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Robust Finite Time Tracking Control for Robotic Manipulators Based on
Nonsingular Fast Terminal Sliding Mode
Chenchen Sun �

Abstract: In this paper, a novel disturbance observer-based robust nonsingular fast terminal sliding mode control
(RNFTSMC) technique is proposed for tracking control of robotic manipulators with time-varying disturbances.
First, an improved form of nonsingular fast terminal sliding manifold is developed to achieve the strong robustness
and finite time convergence of the system, and to avoid the singularity problem. Second, a continuous robust reach-
ing law is designed not only to attenuate chattering phenomena without deteriorating the system tracking precision,
but also to guarantee the finite time stability of the system. Furthermore, a nonlinear disturbance observer (NDOB)
is employed to estimate the system uncertainties and decrease the switching gain, so that the prior information about
the perturbations is not required, and the control signal can be reduced with fewer chattering effect. The system sta-
bility is analyzed according to the Lyapunov stability theory. Finally, the superiority of the proposed control scheme
is validated by comparative simulation studies.

Keywords: Chattering attenuation, nonlinear disturbance observer, nonsingular fast terminal sliding mode control,
robotic manipulator, robust reaching law.

1. INTRODUCTION

Robotic manipulators have been popularly imple-
mented in industrial fields and hazardous working en-
vironments to achieve mechanical automation and ensure
safety of operators [1]. They not only have to encounter
complex working conditions and various disturbances, but
also may confront system uncertainties, such as parame-
ter perturbations and unmodeled dynamics. Moreover, it
is difficult to establish comparatively accurate dynamic
models for robotic manipulators because of their highly
coupled, nonlinear, and time-varying dynamic charac-
teristics [2]. As a result, the control problem of robotic
manipulators, especially tracking control, has become a
challenging issue and attracted increasing attentions for
decades. Advanced control strategies have been proposed
to obtain satisfactory tracking performance of robotic sys-
tems, such as adaptive control [1,2], feedback lineariza-
tion [3,4], model predictive control [5], disturbances com-
pensation control [6-8], and sliding mode control (SMC)
[9]. Among the existing methods, SMC is under the spot-
light owing to its distinguished features on simplified
design, invariance to system perturbation, and great ro-
bustness against external disturbance. However, the linear
switching hyperplane utilized in conventional SMC de-
sign only guarantees the asymptotic convergence of the
system, and the discontinuous switching control law of

SMC leads to unfavorable chattering effect, which may
excite high frequency dynamic and result in unexpectable
instability.

In recent few decades, the terminal sliding mode con-
trol (TSMC) technique utilizing nonlinear switching hy-
perplanes has been developed to realize the finite time
convergence of system states [10-12]. Subsequently, fast
terminal sliding mode control (FTSMC) was presented to
achieve higher convergence rate and stronger robustness
despite large initial system errors [13-15]. However, due
to the existence of the negative fractional power, which
makes the control input infinite near the equilibrium, con-
ventional TSMC and FTSMC techniques suffer the sin-
gularity problem [16-18]. Recently, nonsingular fast ter-
minal sliding mode control (NFTSMC) has been put for-
ward to deal with the singularity issue and perform fast
finite time tracking control for practical devices, such as
spacecrafts [19], permanent magnet synchronous motors
[20], quadrotors [21], and robotic manipulators [22-28].
Besides, integral TSMC technique was another effective
means to achieve singularity-free control and ensure the
finite time convergence of system tracking errors [29-31].

Chattering is another significant drawback of SMC. To
tackle this problem, substantial researches have been pro-
posed over the past few decades. Generally, a saturation
function was employed as a substitute for the discon-
tinuous switching function of SMC to reduce chattering
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level [32]. In [27], a smooth function was utilized in-
stead of the discontinuous switching term of NFTSMC
to achieve chattering-free control for robotic manipula-
tors. Furthermore, various continuous reaching laws were
designed to eliminate chattering. A power reaching law
based NTSMC scheme was devised for robotic manipula-
tors to attain high accuracy tracking and alleviate chat-
tering [25]. A global TSMC method adopting a novel
fast reaching law was proposed to mitigate chattering
and accelerate the convergence rate of the system [33].
An exponential reaching law has been designed for wind
turbine systems to obtain desired tracking performance
and minimize chattering effect [34,35]. In decades, the
second-order SMC technique has been put forward to
eliminate chattering phenomena [36,37]. A second-order
FTSMC controller was presented to implement high ac-
curacy tracking of uncertain nonlinear systems [38]. An
adaptive second-order NTSMC approach was designed
for robotic manipulators to achieve favorable tracking per-
formance and chattering attenuation [39]. However, the
aforementioned schemes need the prior information about
system uncertainties and external disturbances, which is
tough to be acquired beforehand in practice. Several stud-
ies have integrated adaptive control and disturbance ob-
server techniques into the design of SMC and TSMC to
estimate the unknown perturbations [2,12,28,40-42]. Nev-
ertheless, these methods only alleviate chattering level to
some extent because the discontinuous control law still ex-
ists.

