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Optimal Zonotopic Kalman Filter-based State Estimation and Fault-
diagnosis Algorithm for Linear Discrete-time System with Time Delay
Zi-Xing Liu, Zi-Yun Wang* � , Yan Wang, and Zhi-Cheng Ji

Abstract: To manage the state estimation and fault-diagnosis problem of linear discrete uncertain systems with time
delay, a state estimation and fault-diagnosis algorithm based on an improved zonotopic Kalman filter is proposed
under the assumption that the process interference and measurement noise of the systems are unknown but bounded.
First, zonotopes are used to contain the nonzero initial conditions of the system with time delay, and an optimal
zonotopic Kalman filter is designed by using an iterative replacement method to determine the relationship between
the current time and the delayed time. Subsequently, the optimal observer gain of the optimal zonotopic Kalman
filter is designed by minimizing the size of the zonotopic sets to estimate the state sets. Next, the fault occurrence
is detected by determining whether the true output value of the system is within the upper and lower bounds of
the estimated output value, and the fault identification process is completed by the matching probability of the
fault type. Finally, the fault-diagnosis of a numerical system, and the pitch system of a wind turbine are used as
examples to demonstrate the effectiveness and feasibility of the proposed method for systems with time delay by
analyzing the fault diagnosis results. A comparison with a normal fault-matching method indicates that the proposed
fault-diagnosis algorithm is more rapid in fault identification.
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1. INTRODUCTION

System operational safety and product quality are im-
portant for industrial process control, and its failure will
decrease quality and create severe safety risks to the en-
tire system. Therefore, the study of fault detection and
diagnosis is significant [1]. Researchers in the related
fields have divided the fault-diagnosis methods into the
following three categories: analytical model-based [2–4],
knowledge-based [5,6], and signal-processing-based [7,
8]. Furthermore, in order to maintain the good perfor-
mance of the system, a variety of effective fault-tolerant
control methods have been proposed and developed [9,
10]. Among the three fault-diagnosis methods mentioned
above, the analytical model-based method having a solid
theoretical foundation is currently a popular research topic
owing to its simple implementation.

However, traditional model-based methods assume that
noise and interference conform to a certain distribution
law; but actual systems contain insufficient data to sum-
marize the random characteristics of these noises. Fur-

thermore, certain noises do not have random characteris-
tics, making it difficult to describe using statistical rules.
If these methods are applied to solve the fault-diagnosis
problem of an actual system, they may result in false or
missed detections. Therefore, the shortcomings of these
methods limit their practical applications. In contrast to
these fault-diagnosis methods, such as the Kalman fil-
ter [11] and recursive least square algorithm [12], which
are used to manage systems whose interference and noise
are unbounded but satisfy certain distribution laws, the
set-membership estimation method only requires knowl-
edge of the interference and noise bounds; thus, it can
be used to solve the aforementioned problems effectively
and can be satisfied for most metropolitan systems. There-
fore, the set-membership estimation method has been ex-
tensively studied and widely used. The fault-diagnosis
method based on set-membership estimation can be di-
vided into the following two categories: parameter set
estimation-based [13,14] and state set estimation-based
[15–17]. As implied by the names, the fault-diagnosis
method based on parameter set estimation obtains the
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fault diagnosis result of the system according to the ob-
tained parameter set, whereas the fault-diagnosis method
based on state set estimation determines the fault state
of the system based on the corresponding state set. The
two methods are not superior to each other. The fol-
lowing set-membership filtering methods are commonly
used ellipsoids [18,19], zonotopes [15,16,20], and poly-
topes [21,22]; the zonotopes have better accuracy, are less
conservative than ellipsoids, and are lower in complexity
compared to polytopes [23].

The zonotopic Kalman filter (ZKF) [24] is a state es-
timation algorithm that combines a zonotopic set and a
Kalman filter. By obtaining the optimal observer gain, a
ZKF is designed to estimate the state set, and the zono-
topic set is used to describe the state of the system with
an unknown but bounded interference and noise. Zhang et
al. [25] designed a ZKF based on the construction of an
augmented system for systems with a sensor fault to de-
termine its interval estimation, and the simulation results
of a quadruple-tank system demonstrated the effectiveness
and superiority of the proposed method. Pourasghar et al.
[26] proposed a zonotopic Kalman filter based fault detec-
tion method (FD-ZKF) based on the ZKF algorithm for
the fault detection of a system to enhance the sensitivity
to faults with respect to disturbances. The simulation of
the quadruple-tank system illustrates the effectiveness of
the proposed FD-ZKF method.

Time delay widely exists in various practical systems,
which will lead to poor performance or system instability.
There are many reasons for time delay, such as time delay
in measurement caused by aging of system components
and time delay in signal transmission caused by mechani-
cal wear [27,28]. For a system with time delay, except for
the actuator input item and process interference item, the
current real state is not only related to the state at the pre-
vious time, but also related to the state several time ago
due to the time delay. Therefore, when calculating the es-
timated value of the current state, not only the state esti-
mation result at the previous moment needs to be consid-
ered, but also the influence of the state estimation result
several time ago needs to be added. Thus, compared to the
simple calculation of the state estimation result at the pre-
vious time, the calculation of the system with time delay
is more complicated and more suitable for the actual situ-
ation. Therefore, the research and control of systems with
time delay have recently become popular in the field of
control [29,30]. Considering a situation where the control
performance of the time delay DC motor system would be
significantly deteriorated under uncertain time delay infor-
mation, Yook et al. [31] proposed a speed control problem
for the time delay DC motor system. A predicted output
signal was generated by incorporating a disturbance ob-
server and a communication disturbance observer; com-
parative simulations and experiments tested the effective-
ness of the proposed algorithm. Zhang et al. [32] pro-

posed a novel reachable set estimation method based on
zonotopes for the linear discrete-time system with time
delay, and three numerical simulations demonstrated the
effectiveness of the proposed method. To solve the sensor
fault-diagnosis problems of time-delay nonlinear systems,
You et al. [33] presented a sensor fault-diagnosis approach
via the use of adaptive updating rules; the simulation ex-
amples prove the effectiveness of the proposed algorithm,
which can track the fault signal effectively.

