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A Simple Frequency-domain Tuning Method of Fractional-order PID
Controllers for Fractional-order Delay Systems
Xu Li* � and Lifu Gao

Abstract: The fractional-order proportional-integral-derivative (FOPID) controller is an improvement over the tra-
ditional PID controller. However, most existing methods of FOPID controller design are complex and not suit-
able for practical application. This paper presents a simple and efficient design method of FOPID controllers for
fractional-order controlled plants with time delays. The method is based on four frequency-domain specifications—
namely, gain crossover frequency, phase margin, phase crossover frequency and gain margin. The implicit nonlinear
equations related to the controller parameters are formulated using these specifications. To simplify the mathemat-
ical calculation, the explicit equations of the controller parameters are analytically derived. Then, the FOPID con-
troller parameters can be adjusted in a graphical manner. Two fractional-order plus time-delay plants are considered
as simulation examples. The results show that the design requirements are successfully met and superior control
performance is obtained via the proposed tuning method.
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1. INTRODUCTION

In recent decades, fractional calculus has gained consid-
erable traction as an important mathematical approach. It
is an important tool for the profound depiction of physical
processes in the real world and can be used in many fields
of study, such as thermal diffusion [1], chaotic systems
[2], viscoelasticity [3], signal processing [4], mechatronic
systems [5], and neural networks [6]. The fractional-order
derivative, for example, has been used to manage a hy-
draulic servo system with strong historical dependency
and mechanical inertia [7]. Fractional calculus has also
been widely applied in system modeling and controller de-
sign research [8–11].

Many inherently complex industrial processes can be
described as high-order models. In practice, to minimize
the cost of system analysis and design, simplified models
are typically used to estimate these processes. The most
widely used templates are the first-order plus time delay
(FOPTD) and the second-order plus time delay (SOPTD)
versions. Nevertheless, the FOPTD and SOPTD models
cannot delicately characterize the dynamic behavior of
complex systems. For example, underdamped dynami-
cal processes cannot be well modeled by FOPTD trans-
fer functions [12]. In an increasing number of studies,
fractional-order models have been considered to improve

modeling accuracy [13–17].

Recently, most industrial processes have been regulated
by PID controllers. Inspired by the principle of fractional
calculus, PID controllers are modified into a new form of
FOPID to boost the control efficiency. In terms of robust-
ness and closed-loop response performance, FOPID con-
trollers outperform PID controllers [18,19]. Because of
the additional two adjustable orders, tuning the parame-
ters of FOPID controllers is not an easy task, especially
for fractional-order systems with time delays. The current
research on this subject can be divided into time-domain
methods, frequency-domain methods and synthesis meth-
ods. Time-domain methods use optimization algorithms,
such as particle swarm optimization [20], differential evo-
lution algorithms [21], and radial basis function neural
networks [22], to tune the FOPID parameters; however,
these optimization methods are time consuming to apply,
and the resulting controllers may lack robustness. Con-
sidering these factors, many researchers prefer frequency-
domain approaches. In [23–26], the controller parameters
were determined by a series of nonlinear equations re-
lated to gain crossover frequency, phase margin, sensitiv-
ity functions and the “flat phase” criterion, but the solution
was difficult to obtain. In [27,28], FOPID controllers were
designed based on Bode’s ideal transfer function. The de-
sign processes include complex calculations, such as data
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fitting.
The complex design and implementation processes

make FOPID controllers unattractive for industrial appli-
cations. As special cases of FOPID controllers, fractional-
order proportional-integral (FOPI) and fractional-order
proportional-derivative (FOPD) controllers appear to be
more acceptable to engineers due to their simple structure
and easy tuning [29–33]. Although FOPI and FOPD con-
trollers perform better than PID controllers, they are in-
ferior to FOPID controllers. Some researchers have made
valuable attempts and explorations to preserve the FOPID
structure and reduce the tuning difficulty. In [34], the num-
ber of adjustable controller parameters was reduced from
five to three by establishing a proportional relationship be-
tween them. The tuning procedure is complicated and in-
cludes data fitting and optimization. Reference [35] pre-
sented a simple FOPID tuning method for integer-order
plants that still must solve a system of implicit nonlinear
equations.

