z
axes

N filter coefficient

p, q, r UAV angles for the u, v, w axis

P proportionality constant

s complex Laplace variable

U1, U2, U3, U4 modulation index, pulse width
modulation (PWM) signal at [0, 1]
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vin j(k) dendrite inputs

Vthreshold(k) threshold

win j(k) synaptic weights

Wc adaptive weight

u, v, w displacement of the UAV on u, v, w
axis of the body axes

x, y, z UAV displacement on x, y, z axis

ỹ(k) sigmoid activation function (SAF)

φ , θ , ψ angles for rolling, pitching and yaw
maneuver, at x, y, z axis

γ(k) learning factor for unipolar systems,
0 < γ ≤ 1, and for bipolar systems,
−1 < γ ≤ 1

Φ(·) a function

‖ · ‖ Euclidean norm

1. INTRODUCTION

Simplified propulsion system models and algorithms
have been designed for the control and navigation of
multi-rotor unmanned aerial vehicle (UAV) [1,2], using
various methods or approaches [3-17], to reduce the er-
ror in tracking the planned trajectory. Some of the con-
trol methods are feedback linearization-backstepping-
Lyapunov function [3], proportional-integral-derivative
(PID)-sliding mode control (SMC)-Lyapunov func-
tion technique and adaptive (PID-SMC-Lyapunov) [4],
backpropagating-SMC-Lyapunov [5], SMC-Lyapunov
[6], finite-time multiple switching SMC [7], finite-time
adaptive integral backstepping fast terminal SMC [8], im-
mersion and invariance-based SMC [9], generic adaptive
SMC [10], radial basis function neural network (NN)-
based adaptive distributed control [11], adaptive control
[12], proportional-derivative (PD)-Lyapunov, with tun-
able gains [13], fuzzy-predictive controller [14], fuzzy-
proportional-integral (PI) with fuzzy rules [15], adaptive
neural network (ANN)-Lyapunov [16], PID-fixed gains
and PID-fuzzy adaptive neurons (FAN)-self-tuning gains
[17], to obtain greater precision at system response and
reduce the error.

For controller design and accuracy determination in
[1], they propose a survey and comparison with simula-
tions about the most common elements included in quad-
rotor-vehicle models based on a typical state-space model
without memory-less transformations. This new simpli-
fied model with linear internal dynamics, low complex-
ity, and a high level of precision based on experimental
data highlights the main structural features of the models
to suggest particular quad-rotor vehicle control structures.

Authors of [2] describe an improved propulsion model
for low-scale multi-rotor UAV, including effects of airflow
speed, direction, and rotor interaction. Also, in [2], they

present two applications. The first is a propulsion enve-
lope to determine safe operating intervals for a particular
UAV, avoiding overloading the power subsystem. The sec-
ond application allows to include dynamic phenomena, for
instance, possible instability with closed-loop controllers.

In [3], a control scheme for tracking the trajectory of
an underactuated rotary-wing vehicle is proposed. And an
interconnection between translational and rotational con-
trollers based on feedback linearization and backstepping
control methods, also a Lyapunov function with the pa-
rameters of the closed-loop system controller. Numerical
simulations are shown, including disturbances in attitude
dynamics and noise.

An adaptive terminal sliding mode control and Lya-
punov functions to ensure stability developed in [4] are
used for altitude and position tracking control of quadrotor
UAV with external disturbance. In addition, they present a
PID-SMC-Lyapunov function technique for a known up-
per bound of external disturbance and an adaptive PID-
SMC-Lyapunov function for an unknown upper bound of
external disturbance.

A backpropagating constraints-based trajectory track-
ing control scheme combined with sliding-mode errors are
proposed in [5], for a quadrotor. The quadrotor system
consists of five cascade subsystems. A Lyapunov synthesis
ensures system stability. Simulations show that trajectory
tracking errors can be made arbitrarily small.

To solve precisely the trajectory-tracking problem for
a marine aerial-surface heterogeneous system composed
of UAV and unmanned surface vehicle, with unknown dy-
namics and disturbances, a coordinated trajectory track-
ing control scheme is created in [6]. The dynamics of sys-
tem tracking errors become translation-rotation cascading
manners through a family of coordinate transformations
along with rotation error dynamics based on sliding mode,
distributed tracking controllers, and Lyapunov analysis.
Simulation results and comparisons in a prototype system
demonstrate the effectiveness of the proposed scheme.

SMC is used to study the finite-time multiple switch-
ing synchronization of uncertain complex chaotic systems
with network transmission mode [7], by establishing mul-
tiple switching rules.

In [8], a quadrotor UAV flight control system is pre-
sented to improve trajectory tracking performance, which
combines a recursive methodology and a robust control al-
gorithm to design a finite-time adaptive integral backstep-
ping fast terminal SMC for position tracking and attitude
stabilization, with a smooth function to attenuate chatter.

For a tilt tri-rotor UAV subject to external disturbances
and unmodeled dynamics, authors of [9] propose an im-
mersion and invariance-based SMC.

Authors of [10] provide a generic adaptive SMC for all
types of UAV systems automatically or adaptively at pres-
ence of severe parametric uncertainties and unknown ex-
ternal disturbances.
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The consensus of multiple transmission control proto-
col/active queue management networks is investigated us-
ing multi-agent systems in [11]. A new finite-time per-
formance function and congestion control algorithm, NN,
adaptive backstepping, a barrier Lyapunov function, and
distributed control are presented to achieve output consen-
sus and complex tasks.

