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Exponential Stability for Neutral Stochastic Differential Delay Equations
with Markovian Switching and Nonlinear Impulsive Effects
Yuntao Qiu and Huabin Chen* �

Abstract: In this paper, the problems on the exponential stability in p-th (p ≥ 2)-moment and the almost sure
exponential stability for neutral stochastic differential delay equation with Markovian switching and impulses are
analyzed. By establishing an impulsive delay integral inequality, the Lyapunov theorem on the exponential stability
in p-th (p ≥ 2)-moment is given. Then, by using the Borel-Cantelli lemma, the almost sure exponential stability
theorem is also proved. Two major advantages of these two results are that the differentiability or continuity of the
delay function is not required, and that while considering the concerned problem, the difficulty coming from the
simultaneous presence of the neutral item, the impulsive disturbance and the stochastic perturbations is overcome.
An example is provided to examine the effectiveness and potential of the theoretic results obtained.

Keywords: Almost sure exponential stability, exponential stability, impulses, Markovian switching, neutral stochas-
tic differential delay equation.

1. INTRODUCTION

Neutral stochastic differential delay equation is re-
garded as a special case for stochastic differential de-
lay equation. This equation has been found in many ap-
plications, such as biology mechanics, physics, medicine
and economics [1-4]. One of the important issues in the
study of neutral stochastic differential delay equation is
the automatic control, with consequent emphasis being
placed on the stability analysis. While considering the
stability analysis for neutral stochastic differential delay
equation, the state and the neutral item are chronically
seen as an ensemble part, which can cause some difficul-
ties. Over the past few decades, the Lyapunov function
approach, the Lyapunov-Krasovskii functional approach,
the Razumikhin-type theorem and the fixed point theo-
rem have been developed in the stability analysis for such
equation, see [2,6-8] and the references cited therein.

Markovian jump systems are one special hybrid dynam-
ical systems consisting of a family of subsystems driven
by differential and difference equations, and a logical rule
such as a Markov chain that models the switching mech-
anism between these subsystems. Hybrid systems driven
by continuous-time Markov chains have been widely em-
ployed to model real-life systems including battle man-
agement command, control and communications systems,
failure prone manufacturing, microelectronic circuit de-

sign verification, power generation and distribution, pop-
ulation demographic dynamics, and macroeconomics of
national economy, see [9]. Stability analysis of stochas-
tic differential equation with Markovian switching has
been widely conducted by using some prevalent methods,
such as the Lyapunov function approach, the Lyapunov-
Krasovskii functional, the Razumikhin-type theorem, the
comparison theorem and the differential delay inequal-
ity, etc., see [10-18] and the reference therein. However,
due to the simultaneous presence of the neutral item, the
stochastic perturbation and the Markovian switching, sta-
bility analysis of neutral stochastic differential delay equa-
tion with Markovian switching has not been investigated
yet. The exponential stability in moment and the almost
sure asymptotic stability for neutral stochastic differential
equation with time delay and Markovian jumping param-
eters have been discussed by using the Lyapunov function
approach in [19], and the results obtained are concerned
with the constant delay case and the time-varying delay
case with a restrictive condition that its derivative value
is less than one. Note that for neutral stochastic differen-
tial equation, the extension from the constant delay to the
time-varying delay is not easily to be accomplished with-
out this restrictive condition. Recently, in order to remove
this restrictive condition, in [21], Chen et al. have studied
the exponential stability in moment for neutral stochastic
systems with time-varying delay and Markovian switch-
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ing by using the integral inequality.
Many evolution processes are characterized by the fact

that they experience an abrupt change of their state at
certain moments, such as threshold phenomena in biol-
ogy, bursting rhythm models in medicine, optimal control
models in economics, and frequency modulated systems,
etc. These abrupt changes are of short duration and may
be described by impulsive differential equation. The basic
theory of impulsive differential equation has been signifi-
cantly developed [22]. The stability analysis of impulsive
differential equation and stochastic impulsive differential
equation has been extensively investigated, and the meth-
ods and the results are much more mature, see [23-32]
and the references therein. However, the stability analysis
of neutral differential equation with impulses has seldom
been studied since the presence of the neutral item can
cause some difficulties. In [33], by establishing a singular
impulsive delay differential inequality and using the Lya-
punov function, some sufficient conditions ensuring the
globally exponential stability for a class of nonlinear im-
pulsive neutral differential equation with time-varying de-
lay are obtained. However, to the best of our knowledge,
there is no work which is concerned with the exponential
stability in p-th (p ≥ 2)-moment and the almost sure ex-
ponential stability for neutral stochastic differential delay
equation (NSDDE) with impulses. Thus, in this paper, we
will make the first attempt to consider such problems.

The main difficulty in studying the exponential stabil-
ity in p-th (p≥ 2)-moment and the almost sure exponen-
tial stability for neutral stochastic differential delay equa-
tion with impulses comes from the impulsive effects. Al-
though the stability of neutral differential delay equation
with impulses were investigated in [34-39], the proposed
methods and the obtained results cannot be used since the
neutral item, the stochastic perturbation and the impulsive
effects simultaneously exist. In [3-8,19-21], the exponen-
tial stability in p-th (p ≥ 2)-moment and the almost sure
exponential stability for neutral stochastic differential de-
lay equation with Markovian switching have been con-
sidered by using the Lyapunov function, the Lyapunov-
Krasovskii functional approach, the Razumikhin-type the-
orem and the fixed point theorem, which are not used
to study the concerned problems due to the existence of
impulses. Thus, how to consider the exponential stability
in p-th (p ≥ 2)-moment and the almost sure exponential
stability for neutral stochastic differential delay equation
with Markovian switching and impulses (NSDDEwMSI)
becomes the main motivation of this paper.