In this paper, a novel and simple FOPID controller de-
sign method is proposed for fractional-order systems with
time delays. To the best of our knowledge, most previous
studies concentrate on the gain crossover frequency and
phase margin but neglect the phase crossover frequency
and gain margin. One advantage of our strategy is that
the four frequency-domain specifications are utilized si-
multaneously to achieve more comprehensive stability and
robustness of the control system. Furthermore, the com-
monly used “flat phase” criterion, which often entails con-
siderable computational difficulty, is abandoned. Flatten-
ing the phase curve is helpful to enhance the robustness
of the system to gain variation. However, the gain margin
presented on the magnitude curve is also important for the
robustness of the system. In contrast, the proposed method
provides a clear framework to shape the Bode plots of
open-loop systems. Thus, the controller can be designed
in a more comprehensive manner. Another innovation of
this method is that the tuning process does not depend
on a large number of implicit nonlinear equations. Solv-
ing nonlinear equations is laborious and tedious. To avoid
complicated calculations and simplify the design process,
the four implicit nonlinear equations determined by the
frequency-domain specifications are skillfully converted
into a single equation, which can be easily solved by fol-
lowing the graphical approach. After solving this equa-
tion, the parameters of the FOPID controller can be ob-
tained immediately.

This paper is organized as follows: In Section 2,
fractional-order control systems, FOPID controllers and
frequency-domain specifications are introduced. Section
3 presents the novel design method for the FOPID con-
troller. Two examples are illustrated in Section 4. Finally,
conclusions are discussed in Section 5.

2. PRELIMINARIES

2.1. Fundamentals of fractional-order calculus
Fractional-order calculus is a generalization of tradi-

tional integer-order calculus, where the order of deriva-
tives and integrals can be a real or complex number.
Multiple mathematical explanations of fractional-order
calculus exist, such as the Riemann-Liouville definition,
Grunwald-Letnikov definition and Caputo definition [36].
The widely used Riemann-Liouville definition is shown as
follows.

Definition 1: For an n-order differentiable function
f (t), the Riemann-Liouville derivative of order p is de-
fined as

t0 Dp
t f (t) =

1
Γ(n− p)

dn

dtn

∫ t

0
(t− τ)n−p−1 f (τ)dτ, (1)

where n is a positive integer, n− 1 < p < n, and Γ() rep-
resents the gamma function.

Definition 2: For an integrable function f (t), the
Riemann-Liouville integral of order q is defined as

0Jq
t =

1
Γ(q)

∫ t

0
(t− τ)q−1 f (τ)dτ, (2)

where q is a positive real number.
Under zero initial conditions, the Laplace transform of

the Riemann-Liouville derivative and integral can be ex-
pressed as

L [0Dp
t f (t)] = spF(s), (3)

and

L [0Jq
t f (t)] = s−qF(s), (4)

respectively.

2.2. The considered fractional-order plants and the
FOPID controller

In this study, a fractional-order controlled plant with a
wide application scope is discussed. Its transfer function
is as follows:

P(s) =
K

Tnsγn +Tn−1sγn−1 + · · ·+T0
e−Ls, (5)

where K is the plant gain; L is the time delay; Ti (i ∈ {1,
2, ..., n}) is the coefficient; and γi denotes a positive real
number satisfying γi+1 > γi. This plant has been success-
fully used in the modeling of practical processes.

The general structure of a FOPID controller is as fol-
lows:

CFOPID(s) = kp +
ki

sλ
+ kdsµ , (6)

where kp, ki, and kd denote the gains of the proportion,
integration and differentiation components, respectively,
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Fig. 1. Closed-loop control system.

and the fractional orders λ and µ satisfy λ ∈ (0, 2) and
µ ∈ (0, 2).

To simplify the design procedure, we set λ = µ = ν and
ν ∈ (0, 2). Thus, FOPID controller (6) can be modified to

C(s) = kp +
ki

sν
+ kdsν . (7)

Due to the reduction in the number of adjustable param-
eters, the FOPID structure (6) is more compact, which
greatly facilitates the design and implementation of the
controller. In fact, the integral and derivative terms com-
pensate for each other under the condition λ = µ , which
is beneficial to stability [35]. The fractional-order inte-
gral term eliminates the steady-state error while decreas-
ing the relative stability due to the introduced λπ/2 phase
lag. The fractional-order derivative action, moreover, has
the benefit of increasing relative stability due to the intro-
duced µπ/2 phase lead but at the expense of increasing
sensitivity to high-frequency noise. As a result of allow-
ing λ = µ , the increase in relative stability caused by the
derivative compensates for the decrease in relative stabil-
ity caused by the integral.