Although numerous control strategies have been pre-
sented to address the main issues of robot tracking con-
trol, an effective design to deal with the aforementioned
problems simultaneously is still challenging. In order to
achieve high precision tracking with fewer chattering for
robotic manipulators, a novel robust nonsingular fast ter-
minal sliding mode control (RNFTSMC) scheme based
on the nonlinear disturbance observer (NDOB) technique
is developed in this paper. The main contributions are 1)
Unlike the existing works [10-15] that suffer singularity
problems, an improved form of nonsingular fast termi-
nal sliding manifold has been utilized to implement fast
finite time convergence of the system states and avoid
the singularity. 2) Different from the proposed schemes
[25,27,32-35] that cannot achieve both high accuracy
tracking and chattering reduction, a novel robust reach-
ing law is developed, which can significantly alleviate the
chattering effect without reducing the tracking precision
and robustness property of the system. 3) The NDOB tech-
nique is employed to estimate the uncertainty and distur-
bance, so that the prior information about system pertur-
bations is unnecessary. Different with the adaptive laws
[2,12,28], in which the switching gain should be larger
than the upper bound of the perturbation, the adopted
NDOB makes the switching gain only need to be greater
than the estimation error of the perturbation. Therefore,

the proposed controller can further attenuate chattering
phenomena and minimize the control signal.

The rest of this paper is structured as follows: The prob-
lem is illustrated in Section 2. The proposed RNFTSMC
strategy and the system stability analysis are given in Sec-
tion 3. Section 4 presents the comparative simulations.
Conclusions are provided in Section 5.

2. PROBLEM FORMULATION

Unlike flexible robots, rigid manipulators can obtain ex-
cellent load bearing capacity and high control accuracy
without generating undesired vibrations, and their kinetic
modes can be established by finite dimensional differential
equations [43,44]. In this section, the following n degree
of freedom rigid manipulator is considered [22,26]

M(θθθ)θ̈θθ +C(θθθ ,θ̇θθ)θ̇θθ +G(θθθ)+F(θθθ ,θ̇θθ) = τττ +τττd , (1)

where the vector θθθ ∈ Rn denotes the position of the joint;
M(θθθ) ∈ Rn×n is a symmetric positive matrix representing
the joint inertia; the coriolis force and centrifugal force of
the system are expressed by the matrix C(θθθ ,θ̇θθ) ∈ Rn×n;
G(θθθ) ∈ Rn is the gravity vector; F(θθθ ,θ̇θθ) ∈ Rn stands for
the friction vector; vectors τττ and τττd ∈ Rn denote the con-
trol torque of the joint and the external disturbance, re-
spectively. Actually, it is hard to obtain the accurate dy-
namical models of robotic manipulators in applications.
The matrices and vectors in (1) can be represented as

M(θθθ) = M000(θθθ)+∆M(θ),

C(θθθ ,θ̇θθ) = C000(θθθ ,θ̇θθ)+∆C(θθθ ,θ̇θθ),

G(θθθ) = G0(θθθ)+∆G(θθθ), (2)

where M000(θθθ), C000(θθθ ,θ̇θθ), and G0(θθθ) are the nominal por-
tion of the system parameters; ∆M(θθθ), ∆C(θθθ ,θ̇θθ), and
∆G(θθθ) are the corresponding parameter perturbations.