In this paper, an impulsive delay integral inequality is
first established, and then the Lyapunov theorem on the
exponential stability in p-th (p ≥ 2)-moment for NSD-
DEwMSI is obtained. By using the Borel-Cantelli lemma,
the almost sure exponential stability is also shown. Fi-
nally, one example examines the effectiveness of the re-
sults obtained. The contribution in this paper is listed from

three aspects: 1) the exponential stability in p-th (p ≥ 2)-
moment and the almost sure exponential stability for NS-
DDEwMSI are investigated, which has seldom been re-
ported in the available literature; 2) the delay integral in-
equality, the Lyapunov function and the stochastic analy-
sis are incorporated to overcome the difficulty stemming
from the simultaneous existence of the neutral term, the
stochastic perturbation and the nonlinear impulsive ef-
fects; 3) the time-varying delay is required to be a bounded
function, which means that the obtained results in this pa-
per are not only fit for the slow time-varying delay, but
also for the fast time-varying delay.

Notations: In this paper, Rn and Rm×n are the n-
dimension Euclidean space and the set of the m × n-
dimension real matrix, respectively. For an n-dimension
vector x = col[x1, x2, . . ., xn] with the norm |x|2 =

∑
n
i=1 x2

i . (Ω, F , {F}t≥t0 , P) represents a complete prob-
ability space with a filtration {F}t≥t0 satisfying the usual
conditions. Let B(t) = col[B1(t), B2(t), . . ., Bm(t)] be
an m-dimensional Brownian motion defined on (Ω, F ,
{F}t≥t0 , P) satisfying E{Bi(t)} = 0 (i = 1, 2, . . ., m),
E{Bi(t)B j(t)} = t for i = j and E{Bi(t)B j(t)} = 0 for
i 6= j, i, j = 1, 2, . . ., m, where E{·} stands for the ex-
pectation operator. For an appropriate dimensional matrix
A, AT represents its transpose. | · | also denotes the trace
norm for matrices. For τ̄ > 0, let PC ≡ PC([t0− τ̄, t0];Rn)
represent the family of all almost surely bounded, and con-
tinuous functions everywhere except for an infinite num-
ber of points s at which ξ (s) and ξ (s−) = limr→s− ξ (r)
exists and ξ (s+) = limr→s+ ξ (r) = ξ (s) from [t0− τ̄ , t0]
into Rn and as usual, equipped with supθ∈[t0−τ̄,t0] |ξ (θ)| <
+∞ for any ξ ∈ PC. PCb

Ft0
≡ PCb

Ft0
([t0− τ̄ , t0];Rn) de-

notes the family of all Ft0 -measurable and PC-valued
random variables ξ = {ξ (θ) : t0 − τ̄ ≤ θ ≤ t0} with
E{supθ∈[t0−τ̄,t0] |ξ (θ)|

p}<+∞ (p≥ 1), for any ξ ∈PCb
Ft0

.
H(a− 0) denotes the left-hand limit of the function H(·)
at a, i.e., H(a−0) = limu→0− H(a+u).

2. PROBLEM STATEMENT AND
PRELIMINARIES

Let {r(t), t ≥ t0} be a right-continuous Markov chain
on the complete probability space (Ω,F ,{F}t≥0,P) tak-
ing values in a finite state space N = {1,2, . . . ,N} with
the generator Γ = {γi j}N×N , where P{r(t +∆) = j|r(t) =
i} = γi j∆+ o(∆) (i 6= j) and P{r(t +∆) = j|r(t) = i} =
1+ γii∆+o(∆) (i = j). where lim∆→0+

o(∆)
∆

= 0. γi j ≥ 0 is
the transition rate from i to j if i 6= j while γii =−∑ j 6=i γi j.

We consider the following NSDDEwMSI:
d[x(t)−D(t,xτ(t),r(t))]

= f (t,x(t),xτ(t),r(t))dt

+g(t,x(t),xτ(t),r(t))dB(t), t ≥ t0, t 6= tk,

x(t) = Ik(x(t−)), t = tk, k = 1, 2, . . . ,

(1)
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with the initial value {x(θ) : t0 − τ̄ ≤ θ ≤ t0} = ξ ∈
PC([t0 − τ̄, t0];Rn), where x(t) = col[x1(t), x2(t), . . .,
xn(t)] ∈ Rn and xτ(t) = x(t− τ(t)) with τ(·) : [t0,+∞)→
[0, τ̄] (τ̄ > 0). D(·, ·, ·) : [t0,+∞)×Rn×N → Rn is the
neutral vector, f (·, ·, ·, ·) : [t0,+∞)×Rn×Rn×N → Rn is
the drift coefficient vector, g(·, ·, ·, ·) : [t0,+∞)×Rn×Rn×
N → Rn×m is the diffusion coefficient matrix. The impul-
sive function Ik(·) : Rn→ Rn (k = 1, 2, . . .). The impulsive
instant sequence {tk}+∞

k=1 satisfies 0 = t0 < t1 < t2 < · · · <
tk < · · · , and limk→+∞ tk =+∞. x(tk)= x(t+k )= limt→t+k

x(t)
and x(t−k ) = limt→t−k

x(t). Let x(t, t0,ξ ,r(t0)) denote the so-
lution of (1). x(t) = x(t, t0,ξ ,r(t0)).