Based on the universality of the system with time delay
and the superiority of the ZKF method, this study inves-
tigates the state estimation and fault diagnosis of a linear
discrete-time system with time delay by designing an opti-
mal ZKF algorithm to obtain accurate state estimation re-
sults. A zonotope is used to describe the estimated state set
subject to an unknown but bounded noise, and the state es-
timation results were used for subsequent fault diagnosis.
The fault-matching method is a commonly used fault iden-
tification method, which identifies system faults through
the matching degree between the fault model and the ac-
tual model [34]. Based on this, the fault-matching method
combined with the Bayesian theory is used in this study to
complete the fault identification using the matching proba-
bility of the fault type. A comparison of the two identifica-
tion methods demonstrates that the normal fault-matching
method has lower efficiency.

The main contributions of this study are as follows: 1)
Considering the influence of time delay on the system, an
iterative replacement method is used to determine the re-
lationship between the current time and the delayed time,
and an optimal ZKF is designed. 2) An optimal gain ma-
trix is calculated for the optimal zonotopic Kalman filter
by minimizing the size of the zonotopic set correspond-
ing to the state of the system with time delay. 3) The
fault-matching method combined with the Bayesian the-
ory is used for fault identification; that is, the fault identi-
fication process is completed through the matching prob-
ability of the fault type. Compared to the normal fault-
matching method, the proposed fault-matching method is
more rapid in fault identification.

The rest of this paper is organized as follows: Section 2
presents the problem formulation and preliminaries. The
design of the optimal ZKF method with time delay is
demonstrated in Section 3. Section 4 derives the fault-
diagnosis method. In Section 5, a numerical simulation
case and a pitch system of a wind turbine simulation case
are used to verify and explain the effectiveness of the pro-
posed fault-diagnosis method for a system with time de-
lay. Finally, Section 6 presents a brief conclusion of the
proposed algorithm.
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2. PROBLEM FORMULATION AND
PRELIMINARIES

Considering the following linear discrete uncertain sys-
tem with time delay:{

x(k+1) = Ax(k)+Ahx(k−h)+Bu(k)+Dw(k),
y(k) =Cx(k)+Fv(k),

(1)

where x(k) ∈Rnx , u(k) ∈Rnu , and y(k) ∈Rny are the state,
input, and measurement output vectors of the system at
time k, respectively; A, Ah, B, D, C, and F are parameter
matrices of the appropriate dimensions, h ∈ Z+ denotes
a known constant time delay, and w(k) ∈ Rnw and v(k) ∈
Rnv are the unknown but bounded process interference and
measurement noise of the system, respectively.

The essential definitions and properties presented in this
study are as follows:

Definition 1: The r-order zonotope Z ⊂ Rn, (n≤ r) is
defined as follows [25]:

Z = p⊕GBr

= {z ∈ Rn : z = p+Gb,b ∈Br}= 〈p,G〉, (2)

where Br = [−1, 1]r is a hypercube, p ∈ Rn is the center
of Z , and G ∈ Rn×r is the generator matrix that is used to
define the shape of Z .

Zonotope is a special class of the geometrical sets and
has the following certain computational properties:

Property 1: For two zonotopes Z1 = 〈p1, G1〉 ⊂ Rn

and Z2 = 〈p2, G2〉 ⊂ Rn, the Minkowski sum is also a
zonotope, and can be defined as follows [25]:

〈p1, G1〉⊕〈p2, G2〉= 〈p1 + p2, [G1 G2]〉. (3)

Property 2: The linear image of the zonotope Z = 〈p,
G〉 ⊂Rn by L∈Rl×n is computed using the following ma-
trix product [25]:

L�〈p, G〉= 〈Lp, LG〉. (4)

Property 3: The smallest interval hull Box(Z) = [z−,
z+] = {z : z ∈ Z , z− ≤ z ≤ z+} containing the zonotope
Z = 〈p, G〉 ⊂ Rn can be described as follows [25]:

z−i = pi−
r

∑
j=1
|Gi, j|, i = 1, · · · , n,

z+i = pi +
r

∑
j=1
|Gi, j|, i = 1, · · · , n,

(5)

where z−i , z+i , and pi are the ith components of z−, z+, and
p, respectively. According to the aforementioned defini-
tions, the interval hull of Z can also be expressed as 〈p,
rs(G)〉, where rs(G) is a diagonal matrix and rs(G)i j =

∑
r
j=1 |Gi, j|, i = 1, · · · , n.

Lemma 1: The reduction operator ↓s can be used to
simplify the zonotopes. For a zonotope Z = p⊕GBr ⊂
Rn, (n≤ s≤ r), it can be bounded by a more conservative
zonotope with lower dimensions as follows [24]:

Z = 〈p, G〉 ⊆ 〈p, ↓s G〉. (6)

Thus, the implement procedure of ↓s G can be summa-
rized as follows:

• Obtain the norm decreasing matrix ↓G by rearranging
the columns in the matrix G in decreasing Euclidean
norm order as follows:

↓ G = [g1, g2, · · · , gr],

‖g j‖2 ≥ ‖g j+1‖2, j = 1, · · · , r−1.

• Divide ↓ G into two parts, G> and G<, and replace
G< by a diagonal matrix rs(G<) ∈ Rn×n as follows:
If r ≤ s then ↓s G =↓ G.
Else ↓s G= [G>,rs(G<)]∈Rn×s, G> = [g1, · · · ,gs−n],
and G< = [gs−n+1, · · · ,gr].

Definition 2: The Frobenius radius of the zonotope
Z = 〈p,G〉 can be regarded as a size criterion of the zono-
tope, and can be defined as the Frobenius norm of G [24]

‖〈p, G〉‖F = ‖G‖F =
√

tr(GTG) =
√

tr(GGT). (7)

Similarly, in the weighted case, ‖G‖F,M =
√

tr(GTMG),
where M ∈Rn×n is a weighted symmetric positive definite
matrix, tr(·) is the trace of a matrix.

Definition 3: The covariation of a zonotope Z = 〈p,
G〉 is defined as cov(〈p,G〉) = GGT [24]. The Frobe-
nius radius minimization is equivalent to its covariation
trace minimization, so J = tr(GGT) = ‖G‖2

F can also be
the size criterion of the zonotope Z = 〈p,G〉, and JM =
tr(MGGT) = tr(GTMG) = ‖G‖2

F,M in the weighted case.

Definition 4: Certain correlation operations about the
matrix traces are as follows [24,35]:

tr(A) = tr(AT), (8)

tr(AB) = tr(BA), (9)

∂ tr(AXTB)
∂X

= ATBT, (10)

∂ tr(AXBXTC)

∂X
= BXTCA+BTXTATCT, (11)

where A, B, C, and X are matrices with appropriate dimen-
sions.