Consequently, the kinetic model (1) is reformulated as

M0(θθθ)θ̈θθ +C0(θθθ ,θ̇θθ)θ̇θθ +G0(θθθ) = τττ +ΓΓΓ(θθθ ,θ̇θθ), (3)

where ΓΓΓ(θθθ ,θ̇θθ) = τττd −∆M(θθθ)θ̈θθ −∆C(θθθ ,θ̇θθ)θ̇θθ −∆G(θθθ)−
F(θθθ ,θ̇θθ) denotes the vector of the bounded lumped uncer-
tainty with ‖ΓΓΓ(θθθ ,θ̇θθ)‖ ≤ D, and D is a positive constant.

Define the tracking error vector as e = θθθ −θθθ d = [e1,
e2, ..., en]

T , where θθθ d ∈ Rn is the twice differentiable de-
sired position trajectory. This paper aims at designing a ro-
bust finite time control scheme to achieve accurate trajec-
tory tracking of robots with system uncertainty and time-
varying disturbance.
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3. THE DESIGN OF RNFTSMC SCHEME BASED
ON NDOB

3.1. NFTSMC design
For the robotic manipulator (3), the nonsingular fast ter-

minal sliding manifold can be designed as

S = e+K1diag(|e|A)sign(e)+K2diag(|ė|B)sign(ė),
(4)

where sign(·) is the sign function, S= [s1, ..., sn]
T , K1, K2,

A, and B are diagonal matrices represented by

K1 = diag(k11, k12, ..., k1n),

K2 = diag(k21, k22, ..., k2n),

A = diag(α1, α2, ..., αn),

B = diag(β1, β2, ..., βn),

with k1i > 0, k2i > 0, 1 < βi < 2, and αi > βi (i = 1, 2, ...,
n).

Then, the first derivative of (4) is obtained as

Ṡ = ė+K1Adiag(|e|A−In)ė+K2B ·diag(|ė|B−In)ë,
(5)

where In is an n-dimensional identity matrix.
By solving Ṡ = 000 on the assumption that ΓΓΓ = 000, the

equivalent control effort τττeq is derived as

τττeq = M000(θθθ)θ̈θθ d +C0(θθθ ,θ̇θθ)θ̇θθ +G0(θθθ)

−M0(θθθ)K2
−1B−1(In +K1A

×diag(|e|A− In))diag(|ė|2In−B)sign(ė). (6)

In order to perform expected tracking behaviors in the
presence of time-varying perturbations, a discontinuous
switching control law is devised as

τττ sw =−M000(θθθ)(KS+Hsign(S)), (7)

where K = diag(k1, k2, ..., kn) and H = diag(η1, η2, ...,
ηn) are switching gain matrices with ki > 0 and ηi > 0.

Therefore, the overall control law of the NFTSMC can
be presented as

τττ = τττeq +τττ sw

= M0(θθθ)θ̈θθ d+C000(θθθ ,θ̇θθ)θ̇θθ+G000(θθθ)−M000(θθθ)K2
−1B−1

× (In +K1Adiag(|e|A−In))diag(|ė|2In−B)sign(ė)
−M000(θθθ)(KS+Hsign(S)). (8)

To analyze the system stability, the following Lyapunov
function is considered

V =
1
2
‖S‖2 . (9)

Differentiating (9) with respect to time and combining (3)
yields

V̇ = STṠ

= ST(ė+K1A·diag(|e|A−In)ė+K2B·diag(|ė|B−In)ë)

= ST



(
In +K1A ·diag(|e|A−In)

)
ė

+K2Bdiag(|ė|B−In)

×

M0
−1(θθθ)

τττ +ΓΓΓ(θθθ ,θ̇θθ)

−C0(θθθ ,θ̇θθ)θ̇θθ
−G0(θθθ)

− θ̈θθ d




= −STK2Bdiag(|ė|B−In)

(
KS+Hsign(S)

−M000
−1(θθθ)ΓΓΓ(θθθ ,θ̇θθ)

)
. (10)

In the absence of parameter perturbation and external dis-
turbance, that is ΓΓΓ = 0, (10) is expressed as

V̇ = −STK2Bdiag(|ė|B−In)(KS+Hsign(S))