Hypothesis I: There exists a positive constant L such
that for any t ≥ t0, x, y, x̄, ȳ ∈ Rn, i ∈ N , | f (t,x,y, i)−
f (t, x̄, ȳ, i)|∨|g(t,x,y, i)−g(t, x̄, ȳ, i)| ≤ L(|x− x̄|+ |y− ȳ|),
f (t,0,0, i) = 0, and g(t,0,0, i) = 0.

Hypothesis II: There exists κi ∈ (0,1) (i∈N ) such that
for any t ≥ t0, |D(t,x, i)−D(t,y, i)| ≤ κi|x−y|, ∀x, y∈ Rn,
and D(t,0, i) = 0. κ = maxi∈N {κi} ∈ (0,1).

Hypothesis III: There exist some positive constants
βk (k = 1,2, . . .) such that |Ik(x)− Ik(y)| ≤ βk|x− y|, ∀ x,
y ∈ Rn, and Ik(0) = 0.

Hypothesis IV: For the impulsive time sequence {tk},
tk− tk−1 ≥ τ̄ , k = 1, 2, . . ..

Remark 1: Similar to the method in [2] (see pp. 204 in
Theorem 2.2), under Hypotheses I-III, the existence and
uniqueness of the solution to system (1) can be examined.
Hypothesis IV can guarantee the exponential decay of NS-
DDE with Markovian switching on [tk, tk+1) (k = 0, 1, 2,
. . .).

Lemma 1: Let γ > 0, γ̄ > 0, λ̂i > 0 (i = 0, 1, 2, 3) with
λ̂1 +

λ̂2
γ
< 1 and γ̄ < γ . Let τ(·) be a bounded Borel mea-

surable map from [t0, +∞) into [0, τ̄] (τ̄ > 0), and let y(·)
be a nonnegative function on [t0− τ̄ , +∞). If inequality

y(t)≤


λ̂0e−γ(t−tk)+ λ̂1yτ(t)+ λ̂2

∫ t

tk
e−γ(t−s)yτ(s)ds,

t ∈ [tk, tk+1),

λ̂3e−γ̄(t−tk), t ∈ [tk− τ̄, tk],
(2)

holds for any k = 0, 1, 2, . . ., where yτ(t) = y(t − τ(t)),
then

y(t)≤M′e−µ(t−tk), t ∈ [tk− τ̄, tk+1), k = 0, 1, 2, . . . ,
(3)

where µ = min{γ̄ , µ̄}, µ̄ ∈ (0,γ) is a solution of equation

λ̂1eµ̄ τ̄ + λ̂2eµ̄ τ̄

γ−µ̄
= 1, and M′ = max{λ̂3, λ̂0(γ−µ̄)

λ̂2eµ̄ τ̄
}> 0.

Proof: Letting H(µ̄) = λ̂1eµ̄ τ̄ + λ̂2eµ̄ τ̄

γ−µ̄
− 1. Thus,

H(0)H(γ − 0) < 0 holds. That is, there exists a positive
constant µ̄ ∈ (0,γ) such that H(µ̄) = 0. For any ε > 0, let-
ting M′ε :=max{(λ̂3+ε)e−γ̄ τ̄ , (λ̂0+ε)(γ−µ)/(λ̂2eµτ)}>

0. Now, we only claim that (2) implies

y(t)≤M′ε e−µ(t−tk), t ∈ [tk− τ̄, tk+1), (4)

where k = 0, 1, 2, . . ..
Note that for any t ∈ [tk− τ̄, tk], (4) holds. If (4) does not

hold for any t ∈ (tk, tk+1), there exists a t ∈ (tk, tk+1), such
that y(t) ≥ M′ε e−µ(t−tk). Set t∗k = inf{t ∈ (tk, tk+1) : y(t) ≥
M′ε e−µ(t−tk)}. Moreover, we have y(t) ≤ M′ε e−µ(t−tk), t ∈
[tk− τ̄, t∗k ) and

y(t∗k ) = M′ε e−µ(t∗k−tk). (5)

However, (2) implies

y(t∗k )≤ λ̂0e−γ(t∗k−tk)+ λ̂1yτ(t∗k )

+ λ̂2

∫ t∗k

tk
e−γ(t∗k−s)yτ(s)ds

≤
[

λ̂0−
M′ε λ̂2eµτ̄

γ−µ

]
e−γt∗k

+M′ε

[
λ̂1 +

λ̂2

γ−µ

]
eµτ̄−µt∗k . (6)

In view of the definitions of µ , H(µ̄) and M′ε , it obtains

that λ̂1eµτ̄ + λ̂2eµτ̄

γ−µ
≤ 1, and λ̂0− M′ε λ̂2eµτ̄

γ−µ
≤ λ̂0− λ̂2eµτ̄

γ−µ
(λ̂0 +

ε) γ−µ

λ̂2eµτ̄
< 0. Hence, it implies from (6) that y(t∗k ) <

M′ε e−µ(t∗k−tk) which contradicts (5). Then, (4) holds. As
ε → 0+ in (4), inequality (3) is derived. �

Remark 2: In Lemma 1, on every subinterval [tk, tk+1)
(k = 0, 1, 2, . . .), y(t) is controlled by the function of expo-
nential decay, which is presented in (3). In [30,33], the dif-
ferential delay inequality is established to analyze the sta-
bility for delay differential equations with impulses. For
NSDDE, such inequality is not easily established since
the neutral term and the stochastic perturbation simulta-
neously exists. Motivated by [30,33], one delay integral
inequality is established in Lemma 1 to overcome such
problem. This lemma can be used to investigate the stabil-
ity for NSDDE with impulses, see Theorem 1.

