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Adaptive Event Triggered Optimal Control for Constrained Continuous-
time Nonlinear Systems
Ping Wang, Zhen Wang* � , and Qian Ma

Abstract: This paper considers the event-triggered optimal control (ETOC) strategy for constrained continuous-
time nonlinear systems via adaptive dynamic programming (ADP). First, a novel event-triggering condition is pro-
posed, which can guarantee the stability of the closed-loop system. Meanwhile, the existence of a lower bound for
the execution time is proved, which can guarantee that the designed event-trigger scheme avoids Zeno behavior.
Then, to solve the partial differential Hamilton-Jacobi-Bellman (HJB) equation,the critic Neural Network (NN) is
designed to approximate the cost function. So that the ADP-based ETOC scheme is designed. Moreover, through
Lyapunov stability analysis, the stability of the closed-loop system can be ensured. Also, the uniform ultimate
boundedness of the states and the weight estimation error can also be guaranteed. Last, a numerical example is
given to illustrate the effectiveness and advantages of the proposed control scheme.
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1. INTRODUCTION

In the field of optimal control, from the view point
of system analysis and design, the methods that consider
both periodic communication and traversal [1–3] can be
regarded as the most effective method. However, if we
take the limited resources into account, then the peri-
odic manner is no longer the best one. In recent years,
due to the fact that the amount of web data is keeping
increasing and the network resources are limited, some
researchers have proposed an improved method called
event-triggered control or event-driven control or event-
based control [4–11]. Event-trigger (ET) scheme [12] is
on the basis of intermittent principle. It means that the
agent does not need to feedback in real time but executes
the control action according to the demand based on the
error of measured information. In other words, ET scheme
can tremendously reduce the sampling frequency of the
control system.

For the optimal control problem of nonlinear system,
the difficulty lies in solving the HJB equation because
it involves solving nonlinear partial differential equation
[10,11]. Meanwhile, as is well known, constrained-input
system is more reasonable because the control input is

usually constrained by the physical constraints of compo-
nents. So the optimal control problem of nonlinear system
with input constraints is a much more challenging prob-
lem. In order to solve this problem, the idea of approxima-
tion is adopted to the solution of the HJB equation. A pop-
ular method is the Adaptive dynamic programming (ADP)
based on Neural Network approximation. In fact, there are
many literature concerned with this problem. For instance,
Abu-Khalaf and Lewis [10] employed the NN-based HJB
approach to address the near optimal control of nonlin-
ear systems with saturating control inputs. NN-based near
optimal control for nonlinear discrete-time systems with
control constraints was studied in [13]. For partially un-
known constrained-input systems was proposed in [14].
NN-based online optimal control for uncertain nonlinear
systems with saturation constraints was discussed in [15].
But all these literature didn’t combine the ET scheme with
the ADP scheme, so that couldn’t make better use of the
network resources.

Many researchers have integrated ET scheme into the
ADP method to propose the ADP-based ETOC scheme.
Researchers [16,17] proposed ADP-based ETOC scheme
for nonlinear continuous time systems. Researchers [18,
19] discussed about the uncertain nonlinear system.
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Vamvoudakis and Ferraz [20] presented a model-free
ETOC for continuous-time linear systems. Zhao et al. [21]
presented an event-triggered robust tracking control based
ADP for unknown systems with disturbances. Yang and
He [22] developed a novel event-triggered robust control
strategy for systems with unknown dynamics. Though, it
should be noted that all of the above literature are ex-
cellent which combined ADP method with ET scheme,
yet none of them aimed at the constrained-input control
systems. Although there are several documents related
to constrained-input control system, such as [23,24], the
Adaptive ETOC scheme for constrained-input nonlinear
systems is still a challenging problem, so in this paper we
will focus on the optimal control problem based on Adap-
tive dynamic programming and event-triggered scheme
for nonlinear system with constrained input control.

Motivated by the above discussions, we focus on
the adaptive ETOC of constrained-input nonlinear
continuous-time system in this paper, the contributions
include 1) As we know, the previous ET condition is
established on the comparison of ‖x‖2 and ‖e‖2, in our
paper a novel event-triggered condition which is based
on the relationship between ‖x‖2

2 and ‖e‖2 is designed
for constrained-input continuous-time nonlinear systems.
It can reduce the number of triggered which was illus-
trated by simulation examples. 2) We present that our
ET scheme can avoid the Zeno behavior by proving the
existence of the lower bound for inter-execution time
strictly. 3) An ADP-based ETOC scheme is designed
which only employs a single critic network in order to
reduce the computational load, moreover, the uniform ul-
timate boundedness (UUB) of the states and the weight
approximation error are proved.