≤ − min
i=1,...,n

(
k2iβi |ėi|βi−1 ki

)
‖S‖2

− min
i=1,...,n

(
k2iβi|ėi|βi−1

ηi

)
‖S‖

=−2 min
i=1,...,n

(
k2iβi |ėi|βi−1 ki

)
V

−
√

2 min
i=1,...,n

(
k2iβi |ėi|βi−1

ηi

)
V 1/2

=−ρ1V −ρ2V 1/2, (11)

where ρ1 = 2 min
i=1,...,n

(
k2iβi|ėi|βi−1ki

)
> 0 and ρ2 =

√
2 min

i=1,...,n(
k2iβi|ėi|βi−1ηi

)
> 0 if ėi 6= 0. It follows that [28]

dt ≤ dV
−ρ1V −ρ2V 1/2 =

−V−1/2dV
ρ1V 1/2 +ρ2

=
−2dV 1/2

ρ1V 1/2 +ρ2
. (12)

Then, integrating (12) from V (0) to V (tr) yields∫ tr

0
dt ≤

∫ V (tr)

V (0)

−2dV 1/2

ρ1V 1/2 +ρ2

= − 2
ρ1

ln
(

ρ1V 1/2 +ρ2

)∣∣∣∣V (tr)

V (0)
, (13)

where tr is a time constant and V (tr) = 0.
Solving (13), one can obtain

tr ≤
2
ρ1

ln
(

ρ1V (0)1/2 +ρ2

ρ2

)
. (14)

Hence, the sliding manifold S = 0 can be reached within
finite time. After that, the system error converges to zero
along the manifold in a limited time Tn f , which is repre-
sented as [27]

Tn f =
∫ |ei(tr)|

0

k2i
1/βi

(ei + k1ie
αi
i )

1/βi
dei. (15)

The preceding analysis is expounded in the case of any
ėi 6= 0, subsequently, the case of ėi = 0 is to be discussed.
Substituting the control effort (8) into (3) yields

ë =−K2
−1B−1(In +K1Adiag(|e|A−In))
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×diag(|ė|2In−B)sign(ė)− (KS+Hsign(S)). (16)

In the case of ėi = 0 and si 6= 0, one can acquire

ëi =−kisi−ηisign(si) 6= 0. (17)

Therefore, the limited time reachability of the proposed
sliding manifold can also be realized.

Consider the system uncertainties, we can obtain

V̇ =−STK2Bdiag(|ė|B−In)

(
KS+Hsign(S)
−M0

−1(θθθ)ΓΓΓ(θθθ ,θ̇θθ)

)
≤− min

i=1,...,n
(k2iβi|ėi|βi−1ki)‖S‖2

− min
i=1,...,n

(k2iβi|ėi|βi−1)(ηi−‖M0
−1(θθθ)‖D)‖S‖

=−2 min
i=1,...,n

(k2iβi|ėi|βi−1ki)V

−
√

2 min
i=1,...,n

(k2iβi|ėi|βi−1)(ηi−‖M0
−1(θθθ)‖D)V1/2.

(18)

According to the foregoing analysis, the finite time stabil-
ity can be ensured if the switching gain satisfies

ηmin >
∥∥M0

−1(θθθ)
∥∥D, (19)

where ηmin = min
i=1,...,n

ηi.

Similar to the argument above, for ėi = 0 and any si 6= 0,
one can obtain

ëi =−kisi− (ηi−Φi/sign(si))sign(si) 6= 0, (20)

where ΦΦΦ = M0
−1(θθθ)ΓΓΓ(θθθ ,θ̇θθ) = (Φ1, ..., Φn)

T.
Hence, the state trajectory can converge to the manifold

S = 000 even if ėi = 0.
Remark 1: For the robotic dynamics (3), the conven-

tional terminal sliding manifold is presented as

S1 = ė+K3diag(|e|B1)sign(e), (21)

where K3 = diag(k31, k32, ..., k3n), B1 = diag(β11, β12, ...,
β1n), k3i > 0, and 1/2 < β1i < 1 (i = 1, 2, ..., n).

The TSMC control law can be obtained as

τττ1 =M0(θθθ)θ̈θθ d−M0(θθθ)K3B1diag(|e|B1−I)ė

+C0(θθθ ,θ̇θθ)θ̇θθ +G0(θθθ)

−M0(θθθ)(KS1 +Hsign(S1)). (22)

Since β1i−1< 0, τττ1 involves in the singularity issue as the
tracking error approaches to the origin, while the adopted
NFTSMC can avoid this problem well.