3. MAIN RESULTS

Theorem 1: Under Hypotheses I-IV, assume that
there exist a function V (t,x, i) ∈ C2,1([tk, tk+1)×Rn×N ;
[0,+∞)) (k = 0, 1, 2, . . .), some constants α1 > 0, α2 > 0,
λ1i > 0, λ2i > 0 (i ∈ N ), and p≥ 2 such that for any x̃, x,
y ∈ Rn,

α1|x̃|p ≤V (t, x̃, i)≤ α2|x̃|p, (7)

LV (t,x,y, i)≤−λ1i|x|p +λ2i|y|p, (8)

for all t ≥ t0, t 6= tk (k = 1, 2, . . .) and i ∈ N . If in-

equalities λ2 < λ1

[
α1(1−κ)p

α2(1+κ)p−1 − κ

]
, and λ < ν0 are sat-

isfied, where λ1 = mini∈N {λ1i}, λ2 = maxi∈N {λ2i},
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λ = supk=1,2,...

{
lnρk

tk−tk−1

}
, ρk = max{max{β p

k eν0 τ̄ , 1},

[(β p
k + κeν0 τ̄)(λ1 − ν0α2(1+ κ)p−1)]/[(1+ κ)p−1(κλ1 +

λ2)eν0 τ̄ ]} (k = 1,2, . . .) and ν0 ∈
(

0, λ1
α2(1+κ)p−1

)
is

the unique solution of the algebraic equation κeντ̄ +
α2(λ1κ+λ2)(1+κ)p−1eντ̄/[λ1α1(1−κ)p−1−να1α2(1−
κ2)p−1] = 1. Then, NSDDEwMSI (1) is exponentially sta-
ble in p-th (p≥ 2)-moment.

Proof: For any t ∈ [t0, +∞), from (8), we have

LV (t,x,y, i)≤−λ1|x|p +λ2|y|p. (9)

For any t ∈ [t0, t1) and r(t) ∈ N , by applying Itô for-
mula to the Lyapunov function exp( λ1(t−t0)

α2(1+κ)p−1 )V (t,x(t)−
D(t,xτ(t),r(t)),r(t)), and taking the mathematical expec-
tation in turn, it yields from inequality (9) and Lemma 4.3
in [19] that

E{|x(t)−D(t,xτ(t),r(t))|p}

≤ E{V (t0,x(t0)−D(t0,xτ(t0),r(t0)),r(t0))}
α1

× exp
(
− λ1(t− t0)

α2(1+κ)p−1

)
+

κλ1 +λ2

α1

×
∫ t

t0
exp
(
− λ1(t− s)

α2(1+κ)p−1

)
E{|xτ(s)|p}ds. (10)

Using Lemma 4.5 in [19], we obtain

E{|x(t)|p} ≤ κE{|xτ(t)|p}

+
E{|x(t)−D(t,xτ(t),r(t))|p}

(1−κ)p−1 , (11)

for any t ∈ [t0, t1).
Substituting (11) into (10) yields that for any t ∈ [t0, t1),

E{|x(t)|p}

≤ M̃
α1(1−κ)p−1 exp

(
− λ1(t− t0)

α2(1+κ)p−1

)
+κE{|xτ(t)|p}+

κλ1 +λ2

α1(1−κ)p−1

×
∫ t

t0
exp
(
− λ1(t− s)

α2(1+κ)p−1

)
E{|xτ(s)|p}ds, (12)

where M̃ ≥E{V (t0,x(t0)−D(t0,xτ(t0), r(t0)), r(t0))}. For
any t ∈ [t0− τ̄ , t0], it is seen that

E{|x(t)|p} ≤ M̃
α1(1−κ)p−1 exp

(
− λ1(t− t0)

α2(1+κ)p−1

)
.

(13)

By virtue of Lemma 1, then from (12)-(13), it implies that
for any t ∈ [t0, t1),

E{|x(t)|p} ≤M0M̃e−ν0(t−t0), (14)

where M0 = (max{1, [α1(1− κ)p−1(λ1 − α2(1 + κ)p−1

ν0)]/[α2(1+κ)p−1(λ1κ +λ2)eν0τ ]})/(α1(1−κ)p−1)> 0.
Furthermore, it yields from (14) that

E{|x(t1)|p} ≤ β
p

1 E{|x(t
−
1 )|

p} ≤ β
p

1 M0M̃e−ν0(t1−t0).
(15)

Thus, for any t ∈ [t1− τ̄, t1], we have

E{|x(t)|p} ≤max{β p
1 eν0 τ̄ ,1}M0M̃e−ν0(t−t0). (16)

By Hypotheses III-IV and (15)-(16), it gives

E{V (t1,x(t1)−D(t1,xτ(t1),r(t1)),r(t1))}
≤ α2(1+κ)p−1(β p

1 E{|x(t
−
1 )|

p}+κE{|xτ(t1)|p})
≤ α2(1+κ)p−1(β p

1 +κeν0 τ̄)M0M̃e−ν0(t1−t0). (17)

For any t ∈ [t1, t2) and r(t) ∈ N , similar to the derivation
processes (12)-(13), we have

E{|x(t)|p}

≤



E{V (t1,x(t1)−D(t1,xτ(t1),r(t1)),r(t1))}
α1(1−κ)p−1

× exp
(
− λ1(t− t1)