2.3. Frequency-domain specifications
Consider the closed-loop control system depicted in

Fig. 1. The open-loop transfer function can be given as

G(s) = P(s)C(s). (8)

To obtain better control performance, the gain crossover
frequency, phase crossover frequency, gain margin and
phase margin are utilized simultaneously in the proposed
design procedure. These four frequency-domain charac-
teristics provide a basic framework for the Bode plots
of open-loop systems. As illustrated in Fig. 2, the gain
crossover frequency ωgc represents the frequency point at
which the magnitude curve intersects the 0 dB line, while
the phase margin φm is the difference between the phase
curve and the −180◦ line at ωgc. The phase crossover fre-
quency ωpc denotes the frequency point at which the phase
curve crosses the −180◦ line, while the gain margin A
denotes the difference between the magnitude curve and
the 0 dB line at ωpc. By adjusting these frequency-domain
specifications, curves of different magnitudes and phases
can be obtained.

Fig. 2. Illustration of frequency-domain specifications.

Because there are four unknown parameters, the FOPID
controller (7) can be uniquely determined under the four
specifications. The corresponding equations are as fol-
lows:

(i) At ωgc, we have

|G( jωgc)|= 1, (9)

∠G( jωgc) =−π +φm. (10)

(ii) At ωpc, we have

|G( jωpc)|= 1/A, (11)

∠G( jωpc) =−π. (12)

The FOPID controller parameters can be obtained by solv-
ing (9)-(12); however, the above four equations are non-
linear and implicit, which entails considerable difficulty
in the calculation. Moreover, whether this set of equations
can be solved under the given frequency-domain specifi-
cations is difficult to determine. A new design technique
to overcome the abovementioned problems is presented in
the following section.

3. THE PROPOSED DESIGN METHOD

3.1. Frequency response of the control system
By replacing s with jω in (5), the frequency response

of the fractional-order controlled plant can be expressed
as

P( jω) =
Ke− jLω

D1(ω)+ jD2(ω)
=

Ke− j(Lω+θ(ω))

D(ω)
, (13)

where

D1(ω) =
n

∑
i=1

Tiω
γi cos

(
π

2
γi

)
+T0,

D2(ω) =
n

∑
i=1

Tiω
γi sin

(
π

2
γi

)
,
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D(ω) =
√

D2
1(ω)+D2

2(ω),

θ(ω) = ∠(D1(ω)+ jD2(ω)) .

The FOPID controller (7) can also be expressed as

C( jω) =C1(ω)+ jC2(ω), (14)

where

C1(ω) = kp + kiω
−ν cos

π

2
v+ kdω

v cos
π

2
v,

C2(ω) =−kiω
−v sin

π

2
v+ kdω

v sin
π

2
v.

Then, the open-loop transfer function G( jω) is written as

G( jω) =
C( jω)

D(ω)
Ke− j(Lω+θ(ω)). (15)

Based on the expressions of P( jω), C( jω) and G( jω),
several theorems can be defined to compute the FOPID
parameters.

3.2. Main results
The following theorems are proposed to solve (9)-(12).
Theorem 1: For the open-loop system (15), the FOPID

parameters kp and ki that ensure constraints (9) and (10)
can be determined by the following equations

kp =−
kdωv

gc sin(πv)
sin π

2 v
−

D(ωgc)sin
(

π

2 v+θ1
)

K sin π

2 v
, (16)

ki = kdω
2v
gc +ω

v
gc

D(ωgc)sinθ1

K sin π

2 v
, (17)

where θ1 = φm +Lωgc +θ(ωgc).
Proof: By substituting (16) and (17) into (14), C ( jωgc)

can be calculated as follows:

C( jωgc) = kdω
v
gc

(
− sinπv

sin π

2 v
+ e− j π

2 v + e j π

2 v
)

+D(ωgc)
e− j π

2 v sinθ1− sin
(

π

2 v+θ1
)

K sin
(

π

2 v
)

=
D(ωgc)

K
e j(−π+θ1). (18)

Combining (15) and (18) yields

|G( jωgc)|=
∣∣∣∣D(ωgc)

K

∣∣∣∣× ∣∣∣∣ K
D(ωgc)

∣∣∣∣= 1, (19)

∠G( jωgc) = ∠e j(−π+θ1−Lωgc−θ(ωgc)) =−π +φm. (20)

This completes the proof. �
Theorem 2: For the open-loop system (15), the FOPID

parameters kp and ki that ensure constraints (11) and (12)
can be determined by the following equations:

kp =−
kdωv

pc sin(πv)
sin π

2 v
−

D(ωpc)sin
(

π

2 v+θ2
)