To solve the Mittag-Leffler synchronization problem of
fractional-order memristor NN with leakage delay, a hy-
brid adaptive controller that includes time delays is devel-
oped in [12].

In [13], a nonlinear hierarchical control is developed
for a star-shaped hexa-rotor UAV model with tilted pro-
pellers. To solve the hovering control problem of an UAV
with generically oriented propellers and intrinsically cou-
pled translational and rotational dynamics, authors of [13]
propose a control strategy, identifying the zero-moment
direction and a dynamic state feedback linearization, to
locally asymptotically stabilize UAV platform to a static
hovering condition. A proportional-derivative (PD) and a
gravity compensation feedback function tune the gains to
govern the actions of the attitude transient. Methods based
on Lyapunov and reduction theorems for the stability of
nested sets prove stability.

Authors of [14] present a trajectory tracking solution
by optimizing for multi-rotor aerial robots for a geomet-
rically feasible trajectory, with constraints on actuators by
the trajectory planner. A predictive controller model based
on fuzzy logic is used to obtain a planned trajectory of the
aerial robot with minimal deviation and generate the con-
trol commands for real flights at laboratory.

Tracking moving targets for quadcopters is a challenge
due to complex dynamics of UAV and the variable speed
of the target. A fuzzy-PI controller is developed in [15],
the gains are adjusted with change of position. Fuzzy-PI
controller uses two sets of PI gains and a set of fuzzy rules
to achieve a nonlinear response and is compared to a gain-
scheduled PID controller with fixed gains. Several experi-
ments of an UAV are performed tracking a moving target,
indoors and outdoors, day and night, with good results,
especially at night.

In [16], an ANN control and optimal path planning
are proposed for UAV surveillance system with energy
consumption prediction. The cost function of an optimal
path planning scheme, which is designed from a clustered
3D real pilot flight pattern and processed through a star
and set-based particle-swarm-optimization algorithm with
adaptive weights. The online ANN controller designed in
[16] improves the average root-mean-square error of hori-
zontal and vertical tracking performance. ANN controller
is a method with learning ability and Lyapunov stability
analysis compared to PID and fuzzy controllers, has better
steady-state responses and fewer parameters to be tuned.
Results show the combination of the optimal path plan-
ning scheme and the ANN controller achieves an energy-

efficient UAV surveillance system with fast disturbance
rejection response.

For the identification of parameters of a simplified
model of the propulsion system of a low-scale multi-rotor
UAV based on experimental aerodynamic data, an effi-
cient learning algorithm of fuzzy adaptive neurons (FAN)
and a self-tuning or adaptive PID controllers for the trajec-
tory tracking system are applied in [17]. The simulation
results showed that PID controllers with FAN-self-tuning
gains to track the trajectory reduce error compared to tra-
ditional PID controllers with fixed gains.

In addition, in recent years configurations for PID con-
trollers [18-20] have been proposed, applying fuzzy logic
[21-23].

Authors of [18] propose a tuning scheme for a pair of
gains of a PID-type fixed parameter UAV altitude con-
troller, with a small integral gain value. A family of meth-
ods of real-time tuning, Fibonacci-search, golden-search,
equal division, and dichotomy are compared at presence
of wind disturbances.

An optimal non-integer PID controller based on a deep
deterministic policy gradient algorithm is presented in
[19] for the tracking problem of a non-holonomic wheeled
mobile robot exposed to measurement noises and ex-
ternal disturbances. The model-free fractional order PID
(FOPID or PID) is designed, and a swarm optimization
algorithm is used to set the controller parameters. Effec-
tiveness of the control methodology is presented with the
outcomes at experimental environments.

A fractional order general type-2 fuzzy PID controller is
proposed in [20], to deal with the uncertainty of systems.
Three-process simulations and a practical inverted pendu-
lum system show fractional order general type-2 PID con-
troller reduces overshoot, improves system response speed
and accelerates system stability time.

Power efficiency is a motivation for designing propeller
aerodynamics and optimizing the trajectory tracking of
UAV, for efficient energy or fuel consumption [24].

The main contribution of this article is to develop an ap-
proximation of the FAN model [25-34], at Laplace domain
to design a new fuzzy adaptive neural proportional inte-
gral derivative (FANPID) controller to track the trajectory
of a low-scale UAV whose parameters were identified in
[17]. The fuzzy adaptive control law (FACL) is proposed
based on the FAN learning algorithm to define the gains
and parameter of the FANPID controller.

Section 1 introduces the motivation, contribution and
methods to solve the problem of optimizing the trajectory
tracking system of the propulsion system of a low-scale
UAV. Section 2 presents the preliminaries. The simplified
model of low-scale UAVs and the equations of motion pro-
posed in [17,29] are described here. The FAN model and
the learning algorithm. Section 3 develops the Laplace
domain approximation of FANs. Section 4 develops the
design of the new FANPID-Lyapunov controller, FACL
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and the stability analysis. Section 5 shows the results of
the simulations and compares the error of the system ob-
tained with PID-Fixed gains [17], PID-Fuzzy adaptive
gains [17], PID-Lyapunov Function-Fixed gains [17,35],
FOPID-Lyapunov-Fuzzy adaptive gains [17,19,20,35] and
FANPID-Lyapunov-Fuzzy adaptive gains. And Section 6
concludes about the results of the simulations and the
advantages and disadvantages of the FANPID-Lyapunov
method.