Assumption 1: The initial state, process interference,
and measurement noise of the system (1) are confined to
the zonotopic sets as follows:

x(k−h) ∈ X(k−h) = 〈p(k−h), G(k−h)〉,
06 k 6 h, (12)
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w(k) ∈W = 〈0, Gw〉, k > 0, (13)

v(k) ∈V = 〈0, Gv〉, k > 0, (14)

where p(k− h) ∈ Rnx , G(k− h) ∈ Rnx×nx , Gw ∈ Rnw×nw ,
and Gv ∈ Rnv×nv are known constant vector and matrices.

3. DESIGN OF THE OPTIMAL ZKF FOR THE
SYSTEM WITH TIME DELAY

The fault diagnosis for the system with time delay is
based on the estimated states, and the states contained in
the zonotopic sets are estimated by designing an optimal
ZKF.

For system (1), the design of the optimal ZKF is as fol-
lows:

x̂(k+1) = Ax̂(k)+Ahx̂(k−h)+Bu(k)+Dw(k)

+L(k)(y(k)−Cx̂(k)−Fv(k)), (15)

where L(k) is the estimated optimal gain matrix of the op-
timal ZKF, and x̂(k) represents the estimated state at time
k.

Theorem 1: The estimated state at time k + 1 can be
contained in the zonotopic set as follows when 06 k 6 h:

x̂(k+1) ∈ X̂(k+1) = 〈p̂(k+1), Ĝ(k+1)〉, (16)

where

p̂(k+1) = (A−L(k)C)p̂(k)+Ah p̂(k−h)

+Bu(k)+L(k)y(k), (17)

Ĝ(k+1) = [(A−L(k)C) ˜̂G(k) Ah
˜̂G(k−h)

DGw −L(k)FGv], (18)
˜̂G(k) =↓s Ĝ(k), ˜̂G(k−h) =↓s Ĝ(k−h), (19)

p̂(k−h) = p(k−h), 06 k 6 h, (20)

Ĝ(k−h) = G(k−h), 06 k 6 h. (21)

Proof: According to the description of system (1), the
time delay only depends on the initial condition when 06
k 6 h. Based on (15), and the properties of the zonotope,
we can obtain the following:

x̂(k+1)

= Ax̂(k)+Ahx̂(k−h)+Bu(k)+Dw(k)

+L(k)(y(k)−Cx̂(k)−Fv(k))

∈
(
(A−L(k)C)�〈p̂(k), Ĝ(k)〉

)
⊕ (Ah�〈p̂(k−h), Ĝ(k−h)〉)⊕Bu(k)

⊕ (D�〈0,Gw〉)⊕L(k)y(k)⊕(−L(k)F�〈0,Gv〉)
⊆ 〈(A−L(k)C)p̂(k)+Ah p̂(k−h)+Bu(k)+L(k)y(k),

[(A−L(k)C) ˜̂G(k) Ah
˜̂G(k−h)

DGw −L(k)FGv]〉, (22)

where ˜̂G(k) =↓s Ĝ(k) and ˜̂G(k− h) =↓s Ĝ(k− h) are the
complexity reduction matrices of Ĝ(k) and Ĝ(k− h), re-
spectively. �

Theorem 2: For the zonotopic set in (16), we define
P̃(k) = ˜̂G(k) ˜̂GT(k), Qv = FGvGT

v FT. Then, the optimal
gain matrix L(k) can be designed as follows:

L(k) = AK(k), (23)

K(k) = R(k)S−1(k), (24)

R(k) = P̃(k)CT, (25)

S(k) =CP̃(k)CT +Qv. (26)

Proof: JM(k+1) = tr(ĜT(k+1)MĜ(k+1)) is the in-
dex that determines the size of the zonotope X̂(k + 1),
and the optimal value of L(k) can be obtained such that
∂L(k)JM(k+1) = 0.

∂L(k)JM(k+1)

= ∂L(k)tr(ĜT(k+1)MĜ(k+1))

= ∂L(k)tr
(
M(A−L(k)C)P̃(k)(A−L(k)C)T

+MP̃h(k−h)+MQw +ML(k)QvLT(k)
)

= ∂L(k)tr
(
M(L(k)CP̃(k)CTLT(k)+L(k)QvLT(k))

)
−2∂L(k)tr(MAP̃(k)CTLT(k)). (27)

Let ∂L(k)JM(k+1) = 0, then

∂L(k)tr
(
M(L(k)CP̃(k)CTLT(k)+L(k)QvLT(k))

)
= 2∂L(k)tr(MAP̃(k)CTLT(k)). (28)

Considering the operations of the matrix traces and M =
MT > 0, we can obtain the following:

L(k)(CP̃(k)CT +Qv) = AP̃(k)CT, (29)

L(k)S(k) = AR(k), (30)

L(k) = AK(k), (31)

where K(k) = R(k)S−1(k), R(k) = P̃(k)CT, S(k) = CP̃(k)
CT + Qv, P̃(k) = ˜̂G(k) ˜̂GT(k), P̃h(k − h) = Ah

˜̂G(k −
h) ˜̂GT(k−h)AT

h , Qw = DGwGT
wDT, Qv = FGvGT

v FT. �

Theorem 3: The estimated state at time k + 1 can be
contained in the zonotopic set as follows when k > h:

x̂(k+1) ∈ X̂(k+1) = 〈p̂(k+1), Ĝ(k+1)〉, (32)

where

p̂(k+1)

=
(
(A−L(k)C)

h

∏
i=1

(A−L(k− i)C)+Ah
)

× p̂(k−h)+(A−L(k)C)
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×
h

∑
i=1

( i−1

∏
j=1

(A−L(k− j)C)Ah p̂(k−h− i)
)

+(A−L(k)C)
h

∑
i=1

( i−1

∏
j=1

(A−L(k− j)C)(Bu(k− i)

+L(k− i)y(k− i))
)
+Bu(k)+L(k)y(k), (33)

Ĝ(k+1)

=
[(
(A−L(k)C)

h

∏
i=1

(A−L(k− i)C)+Ah
) ˜̂G(k−h)

H1(k) H2(k) H3(k)
]
, (34)

H1(k) = [H11(k) H12(k) · · · H1h(k)], (35)

H1i(k) = (A−L(k)C)

×
i−1

∏
j=1

(A−L(k− j)C)Ah
˜̂G(k−h− i), (36)

H2(k) = [H21(k) H22(k) · · · H2h(k) DGw], (37)

H2i(k) = (A−L(k)C)
i−1

∏
j=1

(A−L(k− j)C)DGw, (38)

H3(k) = [H31(k) H32(k) · · · H3h(k) −L(k)FGv],
(39)

H3i(k) =−(A−L(k)C)

×
i−1

∏
j=1

(A−L(k− j)C) ·L(k− i)FGv, (40)

and ˜̂G(k−h) =↓s Ĝ(k−h), ˜̂G(k−h− i) =↓s Ĝ(k−h− i),
Ĝ(k+ 1) ∈ Rnx×(r+nH1+nH2+nH3 ), H1(k) ∈ Rnx×nH1 , H2(k) ∈
Rnx×nH2 , H3(k) ∈ Rnx×nH3 .