The remainder of this paper is organized as follows:
Several notations used in this paper are presented in Sec-
tion 2. The problem is formulated in Section 3. The event-
triggering condition is designed and the lower bound of
the inter-event intervals is determined in Section 4. Stabil-
ity of ADP-based ETOC scheme and UUB of the states
and the weight estimation error are analyzed in Section
5. Simulation results are shown in Section 6. In the end,
some conclusions of this paper are shown in Section 7.

2. PRELIMINARIES

In this paper, Rm denotes the real m-dimensional Eu-
clidean space with spectral norm || · ||2, Rn×m is the set of
n×m real matrices. Im denotes the m×m identity matrix.
For a matrix A ∈ Rn×n, AT denotes the transposed of A.
λmin(A) is the minimum eigenvalue of matrix A.

3. PROBLEM FORMULATION

Consider a class of constrained continuous-time nonlin-
ear systems described by

ẋ(t) = f (x(t))+g(x(t))u(x(t)), x(0) = x0, (1)

where x(t) ∈ Rn is the state vector, f (x(t)) ∈ Rn denotes
the internal dynamics, g(x(t)) ∈ Rn×m is the input gain
matrix; u = (u1,u2, ...,um)

T ∈Rm is the control input with
|ui| ≤ λ , and λ is a positive constant.

Define the infinite horizontal cost function which re-
quires to be optimized as

V (x,u) =
∫

∞

0
(Q(x)+W (u))dt, (2)

where Q(x) and W (u) are positive definite. For the func-
tion W (u), a common selection to treat the control con-
straints is shown in [10,14], that is

W (u) = 2λ

∫ u

0
(tanh−1(v/λ ))T dv

= 2λuT tanh−1(u/λ )+λ
2R ln

(
1− u2

λ 2

)
, (3)

where v ∈Rm, R = [1, ..., 1] ∈R1×m, 1 = [1, ..., 1]T ∈Rm.
The goal of optimal control is to find an optimal con-

strained input u∗ = u∗(x) to minimize the cost function,
meanwhile the system is driven to asymptotic stability.
The Lyapunov equation (LE) for nonlinear systems is pro-
posed in [10], which is equivalent to the HJB equation
with the substitution of the optimal value V ∗ as follows
[25]:

V ∗x
T ( f +gu∗)+Q(x)+W (u∗) = 0, V (0) = 0, (4)

where V ∗x = ∂V ∗(x)/∂x ∈ Rn. For the constrained input,
the HJB equation is as follows:

H(x,u∗(x),V ∗x ) = min
u(x)∈Ω

H(x,u(x),V ∗x )

=V ∗x
T ( f +gu∗)+Q(x)

+2λ

∫ u∗

0
(tanh−1(v/λ ))T dv

= 0. (5)

Then, through calculations, the optimal control u∗ can be
obtained as

u∗ =−λ tanh
(

1
2λ

gT (x)V ∗x

)
. (6)

We can obtain the equivalent form as follows:

W (u∗) = 2λu∗T tanh−1(u∗/λ )+λ
2R ln

(
1− u∗2

λ 2

)
=−2λu∗T D∗+λ

2R ln
(
1− tanh2(D∗)

)
, (7)

where D∗ is defined as

D∗ = D∗(x) =
1

2λ
gT (x)V ∗x . (8)
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4. EVENT-TRIGGERED OPTIMAL CONTROL

In this section, a qualified ETOC scheme is proposed to
guarantee the stability of the closed-loop system. More-
over, it will be shown that there exists a low bound for
the execution time, or in other words, the minimum inter-
event interval is positive.

4.1. The ETOC scheme
In ETOC scheme, the system state is sampled at the

triggering instants {tk}k∈N , and tk is the k-th consecutive
release time at which the triggering condition is violated,
where t0 = 0. {x̂k}k∈N denotes the sampled state, where
x̂k = x(tk). Then, the ETOC is obtained by mapping the
sampled state as:

u∗(x̂k) =−λ tanh
(

1
2λ

gT (x̂k)V ∗x (x̂k)

)
, t ∈ [tk, tk+1),

(9)

which is transformed into a continuous signal by employ-
ing the zero-order holder without delay.