α2(1+κ)p−1

)
+κE{|xτ(t)|p}+

κλ1 +λ2

α1(1−κ)p−1

×
∫ t

t1
exp
(
− λ1(t− s)

α2(1+κ)p−1

)
E{|xτ(s)|p}ds,

t ∈ [t1, t2),

max{β p
1 eν0 τ̄ ,1}M0M̃e−ν0(t−t0),

t ∈ [t1− τ̄, t1].
(18)

From Lemma 1, it gives that for t ∈ [t1, t2), E{|x(t)|p}≤
max{max{β p

1 eν0 τ̄ , 1}M0M̃e−ν0(t1−t0), [E{V (t1,x(t1) −
D(t1,xτ(t1), r(t1)), r(t1))}(λ1−α2(1+κ)p−1ν0)]/(α2(1+
κ)p−1(λ1κ + λ2)eν0 τ̄)} ≤ ρ1M0M̃e−ν0(t−t0). Suppose that
for all m = 1, 2, . . ., k, inequality

E{|x(t)|p} ≤ ρ0ρ1 · · ·ρm−1M0M̃e−ν0(t−t0) (19)

hold for any t ∈ [tm−1, tm), where ρ0 = 1. Furthermore, it
yields from (19) that E{|x(tk)|p} ≤ β

p
k ρ0ρ1 · · ·ρk−1M0M̃

e−ν0(tk−t0). Thus, for any t ∈ [tk − τ̄, tk], it yields
E{|x(t)|p} ≤ max{β p

k eν0 τ̄ , 1}ρ0ρ1 · · ·ρk−1M0M̃e−ν0(t2−t0).
Similarly, when t = tk, E{V (tk, x(tk) − D(tk, xτ(tk),
r(tk)), r(tk))} ≤ α2E{|x(tk) − D(tk, xτ(tk), r(tk))|p} ≤
max{β p

k eν0 τ̄ , 1}ρ0ρ1 · · ·ρk−1α2(1+κ)p−1(β p
2 +κeν0τ)M0

M̃e−ν0(tk−t0). Then,
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E{|x(t)|p}

≤



E{V (tk,x(tk)−D(tk,xτ(tk),r(tk)),r(tk))}
α1(1−κ)p−1

× exp
(
− λ1(t− tk)

α2(1+κ)p−1

)
+κE{|xτ(t)|p}+

κλ1 +λ2

α1(1−κ)p−1

×
∫ t

tk
exp
(
− λ1(t− s)

α2(1+κ)p−1

)
E{|xτ(s)|p}ds,

t ∈ [tk, tk+1),

max{β p
k eν0 τ̄ ,1}ρ0ρ1 · · ·ρk−1M0M̃e−ν0(t−t0),

t ∈ [tk− τ̄, tk].

Using Lemma 1, it follows that for any t ∈ [tk− τ̄, tk+1)
(k = 0, 1, 2, . . .), E{|x(t)|p} ≤ max{max{β p

k eν0 τ̄ ,
1}ρ0ρ1 · · ·ρk−1M0M̃e−ν0(tk−t0), ∏

k−1
i=1 ρi(β

p
k + κeν0 τ̄)p−1

[(λ1−α2(1+κ)p−1ν0)M0M̃e−ν0(tk−t0)]/[(1+κ)p−1(λ1κ+
λ2)eν0 τ̄ ]}e−ν0(t−tk) = ρ0ρ1 · · ·ρk−1ρkM0M̃e−ν0(t−t0).

By the mathematical induction, it is checked that

E{|x(t)|p} ≤M0M̃
k

∏
i=0

ρie−ν0(t−t0), (20)

holds for any t ∈ [tk − τ̄ , tk+1) (k = 0, 1, 2, . . .). Noting
that ρk ≤ eλ (tk−tk−1) (k = 1, 2, . . .) is derived from (20), it
implies that E{|x(t)|p} ≤ ρ0ρ1 · · ·ρk−1ρkM0M̃e−ν0(t−t0) ≤
M0M̃e−(ν0−λ )(t−t0), for any t ∈ [tk − τ̄ , tk+1) (k = 0, 1,
2, . . .). The proof of this theorem is completed. �

Remark 3: In Theorem 1, the exponential stability
in p-th (p ≥ 2)-moment for NSDDEwMSI (1) has been
investigated, and some sufficient conditions have been
proposed. From (7) and (8), it can be shown that NS-
DDEwMSI (1) has exponential decay in p-th (p ≥ 2)-
moment with decay rate ν0 on every impulsive interval
[tk, tk+1) (k = 0, 1, 2, . . .). For every mode on Markovian
switching in (1), one corresponding Lyapunov function
V (t, x̃, i) is constructed for (1) with inequality (7) being
satisfied, which is easily realized. Then, the Lyapunov Itô
operator are expected to be estimated in term of inequal-
ity (8). Thus, λ2 < λ1[α1(1−κ)p/(α2(1+κ)p−1)−κ] is
obtained by using Lemma 1. Inequality λ < ν0 is satisfied
to determine the impulsive strength and the length of im-
pulsive interval. ρk (k = 1, 2, . . .) can be determined from
the impulsive strength at the impulsive instant, which has
given in Hypothesis III. Then, the length of every impul-
sive interval tk−tk−1 (k = 1, 2, . . .) is derived from λ < ν0.