AK sin π

2 v
, (21)

ki = kdω
2v
pc +ω

v
pc

D(ωpc)sinθ2

AK sin π

2 v
, (22)

where θ2 = Lωpc +θ(ωpc).
Proof: Similar to the proof of Theorem 1, we first cal-

culate C( jωpc) utilizing (21) and (22) such that

C( jωpc) = kdω
v
pc

(
− sinπv

sin π

2 v
+ e− j π

2 v + e j π

2 v
)

+D(ωpc)
e− j π

2 v sinθ2− sin
(

π

2 v+θ2
)

AK sin
(

π

2 v
)

=
D(ωpc)

AK
e j(−π+θ2). (23)

Then, we obtain

|G( jωpc)|=
∣∣∣∣D(ωpc)

AK

∣∣∣∣× ∣∣∣∣ K
D(ωpc)

∣∣∣∣= 1
A
, (24)

∠G( jωpc) = ∠e j(−π+θ2−Lωpc−θ(ωpc)) =−π. (25)

This completes the proof. �
Theorem 3: If the FOPID controller (7) satisfies con-

straints (9)-(12) for the given values of ωgc, ωpc, φm and A
(ωgc 6= ωpc), then the following equation holds

AF1(v) = F2(v), (26)

where

F1(v) = D(ωgc)
(

sin
(

π

2
v+θ1

)
−ω

v
gcE(v)sinθ1

)
,

F2(v) = D(ωpc)
(

sin
(

π

2
v+θ2

)
−ω

v
pcE(v)sinθ2

)
,

E(v) = 2
ωv

pc−ωv
gc

ω2v
pc−ω2v

gc
cos
(

π

2
v
)
.

Proof: From (16) and (21), we can obtain

Kkd sin(πv)

=
D(ωgc)sin

(
π

2 v+θ1
)

ωv
pc−ωv

gc
−

D(ωpc)sin
(

π

2 v+θ2
)

A(ωv
pc−ωv

gc)
.

(27)

Similarly, it can be deduced from (17) and (22) that

Kkd sin
(

π

2
v
)

=
ωv

gcD(ωgc)sinθ1

ω2v
pc−ω2v

gc
−

ωv
pcD(ωpc)sinθ2

A(ω2v
pc−ω2v

gc )
. (28)

By combining (27) and (28), controller parameter kd is
eliminated, and (26) can be obtained. This completes the
proof. �

Remark 1: The original nonlinear equations (9)-(12)
are simplified substantially by utilizing the above three
theorems. After specifying the values for ωgc, ωpc, φm and
A, v can be obtained by solving (26). Then, kd , kp and ki
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can be computed directly via (28), (16) and (17), respec-
tively. Clearly, only one implicit nonlinear equation must
be solved in the tuning process.

Remark 2: Note that (26) is implicit for v but explicit
for A, and the graphical approach should be a suitable can-
didate for addressing this equation. For fixed values of
ωgc, ωpc, and φm, the value of A can be divided into the
following three cases.

Case 1: If F1(v) = F2(v) = 0, then A cannot be deter-
mined by (26).

Case 2: If F1(v) = 0 and F2(v) 6= 0, then A→ ∞.
Case 3: If F1(v) 6= 0, then we have

A =
F2(v)
F1(v)

. (29)

By varying v from 0 to 2, the curve of function F1(v) can
be traced to find all zeros. Then, the curve of function
A can be plotted by (29) with respect to v ∈ (0,2) and
F1(v) 6= 0. From this curve, we can find the value of v cor-
responding to the specified A.

Remark 3: Theorem 3 can be utilized to determine
whether a group of frequency-domain specifications is
achievable for solving (9)-(12). As previously stated, the
values of ωgc, ωpc, and φm that allow functions F1(v) and
F2(v) to have the same zeros are inappropriate. If F1(v) 6= 0
holds over the whole interval v ∈ (0, 2), the value of A
must be selected within the upper and lower bounds deter-
mined by (29).

3.3. The proposed design method
The design process of the FOPID controller (7) can be

summarized as follows:

1) Specify the values of ωgc, ωpc, and φm.

2) Plot the curve of A with respect to v using (29).

3) Specify the value of A, and obtain the corresponding
v value from the curve.

4) Calculate kp, ki and kd using (16), (17) and (28), re-
spectively.

The main difficulty with this method is selecting ap-
propriate values for ωgc, ωpc, φm and A. These frequency-
domain specifications have a direct impact on the stability,
robustness and time-domain performance of the system.
Generally, the magnitudes of ωgc and ωpc affect the rising
and setting time in the response, while φm and A are related
to the stability and robustness. These values can be flexi-
bly selected according to different design requirements.