The error between the current state and the last released
state is defined as

ek = ek(t) = x̂k− x(t), t ∈ [tk, tk+1). (10)

Accordingly, by using (10), the closed-loop system can be
written as

ẋ = f (x)+g(x)u∗(x̂k) = f (x)+g(x)u∗(x+ ek), (11)

and the LE under the ET scheme is as follows:

H(x,u∗(x̂k),V ∗x ) =V ∗x
T ( f +gu∗(x̂k))

+Q(x)+W (u∗(x̂k)), (12)

in which

W (u∗(x̂k)) = 2λu∗T (x̂k) tanh−1
(

u∗(x̂k)

λ

)
+λ

2R ln
(

1− u∗(x̂k)
2

λ 2

)
. (13)

Next, the novel triggering condition and the stability of
the closed-loop system under the novel triggering condi-
tion will be given in Theorem 1. Before that, we need to
introduce the following assumptions.

Assumption 1 [4,9,17,26]: Suppose that system (1) is
Lipschitz continuous with respect to x and e on a set Ω ∈
Rn and f (0) = 0, that is, there exists a positive constant L
such that

‖ f (x)+g(x)u(x+ e)‖2 ≤ L‖x‖2 +L‖e‖2, ∀x,e ∈ Rn.

Assumption 2 [9,17,24]: Suppose that u∗ is Lipschitz
continuous on a compact set, that is, there exists a constant
Lu > 0 such that

‖u∗(x)−u∗(x̂k)‖2 ≤ Lu‖x− x̂k‖2.

Assumption 3 [23]: Suppose that D∗ defined in (8) is
Lipschitz continuous on a compact set, that is, there exists
a constant LD > 0 such that

‖D∗(x)−D∗(x̂k)‖2 ≤ LD‖x− x̂k‖2.

From (4), we can get

V ∗x
T ( f +gu∗) =−Q(x)−W (u∗). (14)

Since Q(x) and W (u) are positive definite, the negative
definiteness of the time-derivative of V ∗ can be guaran-
teed, that is, V is decreasing. Furthermore, we can guaran-
tee that the derivative of V ∗ satisfies

V̇ ∗ ≤−γ[Q(x)+W (u∗)], (15)

where γ ∈ (0,1) is a tuning parameter. Note that (15) is
important in this paper by which we can derive the new
ET condition.

Theorem 1: Suppose Assumptions 1-3 hold. Then,
closed-loop system (11) under the ETOC scheme (9) is
asymptotically stable, if the following triggering condition
is satisfied:

TC = (2LuλMtanh−1 +2λ
2mLD)‖ek‖2

+(γ−1)λmin(Q)‖x‖2
2

≤ 0, (16)

that is to say, the triggering instants are given by

tk+1 = inf{t|TC > 0, t > tk}. (17)

Proof: In order to prove the theorem, subtracting (5)
from (12) yields

H(x,u∗(x̂k),V ∗x )−H(x,u∗(x),V ∗x )

=V ∗x
T ( f +gu∗(x̂k))+W (u∗(x̂k))

−V ∗x
T ( f +gu∗)−W (u∗). (18)

Combined H(x,u∗(x),V ∗x ) = 0 with (7) and (8), we can get

H(x,u∗(x̂k),V ∗x ) = λ
2R ln[1− tanh2(D∗(x̂k))]

−λ
2R ln[1− tanh2(D∗(x))]. (19)

According to (12), we have

V̇ ∗ = λ
2R ln[1− tanh2(D∗(x̂k))]

−λ
2R ln[1− tanh2(D∗(x))]

−Q(x)−W (u∗(x̂k)), (20)

V̇ ∗+ γ[Q(x)+W (u∗)]

= (γ−1)Q(x)+{γW (u∗(x))−W (u∗(x̂k))}
+{λ 2R ln[1− tanh2(D∗(x̂k))]

−λ
2R ln[1− tanh2(D∗(x))]}. (21)
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Next, we will rewrite the right-hand side of (21) in a
simplified equivalent form. Based on the mean value the-
orem and combined with γ < 1 and (3), the second term in
the right-hand side of (21) can be rewritten as follows:

γW (u∗(x))−W (u∗(x̂k))

≤ 2λ

∫ u∗(x)

0
(tanh−1(v/λ ))T dv

−2λ

∫ u∗(x̂k)

0
(tanh−1(v/λ ))T dv

= 2λ (tanh−1(ξ/λ ))T (u∗(x)−u∗(x̂k)) ,

where ξ = u∗(x̂k)+θ (u∗(x)−u∗(x̂k)) ∈ Rm, θ ∈ (0,1).
Since the monotonicity of tanh−1(·), let Mtanh−1 =

max
{
‖ tanh−1

(
u∗(x)

λ

)
‖2, ‖ tanh−1

(
u∗(x̂k)

λ

)
‖2

}
, by using

the Lipschitz condition in Assumption 2, the second term
can be estimated as follows:

γW (u∗(x))−W (u∗(x̂k))≤ 2LuλMtanh−1‖ek‖2. (22)

Based on the mean value theorem and Assumption 3, the
third term of the right-hand side of (21) is

λ
2R ln[1− tanh2(D∗(x̂k))]−λ

2R ln[1− tanh2(D∗(x))]

=−2λ
2 tanhT

η(D∗(x̂k))−D∗(x))

≤ 2λ
2mLD‖ek‖2, (23)

where η = (η1, ...,ηm)
T , ηi =D∗i (x)+θi [D∗i (x̂k)−D∗i (x)],

θi ∈ (0,1), i = 1, ...,m.
Combining (22), (23) and Q(x)≥ λmin(Q)‖x‖2

2, ultimately,
we can rewrite (20) as follows:

V̇ ∗+ γ[Q(x)+W (u∗)]

≤
[
2LuλMtanh−1 +2λ

2mLD
]
‖ek‖2

+(γ−1)λmin(Q)‖x‖2
2.

Under the condition (16), in inter-event intervals, we have

V̇ ∗ ≤−γ[Q(x)+W (u∗)]< 0.

This result corresponds to (15) and therefore guarantees
the stability of the closed-loop system. Meanwhile, the
next triggering instant can be determined as

tk+1 = inf{t|TC > 0, t > tk}.

This completes the proof. �

4.2. The lower bound for the execution time
Define the execution time as τk = tk+1− tk, k = 0, 1, ....

In what follows, we will discuss the bound of the inter-
event interval of the proposed ET scheme. Firstly, define
the execution time as

τk = tk+1− tk, k = 0,1, ...

Assumption 4: Suppose that the following conditions
hold.

1) f (x) and g(x) are bounded on the compact set Ω, i.e.,
‖ f (x)‖2 ≤ fb, ‖g(x)‖2 ≤ gb;

2) c1‖x‖2 ≤ ‖u∗(x)‖2 ≤ c2‖x‖2.
Theorem 2: Let Assumptions 1 and 4 hold. Consider

the event-triggered system (11) with the triggering condi-
tion (16), then there exists a non-zero lower bound for the
execution time τk, k = 0, 1, ....

Proof: By using Assumptions 1 and 4, we can get

d‖x(t)‖2

dt
≤ ‖ẋ(t)‖2 = ‖ f +gu‖2 ≤ fb +gbc2‖x(t)‖2,

that is

‖x(t)‖2≤
[
‖x(tk)‖2+

fb

gbc2

]
egbc2(t−tk)− fb

gbc2
, t ≥ tk.

(24)

From (10), we have ek(t) = x(tk)− x(t), t ∈ [tk, tk+1),
which can be written as follows by using Assumptions 1
and 4:

d‖ek(t)‖2

dt
≤ ‖ėk(t)‖2 ≤ fb +gbc2‖x(t)‖2,

by using (24) we can get
d‖ek(t)‖2

dt
≤ αegbc2(t−tk), ∀t ≥ tk,

ek(tk) = 0,

where α = [gbc2‖x(tk)‖2 + fb].
So we have

‖ek(t)‖2 ≤
α

gbc2
[egbc2(t−tk)−1],

‖ek(tk+1)‖2 ≤
α

gbc2
[egbc2τk −1],

≤ α

gbc2
[egbc2τk − 1

δ
], (δ > 1). (25)

From (16) we can get ‖ek(tk+1)‖2 ≥ β‖x(tk+1)‖2
2, where

β = (1−γ)λmin(Q)

2LuλMtanh−1+2λ 2mLD
, combined with (25), so we have

β‖x(tk+1)‖2
2 ≤ ‖ek(tk+1)‖2 ≤

α

gbc2
[egbc2τk − 1

δ
],

τk ≥
1

gbc2
ln
[

1
δ
+

gbc2β‖x(tk+1)‖2
2

α

]
.