Furthermore, after the manifold S1 = 000 is arrived, the
convergence time of the system error from ei(tr) 6= 0 to
zero can be given as

Tt =
∫ |ei(tr)|

0

1

k3ie
β1i
i

dei =
|ei(tr)|1−β1i

k3i(1−β1i)
. (23)

Let β1i = 1/βi and k3i = k−1/βi
2i , we can derive

Tt =
∫ |ei(tr)|

0

k2i
1/βi

e1/βi
i

dei

>
∫ |ei(tr)|

0

k2i
1/βi

(ei + k1ie
αi
i )

1/βi
dei = Tn f . (24)

Thus, the convergence rate of the NFTSMC is faster than
that of the conventional TSMC.

3.2. Robust reaching law design
In general, the saturation function is employed to atten-

uate chattering phenomena by substituting the discontin-
uous switching action. The saturation function is defined
as

sat(
S
ε
) =

{
sign(S), ‖S‖> ε,

S/ε, ‖S‖ ≤ ε,
(25)

where ε is the boundary layer thickness. However, this
strategy eliminates chattering at the expense of degener-
ating the system tracking performance. It can only ensure
the finite time convergence of the state trajectory to the
thin boundary layer [25].

In order to achieve high accuracy tracking and chatter-
ing attenuation, a novel continuous robust reaching law is
designed as

Ṡ =−KS−Hsat(S),

sat(S) =


sign(S), ‖S‖> ε,

In− exp(−diag(|S|ρ)/σ)

1− exp(−ερ/σ)
sign(S),

‖S‖ ≤ ε,

(26)

where ρ > 0 is an integer, σ > 0, and exp(·) represents the
exponential function.

Consequently, the robust switching control effort is ex-
pressed as

τττ sw =−M0(θθθ)(KS+Hsat(S)). (27)

Substituting the switching control term in (10) by (27)
yields

V̇ =−STK2B ·diag(|ė|B−In)(KS+Hsat(S)

−M0
−1(θθθ)ΓΓΓ(θθθ ,θ̇θθ)). (28)

Similar to the aforementioned stability analysis, when
‖S‖> ε , the state trajectory can tend to the boundary layer
in limited time.

When ‖S‖ ≤ ε , (28) can be represented as

V̇ = −STK2Bdiag(|ė|B−In)[KS+(H

−diag(M0
−1(θθθ)ΓΓΓ(θθθ ,θ̇θθ))diag−1(sat(S)))sat(S)]
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=− min
i=1,...,n

(k2iβi|ėi|βi−1ki)‖S‖2

− min
i=1,...,n

(k2iβi|ėi|βi−1)

×
(

ηi
1− exp(−|si|ρ/σ)

1− exp(−ερ/σ)
−‖M0

−1(θθθ)‖D
)
‖S‖.

(29)

Obviously, the state trajectory under nominal model (ΓΓΓ =
000) can reach the sliding manifold S=000 within limited time
in any cases since ėi = 0 is not an attractor in the reaching
stage.

For ΓΓΓ 6=000, the finite time stability condition can be guar-
anteed if the matrix H−diag(M0

−1(θθθ)ΓΓΓ(θθθ ,θ̇θθ))diag−1(sat
(S)) is positive definite, from which one can derive

ηmin >

∥∥M0
−1(θθθ)

∥∥D(1− exp(−ερ/σ))

(1− exp(−|si|ρ/σ))
. (30)

Solving (30) yields

|si|>
[
−σ ln(1−‖M0

−1(θθθ)‖

×D(1− exp(−ε
ρ/σ))/ηmin)

]1/ρ
. (31)

Hence, the following neighborhood of the sliding mani-
fold S = 000 can be reached within limited time

‖S‖ ≤
[
−σ ln(1−‖M0

−1(θθθ)‖

×D(1− exp(−ε
ρ/σ))/ηmin)

]1/ρ

< ε. (32)

Furthermore, (28) can be reformulated into a different
form as

V̇ =−STK2Bdiag(|ė|B−In)
[
(K−diag(M0

−1(θθθ)ΓΓΓ(θθθ ,θ̇θθ))

×diag−1(S))S+Hsat(S)
]
. (33)

If the matrix K−diag(M0
−1(θθθ)ΓΓΓ(θθθ ,θ̇θθ))diag−1(S) is pos-

itive definite, the state trajectory can approach the domain
of the manifold S = 000 as

‖S‖ ≤ ‖M0
−1(θθθ)ΓΓΓ(θθθ ,θ̇θθ)‖

kmin
≤ ‖M0

−1(θθθ)‖D
kmin

, (34)

within finite time, where kmin = min
i=1,...,n

ki.