2. PRELIMINARIES

2.1. Simplified model of the propulsion system of a
low-scale multi-rotor UAV

Propulsion system consists of four propellers, the brush-
less DC rotors are operated with pulse width modulation
(PWM), (1) proposed in [21] describes the dynamics of
total forces and moments.

Fzmodel

Mpmodel

Mqmodel

Mr model

=


−kl −kl −kl −kl

kp −kp −kp kp

kq kq −kq −kq

−kr kr −kr kr

 ·

(kv1 ·U1)

2

(kv2 ·U2)
2

(kv3 ·U3)
2

(kv4 ·U4)
2

 .
(1)

Equations (2)-(7) represent the translational and rota-
tional dynamics of the drone, based on Newton-Euler
equations [27] and model proposed in [21].ẋ

ẏ

ż

=

 cosψ cosθ cosψ sinθ sinφ − sinψ cosφ

sinψ cosθ sinψ sinθ sinφ + cosψ cosφ

−sinθ cosθ sinφ

cosψ sinθ cosφ + sinψ sinφ

sinψ sinθ cosφ − cosψ sinφ

cosθ cosφ

 ·
 u̇

v̇

ẇ

 , (2)

ẍ

ÿ

z̈

=


dẋ
dk
dẏ
dk
dż
dk

 , (3)

Fx = m · ẍ, (4)

Fy = m · ÿ, (5)

Fz = m · z̈+m ·g, (6)ṗ

q̇

ṙ

=

1 0 −sinθ

0 cosφ sinφ cosθ

0 −sinφ cosφ cosθ

 ·
φ̇

θ̇

ψ̇

 , (7)

Ix · p̈− (Iy− Iz) · q̇ · ṙ = Mp model , (8)

Iy · q̈+(Ix− Iz) · ṗ · ṙ = Mq model , (9)

Iz · r̈− (Ix− Iy) · ṗ · q̇ = Mr model , (10)


U1

2

U2
2

U3
2

U4
2

=


FZ model

Mp model

Mq model

Mr model

·


kv1
2·(−kl −kl − kl − kl)

kv2
2·(kp −kp −kp kp)

kv3
2·(kq kq −kq −kq)

kv4
2·(−kr kr −kr kr)


−1

.

(11)

Therefore, based on the trajectory x, y, z and the param-
eters identified in [17], a control system would define the
drone trajectory tracking and estimate the dynamic behav-
ior of the quadcopter UAV propulsion system. Obtaining
with (11) the Ui for the rotors.

2.2. FAN model and learning algorithm
Fuzzy neurons operations are synaptic and somatic

[10]. FAN model [17-26], consists of a synaptic operation
(12), a Gupta-type aggregation function or fuzzy integra-
tor (13), a nonlinear somatic operation (14)-(17), (16) for
bipolar systems at [−1, 1], (17) for unipolar systems at [0,
1], and a learning algorithm (18)-(20) for fuzzy systems
described in [20,23].

Ṽmin j(k) = min(vin j(k), win j(k)) , (12)

Ṽmax(k) = MAXN
j=1Ṽmin j(k), (13)

Ṽout(k) = max
(
Ṽmax(k), Vthreshold(k)

)
, (14)

Ṽγ(k) = min
(
γ, Ṽout(k)

)
, (15)

ṼFAN b(k) =
2

1+ e(−Ṽγ (k)·c)
−1, (16)

ṼFAN u(k) =
1

1+ e(−Ṽγ (k)·a+b)
, (17)

e(k) = ỹre f (k)− ỹ(k), (18)

γ(k+1) = γ(k)+∆γ(k), (19)

win j(k+1) = win j(k)+∆win j(k). (20)

3. APPROXIMATION OF THE FAN MODEL AT
DOMAIN OF LAPLACE

3.1. FAN(s)
Equation (16) describes the FAN model for bipolar

systems [-1, 1], with dendrite inputs vin j(k) and synap-
tic weights win j(k) at time domain. Applying the Laplace
transform to (16), developing the first terms of the approx-
imation of the series, and considering the synaptic weight
and γ(k) unitary, the Vthreshold(k) =−1, then

L
{

ṼFAN b
}
= 2 ·L

{(
1+ e−Ṽγ (k)·c

)−1
}
−L{1} ,

(21)

L
{

ṼFAN b
}
= 2− 2

s+ c
+

2
s+2c

− 2
s+3c

+
2

s+4c

− 2
s+5c

+
2

s+6c
− 2

s+7c
+

2
s+8c
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− 2
s+9c

+
2

s+10c
− 1

s
. (22)

To obtain initial conditions equal to zero and considering
c� 1, − 1

s is added,

L
{

ṼFAN b
}
= 2− 2

s+ c
+

2
s+2c

− 2
s+3c

+
2

s+4c

− 2
s+5c

+
2

s+6c
− 2

s+7c
+

2
s+8c

− 2
s+9c

+
2

s+10c
− 2

s
, (23)

FANb(s)∼= L
{

ṼFAN b
}
. (24)

Equation (24) is an approximation of the Laplace trans-
form of the bipolar FAN model.