It is obvious that if δ takes the appropriate value, we can
all guarantee

ln
[

1
δ
+

gbc2β‖x(tk+1)‖2
2

α

]
> 0,

that is

τk≥
1

gbc2
ln
[

1
δ
+

gbc2β‖x(tk+1)‖2
2

α

]
>0, k = 0,1, ...

Hence, there exists a non-zero lower bound for the
inter-execution time, which can prevent the proposed ET
scheme from Zeno behavior. �
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5. ADP-BASED ETOC

Since the HJB is a nonlinear equation, it is hard to be
solved, we employ Neural Network to approximate the so-
lution of the HJB equation.

5.1. NN-based algorithm
By the approximation theorem of neural networks, it is

reasonable to assume that the cost function V ∗(x) is ap-
proximated by

V ∗(x) = δ
T
1 Φ1(x)+ ε1(x), (26)

where δ1 ∈ RN is the ideal weight, Φ1 : Rn → RN is the
activation function, N is the number of hidden neurons and
ε1(x) is the Neural Network approximation error. Thus,
Neural Network Lyapunov equation can be rewritten as

H(x,u,δ1) = δ
T
1 ∇Φ1( f +gu)+Q(x)+W (u)

= εH , (27)

where εH =−∇εT
1 (x)( f +gu) is the residual error.

Since the weight δ1 which can achieve the optimal cost
function is unknown, the actual output is given by

V̂ ∗(x) = δ̂
T
1 Φ1(x), (28)

where δ̂1 is the estimated value of weight δ1, meanwhile
the weight estimation error can be defined as δ̃1 = δ1− δ̂1.
By using (28), the approximate optimal control law can be
described as

û(x̂k) =−λ tanh
(

1
2λ

gT (x̂k)∇Φ
T
1 (x̂k)δ̂1

)
,

t ∈ [tk, tk+1). (29)

Furthermore, the approximate Neural Network Lyapunov
equation can be rewritten as

H(x,u, δ̂1) = δ̂
T
1 ∇Φ1( f +gu)+Q(x)+W (u)

= ε̂H , (30)

where

ε̂H = εH − δ̃
T
1 ∇Φ1( f +gu). (31)

In order to achieve δ̂1 → δ1, ε̂H → εH , we aim at min-
imizing E1 = 1

2 ε̂T
H ε̂H by refining the parameter δ̂1. The

normalized gradient descent algorithm is used to tune the
critic weight δ̂1, so that

˙̂
δ1 =−

l1
(ρT ρ +1)2

∂E1

∂ δ̂1

=−l1
ρ

(ρT ρ +1)2

[
ρ

T
δ̂1 +Q(x)+W (u)

]
, (32)

can be achieved, where ρ = ∇Φ1( f + gu). So, the time
derivative of the estimation error is

˙̃
δ 1 =− ˙̂

δ1 = l1
ρ

(ρT ρ +1)2

[
ρ

T
δ̂1 +Q(x)+W (u)

]
.

(33)

From (27), we have

Q(x)+W (u) = εH −δ
T
1 ∇Φ1( f +gu) = εH −ρ

T
δ1.
(34)

Combining (33) with (34), the derivative of the estimation
error can be rewritten as

˙̃
δ 1 =−l1Gδ̃1 + l1

ϑ

ρT ρ +1
εH , (35)

in which G = ρT ρ

(ρT ρ+1)2 ,ϑ = ρ

ρT ρ+1 . It is obvious that G >

0,‖ϑ‖2 ≤ 1
2 , ‖ ϑ

ρT ρ+1‖2 ≤ 1
2 by using the existing conclu-

sions.