In summary, the convergence region of the system tra-
jectory in the presence of perturbations is represented as

‖S‖ ≤min(Ω1,Ω2),

Ω1 =
‖M0

−1(θθθ)‖D
kmin

,

Ω2 =
[
−σ ln(1−‖M0

−1(θθθ)‖

×D(1− exp(−ε
ρ/σ))/ηmin)

]1/ρ
. (35)

Remark 2: In comparison with the boundary layer ap-
proach, the presented robust reaching law can not only im-
prove the tracking precision and robustness of the system,
but also effectively attenuate the chattering level.

3.3. NDOB design
For the proposed RNFTSMC, the switching gain should

be greater than the system perturbations, whose upper
bound is hard to be obtained accurately beforehand in
practice. Generally, a large enough switching gain is re-
quired to guarantee the reachability of the sliding mani-
fold, whereas it will cause a mass of chattering.

In this subsection, a NDOB is employed to compensate
the system perturbations and reduce the switching gain,
which is designed as [45]

ż =−ΛΛΛM0
−1(θθθ)(τττ + Γ̂ΓΓ−C0(θθθ ,θ̇θθ)θ̇θθ −G0(θθθ)),

Γ̂ΓΓ = z+ΛΛΛθ̇θθ , (36)

where z, Γ̂ΓΓ, and ΛΛΛ= diag(λ1, λ2, ..., λn) with λi > 0 denote
the internal state vector of the disturbance observer, the
estimation vector of the disturbance, and the observer gain
matrix, respectively.

The observation error of ΓΓΓ can be defined as

Γ̃ΓΓ =ΓΓΓ− Γ̂ΓΓ. (37)

It is assumed that the observation error is bounded by
‖Γ̃ΓΓ‖ ≤ d, and d is a positive constant.

In practical applications, the disturbances are consid-
ered to vary very slowly in every sampling period, namely
Γ̇ΓΓ = 000 [40,45].

Therefore, differentiating (37) yields

˙̃
ΓΓΓ = Γ̇ΓΓ− ˙̂

ΓΓΓ =−ż−ΛΛΛθ̈θθ =−ΛΛΛM0
−1(θθθ)Γ̃ΓΓ. (38)

Define a Lyapunov candidate function as

V1 =
1
2

∥∥Γ̃ΓΓ
∥∥2

. (39)

The first derivative of V1 is presented as

V̇1 = Γ̃ΓΓ
T ˙̃
ΓΓΓ =−Γ̃ΓΓ

T
ΛΛΛM0

−1(θθθ)Γ̃ΓΓ =−Γ̃ΓΓ
T
ΞΞΞΓ̃ΓΓ

≤ − min
i=1,...,n

ξi‖Γ̃ΓΓ‖2 ≤ 0, (40)

where ΞΞΞ =ΛΛΛM0
−1(θθθ) = diag(ξ1, ..., ξn) with ξi > 0. Evi-

dently, the disturbance observation error can exponentially
converge to zero and its convergence rate is determined by
the observer gain.

Subsequently, the NDOB based RNFTSMC law is de-
signed as follows, and its block diagram is shown in Fig.
1.

τττ = M0(θθθ)θ̈θθ d +C0(θθθ ,θ̇θθ)θ̇θθ +G0(θθθ)

−M0(θθθ)K2
−1B−1(In +K1Adiag(|e|A−In))

×diag(|ė|2In−B)sign(ė)−M0(θθθ)(KS+Hsat(S))

− Γ̂ΓΓ. (41)
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Fig. 1. Structure diagram of the RNFTSMC scheme.