4. FANPID-LYAPUNOV CONTROLLER DESIGN,
FACL AND STABILITY ANALYSIS

4.1. FANPID controller
A traditional PID controller configuration is repre-

sented by a transfer function

CPID(s) =

(
P+ I · 1

s
+D · N

1+N · 1
s

)
. (25)

FANPID controller developed here is based on FANb(s),
transfer function is expressed in

CFANPID(s)

=

(
P+ I ·FANb(s)+D · N

1+N ·FANb(s)

)
. (26)

To adjust the gains P, I, D, N and the c parameter, a FACL
defined by the FAN learning algorithm is proposed.

4.2. FACL
Six CFANPID(s) controllers and nine FAN learning al-

gorithms (FAN-LA) constitute the FACL for low-scale
multi-rotor UAV trajectory tracking, Fig. 1.

xre f , yre f , zre f are proposed references, φmodel , θmodel ,
ψmodel , P, I, D, N, c are obtained by the FACL, FAN-
LA and FANPID controller, based on the low-scale multi-
rotor UAV parameters identified in [17].

4.3. Stability analysis
Expressing the FACL in matrix form, (27) is assumed

to be bounded-input-bounded-output (BIBO) stable, from
Fig. 1 and (2), to obtain the models of x, y, z,X̂(k)

Ŷ (k)

Ẑ(k)

=
∫ 

∑Φx(φ ,θ ,ψ)

∑Φy(φ ,θ ,ψ)

∑Φz(φ ,θ)

 ·
U̇

V̇

Ẇ



Fig. 1. Fuzzy adaptive control law.

·

Φx,φ (CFANPIDφ ,CFANPIDx ·Φ1x ·g3)

Φy,θ (CFANPIDθ ,CFANPIDy ·Φ1y ·g3)

Φz,ψ(CFANPIDψ ,CFANPIDz ·Φ1z ·g3)



·

Wx,φ

Wy,θ

Wz,ψ


 , (27)

where

Φ1 =Wc ·g2 + c1,

CFANPID = ΦPID(ΦFAN b (Wc ·g1)),

Wx,φ = [WP x, WI x, WD x, WN x, WP φ , WI φ , WD φ ,

WN φ ],

Wy,θ = [WP y, WI y, WD y, WN y, WP θ , WI θ , WD θ ,

WN θ ],

Wz,ψ = [WP z, WI z, WD z, WN z,WP ψ , WI ψ , WD ψ ,

WN ψ ].

Adaptive sliding surfaces aresx,φ

sy,θ

sz,ψ

=

Φx,φ (CFANPIDφ ,CFANPIDx ·Φ1x ·g3)

Φy,θ (CFANPIDθ ,CFANPIDy·Φ1y ·g3)

Φz,ψ(CFANPIDψ ,CFANPIDz ·Φ1z ·g3)



·

Wx,φ

Wy,θ

Wz,ψ

 .
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Then, the model (27) considering the unmodeled dy-
namics would beX(k)

Y (k)

Z(k)

=
∫ 

∑Φx(φ ,θ ,ψ)

∑Φy(φ ,θ ,ψ)

∑Φz(φ ,θ)

 ·
U̇

V̇

Ẇ



·

Φx,φ (CFANPIDφ ,CFANPIDx·Φ1x ·g3)

Φy,θ (CFANPIDθ ,CFANPIDy·Φ1y ·g3)

Φz,ψ(CFANPIDψ ,CFANPID ,z·Φ1z ·g3)



·

W∗
x,φ

W∗
y,θ

W∗
z,ψ




+
∫ 

∑Φx(φd ,θd ,ψd)

∑Φy(φd ,θd ,ψd)

∑Φz(φd ,θd)

 ·
U̇d

V̇d

Ẇd



·

Φxd ,φd (CFANPIDφ d ,CFANPIDxd ·Φ1xd ·g3)

Φyd ,θd (CFANPIDθ d ,CFANPIDyd ·Φ1yd ·g3)

Φzd ,ψd (CFANPIDψ d ,CFANPIDzd ·Φ1zd ·g3)



·


W∗

x,φ d

W∗
y,θ d

W∗
z,ψ d


+d(k), (28)

where

W∗
x,φ d = [WPxd ,WI xd ,WDxd ,WN xd ,WPφ d ,WI φ d ,

WDφ d ,WN φ d ],

W∗
y,θ d = [WPyd ,WI yd ,WDyd ,WN yd ,WPθ d ,WI θ d ,

WDθ d ,WN θ d ],

W∗
z,ψ d = [WPzd ,WI zd ,WDzd ,WN zd ,WPψ d ,WI ψ d ,

WDψ d ,WN ψ d ],

W∗
x,φ d , W∗

y,θ d , W∗
z,ψ d are unknown weights to minimize

the unmodeled dynamic,

∫ 
∑Φx(φd ,θd ,ψd)

∑Φy(φd ,θd ,ψd)

∑Φz(φd ,θd)

 ·
U̇d

V̇d

Ẇd



·

Φxd ,φd (CFANPIDφ d ,CFANPIDxd ·Φ1xd ·g3)

Φyd ,θd (CFANPIDθ d ,CFANPIDyd ·Φ1yd ·g3)

Φzd ,ψd (CFANPIDψ d ,CFANPIDzd ·Φ1zd ·g3)



·


W∗

x,φ d

W∗
y,θ d

W∗
z,ψ d


 .