5.2. Uniform ultimate boundedness
In this subsection, Theorem 3 is given to guarantee not

only the stability of the closed-loop ET system, but the
uniform ultimate boundedness (UUB) of x(t), x̂(t) and pa-
rameter δ̃1, which is inspired by [5,17,18,27].

Assumption 5: Suppose that the following conditions
hold

1) Φ1(x) and ∇Φ1(x) are bounded on the compact set
Ω, i.e., ‖Φ1(x)‖2 ≤Φ1b, ‖∇Φ1(x)‖2 ≤ ∇Φ1b;

2) The residual error is bounded, i.e., ‖εH‖2 ≤ ε;
3) δ1 is bounded, i.e., ‖δ1‖2 ≤ δ1b;
4) The NN approximation error is bounded over the

compact set Ω, i.e., ‖ε1(x)‖2 ≤ ε1b.

Theorem 3: Consider the constrained nonlinear sys-
tem (1) with the triggering condition given by Theorem
1, the ETOC input given by (29) and the critic NN given
by (28). Let Assumptions 1-5 hold, then x(t), x̂(t) and pa-
rameter δ̃1 are uniformly ultimately bounded.

Proof: First, define the candidate Lyapunov function
as

L =V ∗(x)+V ∗(x̂)+Vc,

where V ∗(x) is the optimal cost function and Vc =
1
2 tr
(

δ̃ T
1 δ̃1

)
.

The proof of Theorem 3 will be divided into two cases,
that is, the flow dynamics and the jump dynamics.

Case 1: The flow dynamics, i.e., the events are not trig-
gered, i.e., t ∈ [tk, tk+1).

In this case, the derivative of the Lyapunov function is
given by

L̇ = V̇ ∗(x)+V̇ ∗(x̂)+V̇c. (36)
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For the first term of (36), we have

V̇ ∗(x) =V ∗Tx ( f +gû(x̂k)). (37)

According to the triggering condition in Theorem 1, we
have

V̇ ∗(x) =V ∗Tx ( f +gu∗)<−γ[Q(x)+W (u∗)].

Thus, for the first term of (36), we have

V̇ ∗(x)<−γ[Q(x)+W (û(x̂k))]. (38)

Next, we design an equation about −γW (û(x̂k)), which
is of benefit to the proof, as follows:

−γW (û(x̂k)) = ‖û(x̂k)‖2
2−‖û(x̂k)‖2

2− γW (û(x̂k)).

Furthermore, combing (6), (8) and W (u) > 0, we can
rewrite the above equation as

−γW (û(x̂k)) =‖λ tanh(D̂(x̂k))‖2
2−‖û(x̂k)‖2

2

− γW (û(x̂k)),

<‖λ tanh(D̂(x̂k))‖2
2−‖û(x̂k)‖2

2. (39)

According to Assumption 4 and | tanh(·)|< 1, (39) can be
rewritten as

−γW (û(x̂k))< λ
2m− c1‖x̂k‖2

2. (40)

Hence, for the first term of (36), we can get

V̇ ∗(x)<−γλmin(Q)‖x‖2
2− c1‖x̂k‖2

2 +λ
2m. (41)

For the second term of (36), we have V̇ ∗(x̂) = 0.
For the third term of (36), by employing (35) and As-

sumption 5, we have

V̇c = δ̃
T
1

˙̃
δ 1,

= δ̃
T
1

(
−l1Gδ̃1 + l1

ϑ

ρT ρ +1
εH

)
=−l1δ̃

T
1 Gδ̃1 + l1δ̃

T
1

ϑ

ρT ρ +1
εH ,

≤−l1λmin(G)‖δ̃1‖2
2 +

1
2

l1ε‖δ̃1‖2. (42)

Thus, by combining (41) with (42), we can obtain

L̇ = V̇ ∗(x)+V̇c,

≤−γλmin(Q)‖x‖2
2− l1λmin(G)‖δ̃1‖2

2− c1‖x̂k‖2
2

+
1
2

l1ε‖δ̃1‖2 +λ
2m.

Let η = [‖x‖2, ‖δ̃1‖2, ‖x̂‖2]
T , we have

L̇≤−η
T Aη +Bη +C, (43)

where

A =

γλmin(Q) 0 0
0 l1λmin(G) 0
0 0 c1

> 0,

B =

 0
1
2 l1ε

0

 ,
C = λ

2m.