To fully clarify the distinctive contribution of this study,
the proposed method can be compared to other published
approaches in the following three aspects:

First, most existing approaches for tuning FOPID con-
trollers use only the gain crossover frequency and phase
margin as frequency-domain specifications. The designed

controllers may lack in robustness. In our method, we con-
sider the gain crossover frequency, phase margin, phase
crossover frequency, and gain margin to improve robust-
ness.

Second, the computation equations for the FOPID con-
troller parameters that satisfy the frequency-domain spec-
ifications are provided in our method. By using these
equations, the computational burden in the design of the
FOPID controller can be significantly reduced.

Finally, the proposed method is graphical and analyt-
ical, which clearly distinguishes it from existing meth-
ods. For example, tuning methods in [23,24] were based
on nonlinear optimization, and some optimization tools
were required to work with nonlinear constraints. In com-
parison, no complex mathematical calculations are used
throughout the proposed design steps. The fractional or-
der v can be obtained intuitively in a graphical manner,
while parameters kp, ki and kd can be calculated directly
by explicit formulas.

4. SIMULATION EXAMPLES

In this section, two fractional-order systems with time
delays are presented to verify the proposed design method.

Example 1: Consider heat flow equipment modeled as
the following fractional-order plus time-delay system [29]

P1(s) =
66.16e−1.93s

12.72s0.5 +1
. (30)

The desired values of the gain crossover frequency, phase
crossover frequency, and phase margin are ωgc = 0.2,
ωpc = 1, and φm = 65◦, respectively. Based on these spec-
ifications, the curve of A with respect to v can be traced,
as shown in Fig. 3. Suppose that the desired gain margin
is A = 5; then, the corresponding value of v can be di-
rectly obtained from Fig. 3 as 0.7632. Thus, the proposed

Fig. 3. The curve of A with respect to v for Example 1.
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Fig. 4. Bode diagram of the open-loop system P1C1.

Table 1. FOPID controllers for different values of A.

A kp ki kd v
3 0.05998 0.0145 -0.01673 1.027

3.17 0.0569 0.0152 -0.01434 1
4 0.04239 0.01917 -0.00465 0.8809
5 0.02504 0.02523 0.005127 0.7632
6 0.005965 0.03302 0.01498 0.6652
7 -0.01682 0.04325 0.02633 0.5806
8 -0.04598 0.05706 0.04065 0.5052

FOPID controller is

C1 = 0.02504+
0.02523
s0.7632 +0.005127s0.7632. (31)

The Bode diagram of the open-loop system using con-
troller C1 is depicted in Fig. 4; all frequency-domain spec-
ifications are fulfilled.

By changing the value of A, different FOPID controllers
can be obtained, as listed in Table 1. Specifically, the PID
controller can be obtained by letting A = 3.17. Fig. 5
shows the step responses of the closed-loop system using
these controllers. When A increases, the overshoot of the
response decreases. However, the static error will increase
if A is excessively large.

For ωgc = 0.2 and φm = 65◦, the FOPI controller de-
signed by the method in [29] is

C2 = 0.05356+
0.01649

s0.973 , (32)

and the FOPID controller produced by the approach in
[23] is

C3 =−10+
0.06776
s0.5831 +10.0115s0.003741. (33)

The step responses of the closed-loop systems using con-
trollers C1, C2, and C3 are illustrated in Fig. 6. Clearly,
controller C1 provides the lowest overshoot.

Fig. 5. Step responses of the closed-loop systems for dif-
ferent values of A.

Fig. 6. Step responses of the closed-loop systems using
controllers C1, C2 and C3.

To test the robustness, consider that the gain K of plant
P1 varies from 16.54 to 264.64. The step responses of the
closed-loop systems using different controllers for K =
16.54 and K = 264.64 are shown in Figs. 7 and 8, respec-
tively. When K = 16.54, the three controllers can stabilize
the control system. However, only the system with C1 re-
mains stable for K = 264.64. These results demonstrate
that the proposed FOPID controller has better robustness.

Example 2: Consider a one-degree-of-freedom heli-
copter described by a poorly damped fractional-order
model with time delay [37]

P2(s) =
4.2313e−0.6s

0.2s2.3208 +0.41683s0.96 +1
. (34)

The required frequency-domain specifications are ωgc =
0.4, ωpc = 2, and φm = 65◦. The curve of A with respect
to v is plotted in Fig. 9, which shows that the value of
A tends toward infinity as v approaches 1.033. To ensure
A > 0, the value of v must be greater than 1.033. Thus,
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Fig. 7. Step responses of the closed-loop systems with
K = 16.54.