FACL trajectory tracking error is defined with the FAN
method in matrix formEx(k)

Ey(k)

Ez(k)

=

X(k)

Y (k)

Z(k)

−
X̂(k)

Ŷ (k)

Ẑ(k)

−
g4 ·Φu

(
U̇
)

g4 ·Φv

(
V̇
)

g4 ·Φw

(
Ẇ
)
 , (29)

Ex(k)

Ey(k)

Ez(k)


∼=
∫ 


∫

Φx(φ ,θ ,ψ)∫
Φy(φ ,θ ,ψ)∫

Φz (φ ,θ)

 ·
U̇

V̇

Ẇ



·

Φx,φ (CFANPIDφ ,CFANPIDx·Φ1x ·g3)

Φy,θ (CFANPIDθ ,CFANPIDy·Φ1y ·g3)

Φz,ψ(CFANPIDψ ,CFANPIDz·Φ1z ·g3)

·
W̃x,φ

W̃y,θ

W̃z,ψ




+
∫ 


∫

Φx (φd ,θd ,ψd)∫
Φy (φd ,θd ,ψd)∫

Φz (φd ,θd)

 ·
U̇d

V̇d

Ẇd



·

Φxd ,φd

(
CFANPIDφ d ,CFANPIDxd ·Φ1xd ·g3

)
Φyd ,θd

(
CFANPIDθ d ,CFANPIDyd ·Φ1yd ·g3

)
Φzd ,ψd

(
CFANPIDψ d ,CFANPIDzd ·Φ1zd ·g3

)


·


W∗

x,φ d

W∗
y,θ d

W∗
z,ψ d


−

g4 ·Φu

(
U̇
)

g4 ·Φv

(
V̇
)

g4 ·Φw

(
Ẇ
)
 , (30)

Ex(k)

Ey(k)

Ez(k)

∼= ∫


∫

Φx(φ ,θ ,ψ)∫
Φy(φ ,θ ,ψ)∫

Φz (φ ,θ)

 ·
U̇

V̇

Ẇ



·

Φx,φ (CFANPIDφ ,CFANPIDx·Φ1x ·g3)

Φy,θ (CFANPIDθ ,CFANPIDy·Φ1y ·g3)

Φz,ψ(CFANPIDψ ,CFANPIDz·Φ1z ·g3)



·

W̃x,φ

W̃y,θ

W̃z,ψ


+µd−ηd , (31)

whereW̃x,φ

W̃y,θ

W̃z,ψ

=

W∗
x,φ

W∗
y,θ

W∗
z,ψ

−
Wx,φ

Wy,θ

Wz,ψ

 ,

µd =
∫ 


∫

Φx (φd ,θd ,ψd)∫
Φy (φd ,θd ,ψd)∫

Φz (φd ,θd)

 ·
U̇d

V̇d

Ẇd


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·

Φxd ,φd (CFANPIDφ d ,CFANPIDxd ·Φ1xd ·g3)

Φyd ,θd (CFANPIDθ d ,CFANPIDyd ·Φ1yd ·g3)

Φzd ,ψd (CFANPIDψ d ,CFANPIDzd ·Φ1zd ·g3)



·


W∗

x,φ d

W∗
y,θ d

W∗
z,ψ d


 ,

ηd =

g4 ·Φu

(
U̇
)

g4 ·Φv

(
V̇
)

g4 ·Φw

(
Ẇ
)
 ,

where Φu(·) = Φv(·) = Φw(·) = (·)2 is a Lyapunov func-
tion candidate.

FAN-LA described in [18] is presented below

W (k+1) =W (k)+Γ(k) ·E(k) ·D(k), (32)

Γ(k+1) = Γ(k)+Γ(k) ·E(k) ·D(k). (33)

For the closed-loop multi-rotor UAV trajectory track-
ing system, the FACL model (27) is assumed to be sta-
ble bounded-input-bounded-output (BIBO). FAN-LA and
Wx,φ , Wy,θ , Wz,ψ weights are bounded at [0, 1] for unipo-
lar and at [−1, 1] for bipolar. Stability analysis for model-
ing nonlinear closed-loop systems based on the new FAN
method is stated by the following theorem.

Theorem 1: If the unknown closed-loop nonlinear sys-
tem Fig. 1, is modeled by the fuzzy system (27), the
weights are updated by (32) and (33), then the modeling
error E(k)= [Ex(k), Ey(k), Ez(k)]T is uniformly ultimately
bounded (UUB). The normalized identification error is

EN(k) =
WN (k+1)−WN(k)

ΓN(k) ·D(k)
. (34)

Satisfying the average performance

lim
T→∞

sup
1
T

T

∑
k=1
‖EN(k)‖2

≤maxk


∥∥∥∥∥∥∥∥
∫ 


∫

Φx (φd ,θd ,ψd)∫
Φy (φd ,θd ,ψd)∫

Φz (φd ,θd)

 ·
U̇d

V̇d

Ẇd



·

Φxd ,φd

(
CFANPIDφ d ,CFANPIDxd ·Φ1xd ·g3

)
Φyd ,θd

(
CFANPIDθ d ,CFANPIDyd ·Φ1yd ·g3

)
Φzd ,ψd

(
CFANPIDψ d ,CFANPIDzd ·Φ1zd ·g3

)


·


W∗

x,φ d

W∗
y,θ d

W∗
z,ψ d



∥∥∥∥∥∥∥∥

2 ,
lim
T→∞

sup
1
T

T

∑
k=1
‖EN(k)‖2 ≤ µd . (35)

Proof: A defined positive scalar Lk is selected

Lk =
∥∥∥W̃(k)

∥∥∥2
, (36)

where

W̃(k) =
[
W̃x,φ (k), W̃y,θ (k),W̃z,ψ(k)

]T
.