Remark 4: The exponential stability in p-th (p ≥ 2)-
moment for NSDDE without impulses has been discussed
by using some excellent methodologies such as the Lya-
punov function approach [5], the Lyapunov functional ap-
proach [6], the Lyapunov-Razumikhin theorem [7] and the
fixed point theorem [8]. These methodologies cannot di-

rectly used to consider our concerned problem in this pa-
per since the neutral term, the stochastic perturbation and
the nonlinear impulsive effects simultaneously exist. The
approach for analyzing the stability for deterministic neu-
tral delay differential equations with impulses cannot be
easily generalized for considering the exponential stabil-
ity in p-th (p≥ 2)-moment for (1), see [10,29,30,33-35].

Theorem 2: Suppose that all conditions of Theorem 1
are satisfied with supk=1,2,...{tk− tk−1} < +∞, then NSD-
DEwMSI (1) is almost surely exponentially stable.

Proof: For ς = infk∈N{tk− tk−1}, we choose δ with 0 <
δ < ς sufficiently small such that δ < tk+1−tk (k = 0, 1, 2,

. . .). For the fixed δ > 0, let kδ =

[[
tk−tk−1

δ

]]
∈ N, where

[[X ]] is the maximum integer no more than X . Then, kδ ≤
∆sup

δ
, where ∆sup = supk=1,2,...{tk − tk−1}. For any t ∈ [tk,

tk+1) (k = 0, 1, 2, . . .), there exists some i with 1 ≤ i ≤
kδ + 1 such that tk +(i− 1)δ ≤ t < tk+1 + iδ . Hence, for
any t ∈ [tk, tk+1) (k = 0, 1, 2, . . .), we have

E
[

sup
tk≤t<tk+1

|x(t−D(t,xτ(t),r(t))|p
]

≤
kδ+1

∑
i=1
E
[

sup
tk+(i−1)δ≤t<tk+1+iδ

|x(t)−D(t,xτ(t),r(t))|p
]
.

(21)

For every i satisfying 1≤ i≤ kδ +1 (kδ ∈ N), it yields

E
[

sup
tk+(i−1)δ≤t<tk+1+iδ

|x(t)−D(t,xτ(t),r(t))|p
]

≤ 3p−1E{|x(tk +(i−1)δ )−D(tk +(i−1)δ ,

xτ(tk +(i−1)δ ),r(tk +(i−1)δ ))|p}

+3p−1E
[∫ tk+iδ

tk+(i−1)δ
| f (s,x(s),xτ(s),r(s))|ds

]p

+3p−1E
[

sup
tk+(i−1)δ≤t<tk+1+iδ

∣∣∣∣∫ t

tk+(i−1)δ
g(s,x(s),

xτ(s),r(s))dB(s)
∣∣∣∣p]. (22)

From Remark 2 and Hypothesis II, it implies

E{|x(tk +(i−1)δ )−D(tk +(i−1)δ ,

xτ(tk +(i−1)δ ),r(tk +(i−1)δ ))|p}
≤ 2p−1[1+κ

p]M0M̃e−µ0(tk−t0). (23)

By Hypothesis I and Remark 2, it gives

E
[∫ tk+iδ

tk+(i−1)δ
| f (s,x(s),xτ(s),r(s))|ds

]p

≤ 2p
δ

pLpM0M̃e−µ0(tk−t0). (24)

By using Hypothesis I and Remark 2 as well as the
Burkholder-Davis-Gundy inequality [9], it follows

E
[

sup
tk+(i−1)δ≤t<tk+1+iδ

∣∣∣∣∫ t

tk+(i−1)δ
g(s,x(s),
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xτ(s),r(s))dB(s)
∣∣∣∣p]

≤CpE
{∫ tk+iδ

tk+(i−1)δ
|g(s,x(s),xτ(s),r(s))|pds

}
≤ 2CpδLpM0M̃e−µ0(tk−t0), (25)

where Cp > 0 is a constant.
Substituting (23)-(25) into (22) implies that

E [ sup
tk+(i−1)δ≤t<tk+1+iδ

|x(t)−D(t,xτ(t),r(t))|p]

≤ K̃e−µ0(tk−t0), (26)

for any i = 1, 2, . . ., kδ +1, where K̃ > 0.
By using inequalities (21) and (26), we have

E [ sup
tk≤t<tk+1

|x(t−D(t,xτ(t),r(t))|p]

≤ (kδ +1)K̃e−µ0(tk−t0). (27)

Therefore, for any ε > 0 satisfying ε ∈ (0,µ0), it
follows from (27) that P{suptk+(i−1)δ≤t<tk+1+iδ |x(t) −
D(t,xτ(t),r(t))|p > (kδ + 1)K̃e−(µ0−ε)(tk−t0)} ≤ e−ε(tk−t0).
Note that tk → +∞ as k→ +∞. By using the well-known
Borel-Cantelli lemma, it yields suptk+(i−1)δ≤t<tk+1+iδ |x(t)−
D(t,xτ(t),r(t))|p ≤ (kδ +1)K̃e−(µ0−ε)(tk−t0), a.s.

Letting ε → 0+, it follows that for any t ∈ [tk, tk+1)
(k = 0, 1, 2, . . .), |x(t) − D(t,xτ(t),r(t))|p ≤ (kδ +
1)K̃′e−µ0(t−t0), a.s. where K̃′ = K̃eµ0∆sup > 0.