Fig. 8. Step responses of the closed-loop systems with
K = 264.64.

we cannot obtain a PID controller under the given speci-
fications. Assuming that the value of A is 6, the order v is
1.0655, and the FOPID controller is designed as

C4 = 0.01737+
0.09193
s1.0655 +0.01565s1.0655. (35)

The Bode diagram of the open-loop system P2(s)C4(s) is
shown in Fig. 10: the designated ωgc, ωpc, φm and A are
satisfied.

For ωgc = 0.4, ωpc = 2, and A = 6, the FOPID con-
trollers for different values of φm are presented in Table
2. Fig. 11 illustrates the step responses of the systems
with these controllers. The overshoot can be reduced by
increasing the phase margin.

For a fair comparison, we set ωgc = 0.4 and φm = 65◦;
then, the FOPI controller determined by the method in
[37] is

C5 = 0.07476+
0.08248
s1.2147 , (36)

Fig. 9. The curve of A with respect to v for Example 2.

Fig. 10. Bode diagram of the open-loop system P2C4.

the FOPID designed by the method in [35] is

C6 = 0.07916+
0.08446
s1.2155 +0.01855s1.2155, (37)

and the FOPID tuned by the method in [23] is

C7 = 0.02525+
0.08289
s1.0888 −0.03294s0.8989. (38)

Fig. 12 compares the step responses for the systems with
controllers C4, C5, C6, and C7. The proposed controller C4

Table 2. FOPID controllers for different values of ϕm.

ϕm kp ki kd v
35◦ 0.03278 0.06962 0.004431 1.422
45◦ 0.03236 0.07547 0.00709 1.3163
55◦ 0.02799 0.08237 0.01053 1.1995
65◦ 0.01737 0.09193 0.01565 1.0655
75◦ -0.00645 0.1086 0.02505 0.9029
85◦ -0.07305 0.1507 0.05032 0.6866
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Fig. 11. Step responses of the closed-loop systems for dif-
ferent ϕm.

Fig. 12. Step responses of the closed-loop systems using
controllers C4, C5, C6, and C7.

shows significant advantages in terms of overshoot, set-
tling time and oscillation. In contrast, the control perfor-
mance of C5, C6, and C7 is unacceptable. In fact, the sys-
tem with C5 is nearly unstable.

To further investigate the robustness, Figs. 13 and 14
show the step responses of the systems using C4, C5, C6,
and C7 when ±50% gain variations occur in plant P2. C4

is much more robust than C5, C6, and C7. This result can
be explained as follows. The gain margins of the systems
with C5, C6, and C7 are only 1.02, 1.28, and 1.4, respec-
tively, compared with that of the system with C4, which
is 6. Excessively small gain margins result in the poor ro-
bustness of C5, C6, and C7.

Fig. 13. Step responses of the closed-loop systems with
K = 2.11565.

Fig. 14. Step responses of the closed-loop systems with
K = 6.34695.

5. CONCLUSION

In this paper, an effective design method is proposed to
simplify the tuning of FOPID controller parameters. The
gain crossover frequency, phase margin, phase crossover
frequency and gain margin are simultaneously utilized to
establish the frequency-domain constraints. Explicit equa-
tions for directly calculating the controller parameters are
formulated to replace the implicit constraints. Aided by
the analytical results, the function of the gain margin with
respect to the order of the FOPID controller is derived,
and a graphical method is utilized to address this func-
tion. Then, the controller parameters can easily be ob-
tained. The effectiveness of the proposed method is ver-
ified via simulation. The results show that the required
frequency-domain properties are fully satisfied and that
the designed FOPID controllers provide satisfactory con-
trol performance. Comparisons illustrate that the proposed
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FOPID controllers provide improved robustness and time-
domain performance.

In future research, we will attempt to broaden the ap-
plication of the proposed method to more general sys-
tems. Because the transfer functions of these systems are
more complex, obtaining the computation formulas for
the controller parameters is difficult. Another interesting
research topic is to extend this method to design other
fractional-order controllers, such as FOPI, FOPD, and
general FOPID controllers. Obviously, this method can be
directly applied to the design of three-parameter FOPI and
FOPD controllers. However, additional design criteria are
required for the FOPID controller with five adjustable pa-
rameters.
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