We can rewrite (43) as L̇≤−λmin(A)‖η‖2
2 +‖B‖2‖η‖2

+C, then L̇ is negative if

‖η‖2 ≥
‖B‖2 +

√
‖B‖2

2 +4λmin(A)C
2λmin(A)

= η ,

which can ensure the boundedness of x(t), x̂(t) and pa-
rameter δ̃1, i.e., they are uniformly ultimately bounded.

Case 2: The jump dynamics, i.e., events are triggered,
i.e., t = tk.

In this case, we only need to consider the deviation of
the candidate Lyapunov function between these two cases.
According to the result in Case 1, we have

∆L =V ∗(x+(tk))−V ∗(x(tk))+V ∗(x̂+(tk))

−V ∗(x̂(tk))+Vc(x+(tk))−Vc(x(tk)).

where x+(tk), x̂+(tk) denote the right limit at tk.
Due to the conclusion in Case 1, that is, the flow dy-

namics is asymptotically stable, we have

V ∗(x+(tk))<V ∗(x(tk)), Vc(x+(tk))<Vc(x(tk)).

Moreover, in view of the triggering condition, that is

V̇ ≤−γ[Q(x)+W (u)]< 0,

we have

V̇ ∗(x̂(tk))< 0, i.e.,V ∗(x̂+(tk))<V ∗(x̂(tk)).

To sum up, when ‖η‖2 ≥ η , ∆L < 0 hold at the sam-
pling instants t = tk. So, we can obtain that x(t), x̂(t) and
parameter δ̃1 are uniformly ultimately bounded at the sam-
pling instants. �

The relationship between NN estimation error and the
bounds for performance index and inter-execution time
will be discussed in the following theorem and Remark
1.

Theorem 4: Consider the system (1). The input control
is given by (29). Let Assumptions 1-5 hold, then there is
a upper bound for the performance index for the proposed
ADP-based ETOC.
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Proof: By employing (15), we can obtain that there is
a upper bound for cost function in the ET scheme as fol-
lows:

∵ Q(x)+W (u∗(x̂))≤−1
γ

V̇ ∗,

∴V (x0,u) =
∫

∞

0
[Q(x)+W (u∗(x̂))]dt,

≤−1
γ

∫
∞

0
V̇ ∗dt,

=
1
γ

V ∗(x0).

While the cost function V (x) is approximated by the critic
Neural Network in (26), we can prove that the perfor-
mance index for the proposed ADP-based ETOC still has
the upper bound which can be presented as follows:

∵ V̇ ∗ = ˙̂V ∗+ ε̇1(x),

= V̂ ∗Tx [ f +gû(x̂)]+ ε̇1(x),

≤−γ[Q(x)+W (û(x̂))]+ ε̇1(x),

∴ Q(x)+W (û(x̂))≤ 1
γ

[
ε̇1(x)−V̇ ∗

]
,

∴ V̂ ∗(x0) =
∫

∞

0
[Q(x)+W (û(x̂))]dt,

≤ 1
γ

∫
∞

0
[ε̇1(x)−V̇ ∗]dt,

=
1
γ
[V ∗(x0)+2ε1b].

As shown in [30], as long as neurons N→ ∞, the approx-
imation error ε1(x)→ 0, in this case, the performance in-
dex will approach to the expected value 1

γ
V ∗(x0). So it is

feasible to realize a satisfying result in the ADP scheme in
our paper. �

Remark 1: Combined (26) with (23), we can get

V̇ ∗ ≤ ε
′T
1 (x)( f +gu∗)− γ[Q(x)+W (u∗)]+TC.

As shown in [30], as long as neurons N→ ∞, the approx-
imation error ε

′

1(x)→ 0. Furthermore, based on the proof
of Theorem 2, we can consider that the lower bound for
the inter-execution time is positive for the proposed ADP-
based ETOC.

6. NUMERICAL EXAMPLES

In this section, we illustrate the feasibility and effec-
tiveness of the proposed ETOC scheme by employing two
examples.

Example 1: The system dynamics is given as follows
[28]:

ẋ1 =−x1 + x2,

ẋ2 =−
1
2
(x1 + x2)+

1
2

x2 sin2(x1)+ sin(x1)u.

Assume that x0 = [1,−1]T , the control constraint is ‖u‖2≤
1.2.