Furthermore, for any t ∈ [t0,+∞), we have

|x(t)−D(t,xτ(t),r(t))|p ≤ (kδ +1)K̃′e−µ0(t−t0), a.s.
(28)

For any ε0 ∈ (0, min{µ0, − p
τ̄

ln(κ)}), we can choose

χ > 0 sufficiently large such that l = κ p(1+χ)p−1eε0 τ̄

χ p−1 < 1.
Thus, for any T > 0, by using inequality (28), it
gives supt0≤t≤T [e

ε0(t−t0)|x(t)|p] ≤ (kδ + 1)K̃′(1 + χ)p−1+

lE{supθ∈[t0−τ̄,t0] |ξ (θ)|
p} + l supt0≤t≤T [e

ε0(t−t0)|x(t)|p],
which implies that sup0≤t≤T [e

ε0(t−t0)|x(t)|p] ≤ [(kδ + 1)
K̃′(1 + χ)p−1 + lE{supθ∈[t0−τ̄,t0] |ξ (θ)|

p}]/(1 − l). Let-
ting T → +∞, it yields supt0≤t<+∞[e

ε0(t−t0)|x(t)|p] ≤
[(kδ +1)K̃′(1+χ)p−1+ lE{supθ∈[t0−τ̄,t0] |ξ (θ)|

p}]/(1− l),

which implies limsupt→+∞

log(|x(t)|)
t ≤− ε0

p . �

Remark 5: In [24], the almost surely exponential sta-
bility for impulsive stochastic differential equations has
been investigated by using the Borel-Cantelli lemma.
Based on Theorem 1, the almost surely exponential sta-
bility for NSDDEwMSI (1) can be guaranteed by using
the Borel-Cantelli lemma. The reason why this theorem
can be obtained is that apart from using the result given in
Theorem 1, Hypotheses I-III are satisfied.

In the following, we will investigate the following
neutral stochastic linear delay differential equations with

Markovian switching and nonlinear impulsive effects.
d[x(t)−D(r(t))xτ(t)]

= [A(r(t))x(t)+C(r(t))xτ(t)]dt

+H(r(t))x(t)dB(t), t ≥ t0, t 6= tk,

x(t) = Bkx(t−), t = tk, k = 1, 2, . . . ,

(29)

with the initial value {x(θ) : t0 − τ̄ ≤ θ ≤ t0} = ξ ∈
PC([t0− τ̄ , t0]; Rn), where x(t)∈ Rn with τ(·) : [t0,+∞)→
[0, τ̄] (τ̄ > 0) being a bounded delay function. B(t) is one
dimension standard Brownian motion on (Ω, F , {F}t≥t0 ,
P). When r(t) = i ∈ N , A(r(t)), C(r(t)), H(r(t)) and
D(r(t)) are denoted by Ai, Ci, Hi andDi, respectively. κ =
maxi∈N {|Di|} ∈ (0,1). Bk denotes the impulsive strength
matrix at the impulsive instant with |Bk| 6= 1 (k = 1, 2, . . .).
When V (t,x, i) = qi|x|2, we have the following corollary.

Corollary 1: For systems (29), there exists some
positive constants λ1, λ2, λ and ν0 such that inequali-
ties (11) and (12) are satisfied with λ1 = mini∈N {λ1i},
λ2 = maxi∈N {λ2i}, λ = supk=1,2,...{

lnρk
tk−tk−1

}, ρk =

maxk=1,2,...{max{|Bk|2eν0 τ̄ ,1}, [(|Bk|2 + κeν0 τ̄)(λ1 −
ν0α2(1 + κ))]/[(1 + κ)(κλ1 + λ2)]}, and ν0 ∈ (0,
λ1/(α2(1 + κ))) is a unique solution of the algebraic
equation κeντ̄ + [α2(λ1κ + λ2)(1 + κ)]eντ̄/(λ1α1(1 −
κ) − να1α2(1 − κ2)) = 1, where λ1i = qi[λmax(AT

i +
Ai) + |Ci| + |DT

i Ai| + trace(HiHT
i ) + ∑

N
j=1 γi jq j] < 0,

λ2i = qi[|Ci|+ |DT
i Ai|+ 2|DT

i Ci|]. Then, the exponential
stability in mean square and the almost surely exponen-
tial stability for neutral stochastic linear delay differential
equations with Markovian switching and nonlinear impul-
sive effects are guaranteed, respectively.

One algorithm for Corollary 1 are given as follows:
Step 1: Calculate the parameters λ1i, λ2i (i∈N ). More-

over, calculate out λ1, λ2 and ν0;
Step 2: Choose matrices Bk in (29) such that ‖Bk‖ ∈

(0,1). Calculate out the parameters ρk (k = 1, 2, . . .);
Step 3: Determine the impulsive time instants {tk}∞

k=1
such that inequalities λ2 < λ1[α1(1 − κ)p/(α2(1 +
κ)p−1)−κ], and λ < ν0 are both satisfied.

4. EXAMPLE

B(t) denotes a scalar Brownian motion defined on (Ω,
F , {F}t≥t0 , P). We consider one coupled system consist-
ing of a mass-spring-damper (MSD) and a pendulum [40]
under the random external forces and impulsive effects,
which are presented by

Mz̈(t)+Cż(t)+Kz(t)+mz̈(t− τ)