By the update law (32), we have

W̃(k+1) = W̃(k)+Γ(k) ·E(k) ·D(k). (37)

Using the inequalities

‖q+ r‖ ≤ ‖q‖+‖r‖ , ‖q · r‖= ‖q‖ · ‖r‖ .

For any “q” and “r”, and using (31) and (37) with −1 <
ΓN(k)≤ Γ(k)≤ 1, we have

∆Lk

= Lk+1−Lk

= ‖W̃ (k)+Γ(k) ·E(k) ·D(k)‖2−‖W̃ (k)‖2

= 2‖Γ(k) ·E(k) ·D(k) ·W̃ (k)‖+‖Γ(k) ·E(k) ·D(k)}2

= ‖Γ(k)‖2 · ‖E(k)‖2 · ‖D(k)‖2

+2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Γ(k) ·E(k) ·D(k) · d(E(k)−µd+ηd)
dk

∑Φx(φ ,θ ,ψ)

∑Φy(φ ,θ ,ψ)

∑Φz(φ ,θ)

·
U̇

V̇

Ẇ


·

Φx,φ (CFANPIDφ ,CFANPIDx·Φ1x·g3)

Φy,θ (CFANPIDθ ,CFANPIDy·Φ1y·g3)

Φz,ψ(CFANPIDψ ,CFANPIDz·Φ1z·g3)





∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
,

(38)

∆Lk ≤ ζ (k) · ‖E(k)‖2 +δ (k) · ‖E(k)‖ · ‖Ė(k)‖
+ρ(k) · ‖E(k)‖, (39)

where ζ (k), δ (k) and ρ(k) are defined

ζ (k) = ‖Γ(k)‖2 · ‖D(k)‖2,

δ (k)

= 2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Γ(k) ·D(k)

∑Φx(φ ,θ ,ψ)

∑Φy(φ ,θ ,ψ)

∑Φz(φ ,θ)

·
U̇

V̇

Ẇ


·

Φx,φ (CFANPIDφ ,CFANPIDx·Φ1x·g3)

Φy,θ (CFANPIDθ ,CFANPIDy·Φ1 y·g3)

Φz,ψ(CFANPIDψ ,CFANPIDz·Φ1z·g3)





∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
,

ρ(k)
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= 2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Γ(k) ·D(k) · (−µ̇d + η̇d)

∑Φx(φ ,θ ,ψ)

∑Φy(φ ,θ ,ψ)

∑Φz(φ ,θ)

·
U̇

V̇

Ẇ


·

Φx,φ (CFANPIDφ ,CFANPIDx·Φ1x·g3)

Φy,θ (CFANPIDθ ,CFANPIDy·Φ1y·g3)

Φz,ψ(CFANPIDψ ,CFANPIDz·Φ1z·g3)





∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Because

nmin(w̃2
i )≤ Lk ≤ nmax(w̃2

i ),

where nmin(w̃2
i ) and nmax(w̃2

i ) are K∞-functions, and
ζ (k) · ‖E(k)‖2, δ (k) · ‖E(k)‖ · ‖Ė(k)‖, ρ(k) · ‖E(k)‖ are
a K∞-function. So, Lk admits an ISS-Lyapunov function
[23], the dynamic of the identification error is input-to-
state stable.

From (28) and (36) we know that Lk is the function of
E(k) and

∫ 
∑Φx(φd ,θd ,ψd)

∑Φy(φd ,θd ,ψd)

∑Φz(φd ,θd)

 ·
U̇d

V̇d

Ẇd



·

Φxd ,φd (CFANPIDφ d ,CFANPIDxd ·Φ1xd ·g3)

Φyd ,θd (CFANPIDθ d ,CFANPIDyd ·Φ1yd ·g3)

Φzd ,ψd (CFANPIDψ d ,CFANPIDzd ·Φ1zd ·g3)



·


W∗

x,φ d

W∗
y,θ d

W∗
z,ψ d


 .

The “INPUT” and the “STATE” correspond to both terms
of (27). However, usually, Φ[φd ,θd ,ψd ]�Φ[φ ,θ ,ψ]. Be-
cause the “INPUT” is bounded and the dynamic is ISS,
therefore the “STATE” E(k) is bounded.

Applying the bounded conditions for WN(k + 1) and
ΓN(k+ 1), (39), from 1 up to T and using 0 < LT and L1

is a constant, we obtain

LT −L1 ≤ ζN(k) ·

(
T

∑
k=1
‖EN(k)‖2

)

+δN(k) ·

(
T

∑
k=1
‖EN(k)‖ · ‖ĖN(k)‖

)

+ρN(k) ·

(
T

∑
k=1
‖EN(k)‖

)
, (40)

ζN(k) = ‖ΓN(k)‖2 · ‖D(k)‖2,

δN(k)

= 2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

ΓN(k) ·D(k)

∑Φx(φ ,θ ,ψ)

∑Φy(φ ,θ ,ψ)

∑Φz(φ ,θ)

 ·
U̇

V̇

Ẇ


·

Φx,φ (CFANPIDφ ,CFANPIDx·Φ1x·g3)

Φy,θ (CFANPIDθ ,CFANPIDy·Φ1y·g3)