As shown in (2) and (3), the cost function is defined as

V (x) =
∫

∞

0
[xT Qx+2λ

∫ u

0
(tanh−1(v/λ ))T dv]dt,

where Q is the identity matrix of appropriate dimension,
and λ = 1.2. We select the sample interval as 0.01 s, the
simulation time as 10s, parameter l1 in (32) as 0.4, the pa-
rameter γ in (15) as 0.1. The basis function of the cost
function is chosen as φ(x) = [x2

1; x1x2; x2
2], which was de-

scribed in [29]. The NN weights are initialized at random
from a uniform distribution in the interval (−1,1).

The simulation results are presented in Figs. 1-6. Fig.
1 shows the convergence of system states xi(t) and xi(tk),
i = 1,2. Fig. 2 presents the nearly optimal control input u.
These figures imply that the closed-loop system is stable
in the sense of uniform ultimate boundedness.

Fig. 3 shows the evolution of the trigger threshold and
the event-trigger error in the proposed ET scheme in The-
orem 1. We can observe that the trend of the event-trigger
error ‖ek‖2, that is, in each event-trigger interval (tk, tk+1),
‖ek‖2 is below the trigger threshold until it reaches the
threshold. Meanwhile, the triggering instants tk+1 is gen-
erated when ‖ek+1‖2 is reset to zero. The event threshold
converges to zero ultimately.

By using our ET scheme, the total number of trigger-
ing times is only 323. It is far below 1000, which denotes
the sampling times obtained by using the time-triggered
controller. Fig. 4 presents the sampling period, that is, the
execution time between two adjacent triggering instants.
We can see that the execution time has a lower bound,
which is greater than zero, so our method can avoid the
Zeno behavior.

Fig. 1. The trajectories of xi(t) and xi(tk).
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Fig. 2. The optimal control input.

Fig. 3. The event-trigger error and the threshold.

Fig. 5 shows that the HJB equation error shown in (27)
converges close to zero. It implies that the NN approxima-
tion of the value function converges to the neighborhood
of the optimal value. The upper bound of the cost function
1
γ
V ∗(x0) is shown in Fig. 6, in our paper we select γ as 0.1,

so we can find the upper bound is ten times the value of
V ∗(x0).

Example 2: Consider the following nonlinear oscillator
system [10]:{

ẋ1 = x1 + x2− x1(x2
1 + x2

2),

ẋ2 =−x1 + x2− x2(x2
1 + x2

2)+u.

Fig. 4. Sampling period.

Fig. 5. HJB equation error.

Define the cost function as shown in (2) and (3), and Q,
γ , φ(x), l1 have the same selection as Example 1.

Assume that x0 = [0, 1]T , the control constraint is
‖u‖2 ≤ 1. The NN weights are initialized at random from
a uniform distribution in the interval (−1, 1). We select
the sample interval as 0.01 s, the simulation time as 15 s.
The simulation results are presented in Figs. 7-12, which
demonstrate the trajectories of the state, the control input,
the event-triggered error, the sampling period, the HJB
equation error, and the upper bound of the cost function,
respectively.
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Fig. 6. The upper bound of the cost function.

Fig. 7. The trajectories of xi(t) and xi(tk).

7. CONCLUSION

In this paper, a novel ETOC scheme is designed for
continuous-time nonlinear systems with constrained in-
puts and the critic NN is applied to approximate the cost
function. The existence of a positive lower bound for
the inter-execution time and the stability of the closed-
loop system are proven through strict theoretical analysis.
Meanwhile, all the states and the weight estimation error
in the event-triggered system were guaranteed to be UUB.
We also analyze the relationship between the bound for
the cost function and the NN estimation error to illustrate
the efficiency of the the NN approximation method. Nu-

Fig. 8. The optimal control input.

Fig. 9. The event-trigger error and the threshold.

merical examples are offered to illustrate the effectiveness
of our proposed ET scheme.

The proposed paper only uses a single critic structure to
approximate the cost function to solve the HJB equation.
Though the single critic network can reduce the compu-
tational load, yet the future work will extend to design
more complex Neural Network to improve the accuracy of
simulation. Additionally, the future work also will include
adaptive design of more complex nonlinear systems.
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Fig. 10. Sampling period.

Fig. 11. HJB equation error.
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