Proof: The time delay of the system (1) is related to
the operation of the system when k > h, thus the influence
of the time delay on the state estimation of the system at
time k+1 should be considered. The relationship between
x(k) and x(k−h) is considered, and the state of the system
is iterated from x(k−h) to x(k+1).

When k > h, we can obtain the following from (15):

x̂(k+1) =(A−L(k)C)x̂(k)+Ahx̂(k−h)+Bu(k)

+Dw(k)+L(k)y(k)−L(k)Fv(k), (41)
...

...

x̂(k− i) =(A−L(k−1− i)C)x̂(k−1− i)

+Ahx̂(k−h−1− i)+Bu(k−1− i)

+Dw(k−1− i)+L(k−1− i)y(k−1− i)

−L(k−1− i)Fv(k−1− i), (42)
...

...

x̂(k−h) =(A−L(k−1−h)C)x̂(k−1−h)

+Ahx̂(k−h−1−h)+Bu(k−1−h)

+Dw(k−1−h)+L(k−1−h)y(k−1−h)

−L(k−1−h)Fv(k−1−h). (43)

Thus,

x̂(k+1)

= (A−L(k)C)x̂(k)+Ahx̂(k−h)+Bu(k)+Dw(k)

+L(k)y(k)−L(k)Fv(k)

= (A−L(k)C)(A−L(k−1)C)x̂(k−1)

+Ahx̂(k−h)+(A−L(k)C)Ahx̂(k−h−1)

+Bu(k)+(A−L(k)C)Bu(k−1)+Dw(k)

+(A−L(k)C)Dw(k−1)+L(k)y(k)

+(A−L(k)C)L(k−1)y(k−1)−L(k)Fv(k)

− (A−L(k)C)L(k−1)Fv(k−1)
...

...

=
(
(A−L(k)C)

h

∏
i=1

(A−L(k− i)C)+Ah
)
x̂(k−h)

+(A−L(k)C)

×
h

∑
i=1

( i−1

∏
j=1

(A−L(k− j)C)Ahx̂(k−h− i)
)

+(A−L(k)C)
h

∑
i=1

( i−1

∏
j=1

(A−L(k− j)C)(Bu(k− i)

+Dw(k− i)+L(k− i)y(k− i)

−L(k− i)Fv(k− i))
)

+Bu(k)+Dw(k)+L(k)y(k)−L(k)Fv(k)

⊆
〈(
(A−L(k)C)

h

∏
i=1

(A−L(k− i)C)+Ah
)

p̂(k−h)

+(A−L(k)C)

×
h

∑
i=1

( i−1

∏
j=1

(A−L(k− j)C)Ah p̂(k−h− i)
)

+(A−L(k)C)
h

∑
i=1

( i−1

∏
j=1

(A−L(k− j)C)

× (Bu(k− i)+L(k− i)y(k− i))
)
+Bu(k)

+L(k)y(k),
[(
(A−L(k)C)

h

∏
i=1

(A−L(k− i)C)

+Ah
) ˜̂G(k−h H1(k) H2(k) H3(k)

]〉
= 〈p̂(k+1), Ĝ(k+1)〉, (44)

where

H1(k) = [H11(k) H12(k) · · · H1h(k)], (45)

H1i(k) = (A−L(k)C)
i−1

∏
j=1

(A−L(k− j)C)Ah

× ˜̂G(k−h− i), (46)

H2(k) = [H21(k) H22(k) · · · H2h(k) DGw], (47)

H2i(k) = (A−L(k)C)
i−1

∏
j=1

(A−L(k− j)C)DGw, (48)
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H3(k) = [H31(k) H32(k) · · · H3h(k) −L(k)FGv],
(49)

H3i(k) =−(A−L(k)C)
i−1

∏
j=1

(A−L(k− j)C)

×L(k− i)FGv, (50)

and ˜̂G(k−h) =↓s Ĝ(k−h) and ˜̂G(k−h− i) =↓s Ĝ(k−h−
i) are the complexity reduction matrices of Ĝ(k− h) and
Ĝ(k−h− i), respectively, Ĝ(k+1) ∈ Rnx×(r+nH1+nH2+nH3 ),
H1(k) ∈ Rnx×nH1 , H2(k) ∈ Rnx×nH2 , H3(k) ∈ Rnx×nH3 . �

Theorem 4: For the zonotopic set of (32), define

P̃(k) =
( h

∏
i=1

(A−L(k− i)C)
) ˜̂G(k−h) ˜̂GT(k−h)

×
( h

∏
i=1

(A−L(k− i)C)
)T
, (51)

P̃1i(k) =
( i−1

∏
j=1

(A−L(k− j)C)
)
Ah

˜̂G(k−h− i)

× ˜̂GT(k−h− i)AT
h

( i−1

∏
j=1

(A−L(k− j)C)
)T
,

(52)

P̃2i(k) =
( i−1

∏
j=1

(A−L(k− j)C)
)
DGwGT

wDT

×
( i−1

∏
j=1

(A−L(k− j)C)
)T
, (53)

P̃3i(k) =
( i−1

∏
j=1

(A−L(k− j)C)
)
L(k− i)FGvGT

v FT

×LT(k− i)
( i−1

∏
j=1

(A−L(k− j)C)
)T
, (54)

Qv = FGvGT
v FT. (55)

The optimal gain matrix L(k) can be designed as follows:

L(k) = AK1(k)+AhK2(k), (56)

K1(k) = R1(k)S−1(k), (57)

K2(k) = R2(k)S−1(k), (58)

R1(k) =
(
P̃(k)+

h

∑
i=1

(P̃1i(k)+ P̃2i(k)+ P̃3i(k))
)
CT,

(59)

R2(k) = Ah
˜̂G(k−h) ˜̂GT(k−h)