+h(t,z(t), ż(t),z(t− τ), ż(t− τ),r(t), Ḃ(t)) = 0,

t ≥ t0, t 6= tk,

z(tk) = δ z(t−k ), ż(tk) = δ ż(t−k ), k = 1, 2, . . . ,
(30)
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where M, C, K, and m denote the mass, stiffness, damp-
ing of MSD, and the mass of a pendulum, respectively.
τ = 1.0 is the time delay, B(t) is a scalar white noise, h(t,
z(t), ż(t), z(t − τ), ż(t − τ), r(t), Ḃ(t)) = −a(r(t))z(t −
τ)− b(r(t))ż(t − τ)− [c(r(t))z(t) + d(r(t))ż(t)]Ḃ(t) rep-
resents the random external force, z(t), ż(t) and z̈(t) de-
scribe the position, velocity, and acceleration of the MSD
at time t. The impulsive instant sequence {tk}∞

k=1 satis-
fies 0 = t0 < t1 < t2 < · · · < tk < · · · and limk→∞ tk = ∞.
z(tk) = z(t+k ) = limt→t+k

z(t), z(t−k ) = limt→t−k
z(t), ż(tk) =

ż(t+k ) = limt→t+k
ż(t), and ż(t−k ) = limt→t−k

ż(t). r(t) denotes
the Markov chain with its stateN = {1 2} and its genera-
tor Γ= (γi j)2×2 (γ11 =−2, γ12 = 2, γ21 = 3, and γ22 =−3).

Letting x1(t) = z(t) and x2(t) = ż(t). Then, system (30)
can be presented as NSDDEwMSI.

d[x(t)−Dx(t− τ)]

= f (t,x(t),x(t− τ),r(t))dt

+g(t,x(t),x(t− τ),r(t))dB(t),

t ≥ t0, t 6= tk,

x(tk) = Bkx(t−k ), k = 1, 2, . . . ,

(31)

where x(t) = col[x1(t) x2(t)], f (t,x(t), x(t − τ), k) =
Ax(t)+C(k)x(t−τ), g(t,x(t),x(t−τ),k) = H(k)x(t), and

D =

[
0 0
0 − m

M

]
, Bk =

[
δ 0
0 δ

]
, A =

[
0 1
− K

M − C
M

]
,

C(1) =
[

0 0
a(1)
M

b(1)
M

]
, C(2) =

[
0 0

a(2)
M

b(2)
M

]
,

H(1) =
[

0 0
c(1)
M

d(1)
M

]
, H(2) =

[
0 0

c(2)
M

d(2)
M

]
.

For systems (31), we define the Lyapunov function
V (t,x−Dy,k) = qk|x−Dy|2 (k = 1, 2) with q1 = 1.0
and q2 = 0.8. Clearly, α1 = mink=1,2{qk} = 0.8 and
α2 = maxk=1,2{qk} = 1.0. Furthermore, the infinites-
imal operators are given as LV (t,x,y,1) = 2q1[x −
Dy]T [Ax(t)+C(1)x(t−τ)]+q1trace[H(1)HT (1)]|x(t)|2+
∑

2
j=1 γ1 jq j|x − Dy|2 ≤ −λ11|x(t)|2 + λ21|x(t − τ)|2,

and LV (t,x,y,2) = 2q2[x − Dy]T [Ax(t) + C(2)x(t −
τ)] + q2trace[H(2)HT (2)]|x(t)|2 + ∑

2
j=1 γ2 jq j|x−Dy|2 ≤

−λ12|x(t)|2 +λ22|x(t− τ)|2, where λ11 = −q1[λmax(AT +
A) + λmax(C(1)) + λmax(DT A) + trace[H(1)HT (1) −
0.2(1−m/M)], λ21 = q1[λmax(DT A)+ λmax(−DTC(1)−
CT (1)D)+ 0.2(m/M)(1−m/M)], λ12 = −q2[λmax(AT +
A) + λmax(C(2)) + λmax(DT A) + trace[H(2)HT (2) +
0.6(1+m/M)], and λ22 = q2[λmax(DT A)+λmax(−DTC(2)
−CT (2)D)+0.6(m/M)(1+m/M)].

When M = 10, C = 20, K = 10, m = 1.0, a(1) = 2,
a(2) = −2, b(1) = 1, b(2) = −2, c(1) = −3, c(2) =
−2, d(1) = −2, d(2) = 1 and δ = 0.8 in (30), we have
λ1 = 0.568 and λ2 = 0.1804. Moreover, λ2 < λ1[α1(1−
m/M)2/(α2(1+m/M))−m/M] holds. Meanwhile, ν0 =
0.1445 and ρk = 1.1457 (k = 1, 2, . . .). Letting tk = 0.5+

Fig. 1. Dynamical trajectory in the mean square sense for
(31).

Fig. 2. Dynamical trajectory in almost sure sense for (31).

1.1k (k = 1, 2, . . .). Then, λ = 0.1236< ν0 = 0.1445. Con-
sequently, from Corollary 1, it can be concluded that NS-
DDEwMSI (31) is exponentially stable in mean square
and almost surely exponentially stable. When the ini-
tial value col[x1(t) x2(t)] = col[−1 2] (t ∈ [−1.0,0]) and
r(0) = 1, Figs. 1 and 2 illustrate the exponential stability
in mean square and the almost surely exponential stability
for NSDDEwMSI (31), respectively.

5. CONCLUSION

In this paper, the exponential stability in p (p ≥ 2)-
moment and the almost surely exponential stability for
neutral stochastic differential delay equations with Marko-
vian switching and nonlinear impulsive effects have been
investigated. When the globally Lipschitz condition is sat-
isfied for the drift term and the diffusion term, the con-
tractive condition is fulfilled for the neutral term, by using
the generalized integral-type Halanay inequality, the Lya-
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punov function and the theory of stochastic analysis, these
two stochastic stabilities are considered. One example is
provided to illustrate the effectiveness of the theoretical
results derived.
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