Φz,ψ(CFANPIDψ ,CFANPIDz·Φ1z·g3)





∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
,

ρN(k)

= 2

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

ΓN(k) ·D(k) · (−µ̇d + η̇d)

∑Φx(φ ,θ ,ψ)

∑Φy(φ ,θ ,ψ)

∑Φz(φ ,θ)

 ·
U̇

V̇

Ẇ


·

Φx,φ (CFANPIDφ ,CFANPIDx·Φ1x·g3)

Φy,θ (CFANPIDθ ,CFANPIDy·Φ1y·g3)

Φz,ψ(CFANPIDψ ,CFANPIDz·Φ1z·g3)





∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
,

LT −L1−ρN(k) ·

(
T

∑
k=1
‖EN(k)‖

)

≤ ζN(k) ·

(
T

∑
k=1
‖EN(k)‖2

)

+δN(k) ·

(
T

∑
k=1
‖EN(k)‖ · ‖ĖN(k)‖

)
. (41)

Equation (35) is established. �
Remark 1: To obtain high modeling accuracy for tradi-

tional PID controllers, the main difficulty is to adjust the
gains. However, the novel configuration of the FANPID-
Lyapunov controller with FAN-LA to tune the gains has
fewer parameters to choose from. And the modeling error
converges to the zone µd .

Remark 2: If the fuzzy system (27) could exactly
match the nonlinear plant (28), if µd(k) = 0, i.e., it could
find the best W ∗ such that the nonlinear system could be
expressed asX(k)

Y (k)

Z(k)

=∑



∫

Φx(φ ,θ ,ψ)∫
Φy(φ ,θ ,ψ)∫

Φz(φ ,θ)

 ·
U̇

V̇

Ẇ



·

Φx,φ (CFANPIDφ ,CFANPIDx·Φ1x·g3)

Φy,θ (CFANPIDθ ,CFANPIDy·Φ1y·g3)

Φz,ψ(CFANPIDψ ,CFANPIDz·Φ1z·g3)



·


W∗

x,φ d

W∗
y,θ d

W∗
z,ψ d


 ,

the same learning law makes the error identified ‖E(k)‖
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asymptotically stable

limK→∞‖E(k)‖= 0. (42)

Remark 3: The normalization of learning rates in (43)
and (47), are time-varying to ensure the stability of iden-
tification error. Learning rates are easier to achieve than
[17]. Because the initial condition does not need any pre-
vious information, the time-varying learning rates and the
FACL are optimized.

5. SIMULATION RESULTS

5.1. Initial conditions
Figs. 2-9 present the simulation results of the FACL

(27) and the closed-loop multi-rotor UAV trajectory track-
ing system in Matlab®/Simulink. The fuzzy adaptive sys-
tem Fig. 1, consists of six FANPID controllers, three Lya-
punov functions, and nine FAN-LA to tune the gains and
parameter c of the FAN(s) model. The initial conditions
are

1) Weights, winFAN−LAiP(k) = 1, winFAN−LAi I (k) =
0.6, winFAN−LAiD(k) = 0.1, winFAN−LAiN (k) = 0.2,
winFAN−LAi c(k) = 0, i = x, y, z.

2) Learning factors, fixed values, γFAN i(k) = 1.
3) The threshold values for all the FANs are

Vthreshold 1FAN i(k) =−1.

4) FAN-LA inputs, DFAN i j(k) = DFANnc(k) = 1, i = 1,
· · · , 6. = 1, j = P, I, D, N, n = 1, · · · , 3.

5) Reference outputs

XY Zre f (k) = [Xre f (k), Yre f (k),Zre f (k)]
T .

6) Ideal values of weights are unknown.
7) g1 = 700, g2 = 4e−7, g3 = 1e−6.
8) Sampling period is Ksample = 1e−3 seconds.

5.2. Results of the multi-rotor UAV tracking trajec-
tory system

Xre f (k), Yre f (k), Zre f (k) are the position references, Fig. 2
shows the tracking trajectory obtained from model (27).
Fig. 3 presents the angles modeled φmodel(k), θmodel(k),
ψmodel(k) by the fuzzy adaptive system. The three-
dimensional reference and modeled trajectory are shown
in Fig. 4.

Fig. 5 compares the error (48) obtained of a PID-
Fixed weights [17], a PID-Fuzzy adaptive weights [17], a
PID-Lyapunov-Fixed weights [17,35], (43), (44), FOPID-
Lyapunov-FAN-LA-Self-tuning gains and parameters [19,
20], CFOPID(s)=

(
P+I · 1

sλ +
D·sµ

n·sµ+1

)
, n∈R, ηd , (43), (44),

with the proposed references x, y, z, ϕ , θ , ψ , and the new
FANPID-Lyapunov-Self-tuning gains and parameter (26),
with the proposed references x, y, z, and ϕ , θ , ψ adaptive,

Fig. 2. Xre f , Yre f , Zre f , Xmodel , Ymodel , Zmodel for tracking the
trajectory of the multi-rotor UAV.

Fig. 3. φmodel , θmodel , ψmodel for tracking the trajectory of
the multi-rotor UAV.

Fig. 4. Xre f , Yre f , Zre f , Xmodel , Ymodel , Zmodel for tracking the
trajectory of the multi-rotor UAV.

further reducing error and verifying the superiority of the
method.