×
( h

∏
i=1

(A−L(k− i)C)
)TCT, (60)

S(k) =C
(
P̃(k)+

h

∑
i=1

(P̃1i(k)+ P̃2i(k)+ P̃3i(k))
)
CT

+Qv. (61)

Proof: L(k) is obtained by minimizing JM(k + 1) =
tr(ĜT(k+1)MĜ(k+1)). Thus,

∂L(k)JM(k+1)

= ∂L(k)tr(ĜT(k+1)MĜ(k+1))

= ∂L(k)tr
(
ML(k)CP̃(k)CTLT(k)−2MAP̃(k)CTLT(k)

)
−2∂L(k)tr

(
MAh

˜̂G(k−h) ˜̂GT(k−h)

×
( h

∏
i=1

(A−L(k− i)C)
)TCTLT(k)

)
+∂L(k)tr

(
M

h

∑
i=1

(L(k)CP̃1i(k)CTLT(k))

−2M
h

∑
i=1

(AP̃1i(k)CTLT(k))
)

+∂L(k)tr
(
M

h

∑
i=1

(L(k)CP̃2i(k)CTLT(k))

−2M
h

∑
i=1

(AP̃2i(k)CTLT(k))
)

+∂L(k)tr
(
M

h

∑
i=1

(L(k)CP̃3i(k)CTLT(k))

−2M
h

∑
i=1

(AP̃3i(k)CTLT(k))+ML(k)QvLT(k)
)
.

(62)

Let ∂L(k)JM(k+1) = 0, then

∂L(k)tr
(

ML(k)C
(
P̃(k)+

h

∑
i=1

(P̃1i(k)+ P̃2i(k)+ P̃3i(k))
)

×CTLT(k)+ML(k)QvLT(k)
)

= 2∂L(k)tr
(

MA
(
P̃(k)+

h

∑
i=1

(P̃1i(k)+ P̃2i(k)+ P̃3i(k))
)

×CTLT(k)
)
+2∂L(k)tr

(
MAh

˜̂G(k−h) ˜̂GT(k−h)

×
( h

∏
i=1

(A−L(k− i)C)
)TCTLT(k)

)
. (63)

Considering the operations of the matrix traces and M =
MT > 0, we can obtain

L(k)
(

C
(
P̃(k)+

h

∑
i=1

(P̃1i(k)+ P̃2i(k)+ P̃3i(k))
)
CT +Qv

)
= A

(
P̃(k)+

h

∑
i=1

(P̃1i(k)+ P̃2i(k)+ P̃3i(k))
)
CT

+Ah
˜̂G(k−h) ˜̂GT(k−h)

( h

∏
i=1

(A−L(k− i)C)
)TCT,

(64)

L(k)S(k) = AR1(k)+AhR2(k). (65)
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Thus, the following can be concluded:

L(k) = AK1(k)+AhK2(k), (66)

K1(k) = R1(k)S−1(k), (67)

K2(k) = R2(k)S−1(k), (68)

R1(k) =
(
P̃(k)+

h

∑
i=1

(P̃1i(k)+ P̃2i(k)+ P̃3i(k))
)
CT,

(69)

R2(k) = Ah
˜̂G(k−h) ˜̂GT(k−h)

×
( h

∏
i=1

(A−L(k− i)C)
)TCT, (70)

S(k) =C
(
P̃(k)+

h

∑
i=1

(P̃1i(k)+ P̃2i(k)+ P̃3i(k))
)
CT

+Qv, (71)

P̃(k) =
( h

∏
i=1

(A−L(k− i)C)
) ˜̂G(k−h) ˜̂GT(k−h)

×
( h

∏
i=1

(A−L(k− i)C)
)T
, (72)

P̃1i(k) =
( i−1

∏
j=1

(A−L(k− j)C)
)
Ah

˜̂G(k−h− i)

× ˜̂GT(k−h− i)AT
h

( i−1

∏
j=1

(A−L(k− j)C)
)T
,

(73)

P̃2i(k) =
( i−1

∏
j=1

(A−L(k− j)C)
)
DGwGT

wDT

×
( i−1

∏
j=1

(A−L(k− j)C)
)T
, (74)

P̃3i(k) =
( i−1

∏
j=1

(A−L(k− j)C)
)
L(k− i)FGvGT

v FT

×LT(k− i)
( i−1

∏
j=1

(A−L(k− j)C)
)T
,

Qw = DGwGT
wDT, (75)

Qv = FGvGT
v FT. (76)

�

Remark 1: In the derivations of Theorems 2 and 4,
S(k) is assumed to be reversible. If S(k) is irreversible,
then the pseudo-inverse of S(k) can be used to replace the
inverse of S(k); that is, K(k) = R(k)S+(k) in Theorem 2
and K1(k) = R1S+(k), K2(k) = R2S+(k) in Theorem 4.

4. FAULT DIAGNOSIS

In this section, an accurate state estimation result is ob-
tained by applying the optimal ZKF algorithm for the sys-
tem with time delay, and the estimated state is then used

for fault diagnosis, which is divided into the following two
steps: fault detection and fault identification.

4.1. Fault detection
4.1.1 Fault-detection analysis

When the system is fault-free, the calculation rule of the
estimated output set Ŷ (k) = 〈p̂y(k), Ĝy(k)〉 that is consis-
tent with state x̂(k) is as follows:

ŷ(k) =Cx̂(k)+Fv(k)

∈ (C�〈p̂(k), Ĝ(k)〉)⊕ (F�〈0,Gv〉)
= 〈Cp̂(k), [CĜ(k) FGv]〉
= 〈p̂y(k), Ĝy(k)〉, (77)

where p̂y(k) ∈ Rny and Ĝy(k) ∈ Rny×rĜy . Apparently, the
value of ŷ(k) cannot be determined owing to the unknown
noise v(k); however, the zonotopic set Ŷ (k) containing
ŷ(k) can be obtained according to the aforementioned
calculation rule. Based on the estimated output set Ŷ (k),
the upper bound ŷu(k) and lower bound ŷl(k) satisfy the
followings:

ŷu(k) = p̂y(k)+



rĜy

∑
j=1
|Ĝy1 j(k)|

...
rĜy

∑
j=1
|Ĝyny j(k)|

 , (78)

ŷl(k) = p̂y(k)−



rĜy

∑
j=1
|Ĝy1 j(k)|

...
rĜy

∑
j=1
|Ĝyny j(k)|

 . (79)

If the true output value yt(k) satisfies ŷl1(k) ≤ yt1(k) ≤
ŷu1(k), · · · , ŷlny(k)≤ ytny(k)≤ ŷuny(k), then it is determined
that yt(k) ∈ Ŷ (k); otherwise, yt(k) /∈ Ŷ (k). When a param-
eter fault occurs in the system, it leads to yt(k) /∈ Ŷ (k),
which indicates that there must be a fault in the system.
f (k) is defined as the fault-detection signal; it is f (k) = 0
when yt(k) ∈ Ŷ (k) and is f (k) = 1 when yt(k) /∈ Ŷ (k), in-
dicating the system is fault-free and faulty, respectively.
To facilitate the development of this study, it is assumed
that only one fault at a time occurs in the system, and the
system parameters do not change over a certain period of
time.

4.1.2 False alarm rate analysis
The fault-detection method based on the optimal ZKF

is completed by detecting whether the true output value
of the system is within the upper and lower bounds of
the estimated output. The judgment criterion of fault de-
tection can be expressed as follows: when the true output
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value is not within the upper and lower bounds of the esti-
mated output, the system is determined to be faulty; other-
wise, the system is determined to be fault-free. The fault-
detection strategy is based on the fact that in each iteration,
the upper and lower bounds of the estimated output of the
system are determined by the corresponding zonotopic set
Ŷ (k). When there is no fault in the system, the true out-
put of the system must be included in the zonotopic set
Ŷ (k); that is, it is also included in the corresponding upper
and lower bounds of Ŷ (k). If the true output value is not
within the upper and lower bounds of the estimated output,
the system will fail. Therefore, given the noise boundaries,
the fault-detection method based on the optimal ZKF pro-
posed in this study will not cause a false alarm, that is, the
false alarm rate is zero. Namely, once a fault alarm occurs,
it indicates that there must be a fault in the system.

4.2. Fault identification

The error between the estimated and true states of the
ith fault at each time k can be calculated using (80) as
follows:

ei(k) = ‖p̂(k)− pi,0(k)‖/‖pi,0(k)‖,
(i = 1, 2, · · · , q), (80)

where q is the number of parameter fault types in the fault
library, pi,0(k) is the fault state of the ith fault type in the
fault library. The continuous-time length L is selected, and
the number of estimated errors that satisfy ei(k− l)< ε(k),
(l = 1, 2, · · · , L) can be counted as li(k), (i = 1, 2, · · · , q),
where ε(k) is the selected threshold. The value of ε(k) is
relative, and it is related to the practical system and the re-
quirements of computational load. In the practical system,
the value of each fault type of each system is different, so
the demand for ε(k) is different when distinguishing the
fault types of systems. In the aspect of the requirements
of computational load, the value of ε(k) directly deter-
mines the amount of calculation required to identify sys-
tem faults. If it is necessary to complete the fault identifi-
cation as soon as possible with a small computational load,
the value of ε(k) can be increased appropriately. If none
of the estimated states satisfy ei(k− l) < ε(k), (l = 1, 2,
· · · , L, i = 1, 2, · · · , q), a new fault outside the fault library
at time k can be considered to have occurred, which is de-
noted as fault fq+1. The number of new faults is counted
at this moment and is recorded as lq+1(k).

The posterior probability of each fault type in the fault
library was calculated and recorded as Pi(k). Considering
the possible new fault types, there are q+ 1 fault types.
At the initial moment, the prior probability of each fault
type is the same, which is Pi(1) = 1/(q+1), (i = 1, 2, · · · ,
q+1). The posterior probability Pi(k), whose fault type is
fault fi, (i = 1, 2, · · · , q+1), can then be calculated using
(81) as follows:

Pi(k) =
Pi(k−1)li(k)

∑
q+1
j=1 Pj(k−1)l j(k)

. (81)

When the posterior probability satisfies (82), the fault di-
agnosis is complete; that is, if the posterior probability
Pi(k) satisfies (82), the fault is recognized as fi

Pi(k)≥ 1− ς , (82)

where ς is the set recognition accuracy.

5. SIMULATION ANALYSIS

5.1. Simulation 1: Numerical simulation
Consider the following linear discrete uncertain system

with time delay:{
x(k+1) = Ax(k)+Ahx(k−h)+Bu(k)+Dw(k),
y(k) =Cx(k)+Fv(k),

(83)

where

A =

[
0.6 −0.4
−0.5 0.2

]
, Ah =

[
−0.05 −0.03
0.04 −0.03

]
,

B =

[
0.2
0.2

]
, D =

[
−0.1
0.1

]
, C =

[
1 0
0 1

]
,

F =

[
1 0
0 1

]
, h = 5.

u(k) = 6 is selected as the known input; the initial state,
measurement noise, and process interference of the system
are assumed to meet respectively as follows:

x(k−h) ∈ X(k−h) =
〈[

2
3

]
,

[
2 0
0 2

]〉
,

06 k 6 h, (84)

w(k) ∈W = 〈0, 0.1〉 , k > 0, (85)

v(k) ∈V =

〈[
0
0

]
,

[
0.1 0
0 0.1

]〉
, k > 0. (86)

Next, in this numerical case, the fault-diagnosis algorithm
is analyzed in the following two situations: fault-free, and
faulty in the fault library.

5.1.1 Fault-free
When the system is fault-free, Fig. 1 shows that the

states can be estimated effectively by the designed opti-
mal ZKF algorithm for the system with time delay, and
the estimated state and true state are all within the upper
and lower bounds of the estimated state. Fig. 2 illustrates
that although there are small fluctuations in the true out-
put values of the system, they are within the upper and
lower bounds of the estimated output values. The upper
and lower bounds of the estimated state and output fluc-
tuate and converge to a certain extent in the initial time
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Fig. 1. Bounds of estimated states in a fault-free state.
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Fig. 2. Bounds of estimated outputs in a fault-free state.

period and remain unchanged after the system is stable.
Thus, we can conclude that the system is fault-free, and
the optimal ZKF method proposed in this study is effec-
tive and feasible for the state estimation of the system with
time delay.