Lyapunov function Vx,y,z, for PID-Lyapunov-Fixed
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(a)

(b)

Fig. 5. (a) Error of the fixed-gains PID, self-tuning PID,
fixed-gains PID-Lyapunov, self-tuning FOPID-
Lyapunov and self-tuning FANPID-Lyapunov of
FACL system. (b) Self-tuning FOPID-Lyapunov
and self-tuning FANPID-Lyapunov.

weights controller is defined inVx (X)

Vy (Y )

Vz (Z)

= β ·


(
X(k)− X̂(k)

)2(
Y (k)− Ŷ (k)

)2(
Z(k)− Ẑ(k)

)2



·

signx

(
X(k)− X̂(k)

)
signy

(
Y (k)− Ŷ (k)

)
signz

(
Z(k)− Ẑ(k)

)
 , (43)

where β is a constant.

signx,y,z (·) =


1, if (·)> 0,

0, if (·) = 0,

−1, if (·)< 0.

(44)

Theorem 2: Let [X , Y , Z]T = [X0, Y0, Z0]
T an equi-

librium point for (27), and let [Vx(X), Vy(Y ), Vz(Z)]T :
Rn→R a continuously differentiable function such that

[Vx(X0), Vy(Y0), Vz(Z0)]
T = [X0, Y0, Z0]

T and

[Vx(X), Vy(Y ), Vz(Z)]T > [X0, Y0, Z0]
T ,

∀ [X , Y, Z]T 6= [X0, Y0, Z0]
T , (45)

[‖X‖, ‖Y‖, ‖Z‖]T → ∞ ⇒ [Vx(X), Vy(Y ), Vz(Z)]T

→ ∞, (46)

[V̇x(X), V̇y(Y ), V̇z(Z)]T < [X0, Y0, Z0]
T ,

∀ [X , Y, Z]T 6= [X0, Y0, Z0]
T . (47)

Then, [X , Y , Z]T = [X0, Y0, Z0]
T is globally asymptoti-

cally stable.

EPID−FAN sel f−tuning(k)

=
∫ ∣∣∣∣ExPID−FAN(k)+EyPID−FAN(k)+EzPID−FAN(k)

3

∣∣∣∣ .
(48)

FZ model , Mpmodel , Mqmodel , Mr model forces and moments,
and modulation indices U1model , U2model , U3model , U4model

are shown in Figs. 6-9.
Remark 4: From Fig. 5, the self-adjusting FOPID-

Lyapunov applies the FAN-LA, proposing the constant n,
the adaptive parameters P, I, D, and with λ = µ , thus fur-
ther reducing the error.

Remark 5: FAN-LA self-tunes the P, I, D, N, c pa-
rameters of FANPID-Lyapunov optimizing the response
of FACL system, significantly reducing error. FANPID-
Lyapunov method and the FACL adapt the FANPID pa-
rameters for the simplified model of the propulsion system
of a low-scale multi-rotor UAV.

Fig. 3 shows that applying the FACL the multi-rotor
UAV tracks the trajectory and tunes φmodel , θmodel , ψmodel ,
Fig. 4, with great success.

Fig. 6. Fzmodel , Mpmodel , Mqmodel , Mr model for tracking the
trajectory of the multi-rotor UAV.
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Fig. 7. Mpmodel , Mqmodel , Mr model for tracking trajectory of
the multi-rotor UAV.

Fig. 8. U1model , U2model , U3model , U4model for tracking the
trajectory of the multi-rotor UAV.

Fig. 9. U2model , U3model , U4model for tracking the trajectory
of the multi-rotor UAV.

Performing an approximation FANb(s) of a nonlinear
somatic operation type sigmoidal ṼFAN b allows to tune

the poles of the controller CFANPID(s) through the pa-
rameter c, and the gains P, I, D, N successfully apply-
ing the FAN-LA. The optimized response of the sys-
tem, Fig. 1, was obtained using the CFANPID(s), improving
the results reported in [11] and those obtained with the
FOPID-Lyapunov-Self-tuning controller, Figs. 2-5. Figs.
6-9 prove that in addition to obtaining the optimization
of the response of the FACL system, the Fzmodel , Mpmodel ,
Mqmodel , Mr model and the U1model , U2model , U3model , U4model

can be estimated applying the low-scale multi-rotor UAV
model. By tuning the parameters and determining the sys-
tem variables, the FACL successfully tracked the trajec-
tory for a low-scale multi-rotor UAV.

6. CONCLUSIONS

The FACL for the trajectory tracking system [28] of
a low-scale multi-rotor UAV, using a novel FANPID-
Lyapunov controller that applies a Laplace domain ap-
proach at FAN model and the FAN-LA, obtained very
good results. FANPID controller has the advantage that
the gains and parameter can be tuned by applying a fuzzy
learning algorithm. The requirement to define initial con-
ditions to tune the gains and parameter of the FAN-LA, is
a disadvantage. The error was successfully reduced based
on the new FANPID-Lyapunov controller with adaptive
or self-tuned gains and parameter compared to a tra-
ditional PID-Fixed-gains, a PID-Fuzzy adaptive-gains, a
PID-Lyapunov-Fixed-gains and a FOPID-Fuzzy adaptive
gains and parameters [17,19,20,35]. The implementation
of FACL at commercial processor is proposed for fu-
ture work. Potential research is in nonlinear and control
systems for motors, small-scale UAV, manufacturing pro-
cesses and tank level, among others.
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