5.1.2 Fault in the fault library
Assuming that the system fault is caused by the pa-

rameter matrix A, and there are three types of faults
in the fault library of the numerical system with time
delay, the specific parameter changes are as follows:

A1 =

[
0.6 −0.4
−0.4 0.2

]
, A2 =

[
0.6 −0.4
−0.4 0.5

]
, and A3 =[

0.4 −0.4
−0.4 0.2

]
, and the corresponding faults are f1, f2,

and f3, respectively. The filters f l1 ∼ f l4 corresponding
to faults f1 ∼ f4 are provided to indicate the types of
faults identified, and f4 represents the new fault outside
the fault library. In this faulty state, fault f1 is added to
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Fig. 3. True output in the scenario of fault in the fault li-
brary and the estimated bounds of y.

the system during the time period k ∈ {50,120}. Consid-
ering the effect of historical data during the fault period,
the difference between the true and fault states in the fault
library was large in the beginning, and subsequently de-
creased rapidly and was maintained within a certain small
range. Therefore, the value of ε(k) should be set dynam-
ically; specifically, the value of ε(k) changes from 1.2 to
0.1 within ten-time points after the fault-detection point,
and then remains unchanged at 0.1 in the subsequent fault
identification process. For ς = 0.3 and L = 5, the fault-
diagnosis results are shown in Figs. 3-6.

As shown in Fig. 3, the true output values of the system
are within the upper and lower bounds of the output val-
ues estimated by the optimal ZKF algorithm at the begin-
ning, indicating that the system is in a normal state. The
true output values of the system began to change and went
beyond the upper and lower bounds of the output values
estimated by the optimal ZKF algorithm at approximately
k = 50, indicating that the system has a fault at that mo-
ment; hence, the zonotopic set of the output estimated by
the optimal ZKF algorithm no longer contains the true out-
put value. The true output values of the system return to
be within the upper and lower bounds of the output values
estimated by the optimal ZKF algorithm at approximately
k = 120, indicating that the system returns to the normal
from the fault state at this time, and the system only has
a fault between k = 50 ∼ 120 during the entire operating
process.

Fig. 4 presents the relationship between the true out-
put and the estimated zonotopic set more intuitively; the
normal time period before the fault, the faulty time pe-
riod during the fault, and the normal time period after the
fault are selected as the representative time periods, con-
sidering one point, two points, and one point in the three
representative time periods as examples, respectively. The
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Fig. 4. True output in the scenario of fault in fault library
and the estimated output at different times.

magenta zonotope is the approximate feasible set of the
output estimated by the optimal ZKF algorithm, and the
blue star indicates the true output value of the system. As
indicated by Fig. 4, when k = 60 and k = 110, the system
is in a fault state, and the zonotopic sets of output y es-
timated by the optimal ZKF algorithm do not contain the
true output values of the system with the time delay at the
fault time. Moreover, when the system is in a normal state,
at times k = 30 and k = 160, the zonotopic sets estimated
by the optimal ZKF algorithm contain the true outputs of
the system, indicating that the detection result is consistent
with the real system.

To obtain a more specific fault-occurrence time, the
curve of the fault-detection signal f is shown in Fig. 5;
it indicates that the system is detected to have a fault dur-
ing time k = 50∼ 127 by the proposed fault-detection al-
gorithm, which is close to the real fault time when slight
delays are ignored. Subsequently, the algorithm enters the
fault identification stage; f p1 ∼ f p4 represents the fault-
matching probability of f1 ∼ f4. Because the fault that
occurred in the system was set as fault f1 in the fault li-
brary, the fault-matching probability of the three faults in
the fault library correspondingly increases in the initial
stage of fault identification. According to the judgment
rule of the new fault f4 for fault identification, f p4 will
soon decrease to 0 among the four fault-matching proba-
bility curves, which also indicates that the probability of a
new fault occurring in the system is minimal. Thereafter,
f p2 and f p3 begin to gradually decrease to 0 after a short
period of rise, whereas f p1 increases gradually and even-
tually remains at 1. When the matching probability is not
less than 1−ς , the corresponding fault identification filter
f l1 spikes at k = 53, indicating that the fault type of the
system is f1.

A normal fault-matching method is compared to the
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Fig. 5. Fault diagnosis results in the scenario of fault in the
fault library.
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Fig. 6. Comparison of fault identification results of the
two algorithms for scenarios of fault in the fault
library.

proposed fault-diagnosis algorithm to further demonstrate
its advantages. The normal fault-matching method sepa-
rates the fault by making the error between the estimated
and true states of the ith fault less than a fixed threshold
ε ′(k) in a continuous period L′. The comparison curves of
the fault identification obtained by the two algorithms are
shown in Fig. 6. In this simulation, L′ and ε ′(k) were set to
20 and 0.1, respectively. f l1 ∼ f l4 in Fig. 6 are the fault-
diagnosis filters corresponding to f1 ∼ f4 using the fault-
diagnosis algorithm combining the fault-matching method
and Bayesian theory, and f l11 ∼ f l41 indicate the fault
identification results corresponding to f1 ∼ f4 through the
normal fault-matching algorithm. According to the figure,
the normal fault-matching algorithm can identify the fault
type of the pitch system; however, fault identification is
achieved at k = 72, which is 19 time points slower than
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the proposed algorithm, indicating that its fault identifi-
cation speed is significantly slower than that of the fault-
diagnosis algorithm proposed in this study.

5.2. Simulation 2: Pitch system of wind turbine
Wind turbines are prone to failure in the process of

power generation, and several scholars have studied the
corresponding fault diagnosis [36]. As shown in Fig. 7,
the pitch system is an important part of the blade control
and pitch angle conversion of a wind turbine.

The mathematical model of the pitch system can be ex-
pressed as follows [37]:[

β̇

β̇a

]
=

[
0 1
−ω2

n −2ζ ωn

][
β

βa

]
+

[
0

ω2
n

]
βr, (87)

where β and βa are the pitch angle and angular velocity,
respectively; βr is the reference value of the pitch, and ωn

and ζ are the system parameters. Let ωn = 11.11 rad/s and
ζ = 0.6 be the natural frequency and damping coefficient
of the system, respectively. The system can be expressed
as a continuous-time state-space equation as follows:

ẋ =
[

0 1
−ω2

n −2ζ ωn

]
x+
[

0
ω2

n

]
u+

[
0 0
−ω2

n
2 −ω2

n
2

]
w,

(88)

y =Cx+Fv, (89)

where x = [β βa]
T, u = βr, and w and v are the interference

and output noise, respectively. Let the sampling time be
Ts = 0.01 s, the system is discretized, where

A =

[
0.9941 0.0093
−1.1532 0.8695

]
, B =

[
0.0059
1.1532

]
,

F =

[
1 0
0 1

]
, D =

[
−0.0030 −0.0030
−0.5766 −0.5766

]
,

C =

[
1 0

0.5 0.1

]
.

We consider the influence of the time delay of the state on

the pitch system, and select Ah =

[
−0.005 −0.003
0.004 −0.003

]
, h =

Main Axis

Actuator

Fig. 7. Wind turbine system.

6. The sinusoidal signal u(k) = 1.5sin(6k)+7 is selected
as the external excitation signal, and it is assumed that the
initial state, process interference, and measurement noise
of the system meet, respectively, as follows:

x(k−h) ∈ X(k−h) =
〈[

6.5
0

]
,

[
5 0
0 5

]〉
,

06 k 6 h, (90)

w(k) ∈W =

〈[
0
0

]
,

[
0.1 0
0 0.1

]〉
, k > 0, (91)

v(k) ∈V =

〈[
0
0

]
,

[
0.1 0
0 0.1

]〉
, k > 0. (92)

Subsequently, in this pitch system case, the fault-
diagnosis algorithm is analyzed in the following two situ-
ations: fault-free, and fault outside the fault library.

5.2.1 Fault-free
As shown in Fig. 8, when the pitch system is fault-free,

the optimal ZKF algorithm proposed in this study for a
linear system with time delay has a sufficient state es-
timation performance. The estimated state curve rapidly
follows the true state of the system; the two curves are
included in the upper and lower bounds of the estimated
state. As shown in Fig. 9, the true output value of the sys-
tem is within the upper and lower bounds of the output
value estimated by the optimal ZKF algorithm when the
pitch system is fault-free.

5.2.2 Fault outside the fault library
The following three faults are in the fault library of the

pitch system [38]: pressure drop, pump wear, and air con-
tent increase, which are defined as faults f1, f2, and f3,
respectively. The new fault outside the fault library is de-
fined as fault f4. The faulty parameter values are listed in
Table 1.
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Table 1. Parameters of pitch system in fault conditions.

Fault Parameters
f1 Pressure drop ξ1 = 0.45, ωn1 = 5.73 rad/s
f2 Pump wear ξ2 = 0.75, ωn2 = 7.27 rad/s
f3 Air content increase ξ3 = 0.90, ωn3 = 3.42 rad/s
f4 New fault ξ4 = 1.60, ωn4 = 15.00 rad/s

Given the actual system, we assume that the types of
faults that may occur in the actual system are those faults
in the fault library and the new fault outside the fault li-
brary when 60 6 k 6 115, which are defined as f1 ∼ f4;
filters corresponding to faults f1 ∼ f4 are provided to in-
dicate the types of faults identified. In this scenario, f4 is
included in (88) when 60 6 k 6 115. Figs. 10-13 show
the fault diagnosis results of the proposed fault-diagnosis
algorithm, and Fig. 13 presents the comparison results of
the fault identification using the proposed algorithm and
the normal fault-matching algorithm.

Fig. 10 indicates that the true output values of the pitch
system begin to go beyond the upper and lower bounds
of the output values estimated by the optimal ZKF algo-
rithm at approximately k = 60, and return to be within the
bounds at approximately k = 120, indicating that the sys-
tem fault occurs and ends at approximately k = 60 and
k = 120, respectively; thereafter, the system resumes nor-
mal operation. The output values estimated by the optimal
ZKF algorithm at different time points in Fig. 11 verify the
correctness of the proposed algorithm more specifically.
When k = 30 and k = 160, the zonotopic sets of the output
values estimated by the optimal ZKF algorithm (magenta
lines) all contain the true output values (blue stars), while
the zonotopic sets of the output values do not contain the
true output values when k = 80 and k = 110, which is con-
sistent with the fault state of the real pitch system.

The curve of the fault-detection signal f is shown in
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Fig. 10. True output in the scenario of fault outside the
fault library and bounds of y.

6 6.2 6.4

y1

3.4

3.5

3.6

3.7

3.8

3.9

y
2

k=30

output estimated by ZKF

true output

6.4 6.6 6.8

y1

4

4.2

4.4

4.6

y
2

k=80

6 6.2 6.4 6.6 6.8

y1

2.8

3

3.2

3.4

3.6

y
2

k=110

6 6.2 6.4

y1

2.9

3

3.1

3.2

3.3

3.4

y
2

k=160

Fig. 11. True output in the scenario of a fault outside the
fault library and the estimated output at different
times.

Fig. 12, indicating that the specific time of the faults de-
tected by the fault-diagnosis algorithm is k ∈ {61∼ 124},
which is close to the real time of the system fault, thus we
can conclude that the proposed algorithm has a sufficient
fault-detection performance.

Set ς = 0.3, L = 8, and ε(k) changes dynamically dur-
ing the fault period and its value decreases from 0.2 to 0.1
within 10 time points after the fault-detection point, and
then remains at 0.1 until the end of the fault. As shown in
Fig. 12, the fault-matching probability f p4 gradually in-
creases to 1 during the fault period. When f p4 is greater
than 1− ς , the corresponding fault identification filter f l4
is set to be 1 at time k = 64, which indicates that during the
entire working period of the pitch system, the new fault f4

outside the fault library occurs after a period of normal
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Fig. 12. Fault diagnosis results in the scenario of fault out-
side the fault library.
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Fig. 13. Comparison of fault identification results of the
two algorithms in the scenario of a fault outside
the fault library.

state.
As shown in Fig. 13, the comparison curves between

the two algorithms show that the fault identification time
of the fault-diagnosis algorithm based on the combination
of the fault-matching method and Bayesian theory is 19
time points faster than that of the normal fault-matching
algorithm. Thus, the proposed fault-diagnosis algorithm
has an advantage in terms of the speed of fault identifica-
tion.

6. CONCLUSION

In this study, a state estimation and fault-diagnosis
method based on the optimal zonotopic Kalman filter is
presented for a linear discrete-time system with time de-
lay. The optimal observer gain of the optimal zonotopic

Kalman filter was designed by minimizing the size of the
zonotopic set to estimate the state set. The parameter fault-
diagnosis problems of a numerical system and the pitch
system of a wind turbine are used as examples to verify
the effectiveness and feasibility of the algorithm.

The fault-diagnosis method proposed in this study can
also be applied to combine certain parameter estimation
algorithms [39,40] to study the fault-diagnosis problems
of other time-delay industrial processes with unknown but
bounded noise. In addition, based on the proposed fault-
diagnosis algorithm, the study can be further extended
to the fault diagnosis of other complex systems, such as
Markovian systems [41,42] and applications [43].
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