To investigate the stability of the entire closed-loop sys-
tem, the following Lyapunov function is introduced

V2 =
1
2
‖S‖2 +

1
2
‖Γ̃ΓΓ‖2. (42)

Differentiating (42) and combining (41) yields

V̇2 =−STK2Bdiag(|ė|B−In)(KS+Hsat(S)

−M0
−1(θθθ)Γ̃ΓΓ)+ Γ̃ΓΓ

T ˙̃
ΓΓΓ

=



−STK2Bdiag(|ė|B−In)[KS+(H

−diag(M0
−1(θθθ)Γ̃ΓΓ)diag−1(sat(S)))sat(S)]

− Γ̃ΓΓ
T
ΞΞΞΓ̃ΓΓ,

−STK2Bdiag(|ė|B−In)[(K−diag(M0
−1(θθθ)Γ̃ΓΓ)

×diag−1(S))S+Hsat(S)]− Γ̃ΓΓ
T
ΞΞΞΓ̃ΓΓ.

(43)

According to the aforementioned analysis, the sta-
bility condition V̇2 ≤ 0 can be satisfied if the ma-
trices H − diag(M0

−1(θθθ)Γ̃ΓΓ)diag−1(sat(S)) and K −
diag(M0

−1(θθθ)Γ̃ΓΓ)diag−1(S) are positive definite, from
which one can derive

ηmin > |Σi|,

ηmin−
|Σi|(1− exp(−ερ/σ))

(1− exp(−|si|ρ/σ))
> 0, ‖S‖ ≤ ε,

kmin > |Σi|/|si|, (44)

where ΣΣΣ = M0
−1(θθθ)Γ̃ΓΓ = (Σ1, ..., Σn)

T.
Consequently, the following convergence domain can

be arrived within finite time

‖S‖ ≤min(Ω1,Ω2),

Ω1 =
‖M0

−1(θθθ)‖d
kmin

,

Ω2 =
[
−σ ln(1−‖M0

−1(θθθ)‖

×d(1− exp(−ε
ρ/σ))/ηmin)

]1/ρ
. (45)

Furthermore, the switching gain can be decreased to

ηmin > ‖M0
−1(θθθ)‖d. (46)

Remark 3: Comparing (46) with (19), the switching
gain of the developed composite controller (41) just need
to be larger than ‖M0

−1(θθθ)‖d instead of ‖M0
−1(θθθ)‖D.

Since the lumped uncertainty has been compensated by
the NDOB, the upper bound of the observation error is
greatly smaller than that of the uncertainty. Hence, the
proposed control law can not only enhance the robustness
and control performance of the system, but also substan-
tially smooth the control torque and eliminate chattering
effect despite large modeling uncertainties and external
disturbances.

4. SIMULATION RESULTS

In this section, the validity of the adopted NDOB based
RNFTSMC controller is investigated on a two degree of
freedom robotic manipulator and its superiority is also
illustrated by performance comparisons with other ad-
vanced methods in [27,28]. The following kinetic model
of the manipulator is considered [22,28](

M11(θ) M12(θ)
M21(θ) M22(θ)

)(
θ̈1

θ̈2

)
+

(
C11(θ , θ̇) C12(θ , θ̇)
C21(θ , θ̇) C22(θ , θ̇)

)(
θ̇1

θ̇2

)
+

(
G1(θ)
G2(θ)

)
+

(
F1(θ , θ̇)
F2(θ , θ̇)

)
=

(
τ1

τ2

)
, (47)

where

M11(θ) = (m1 +m2)l2
1 +m2l2

2 +2m2l1l2 cos(θ2)+ J1,

M12(θ) = M21(θ) = m2l2
2 +m2l1l2 cos(θ2),

M22(θ) = m2l2
2 + J2,

C11(θ , θ̇) =−2m2l1l2 sin(θ2)θ̇2,

C12(θ , θ̇) =−m2l1l2 sin(θ2)θ̇2,

C21(θ , θ̇) = m2l1l2 sin(θ2)θ̇1,

C22(θ , θ̇) = 0,

G1(θ) = (m1 +m2)l1gcos(θ1)+m2l2gcos(θ1 +θ2),

G2(θ) = m2l2gcos(θ1 +θ2),

g = 9.8 m/s2 is the acceleration of gravity; mi, li, and Ji

(i = 1, 2) denote the mass, length, and inertia of the link,
respectively. Their nominal values are set to be m1 = 0.5
kg, m2 = 1.5 kg, l1 = 1 m, l2 = 0.8 m, and J1 = J2 = 5
kg·m2. The initial states of the joint are chosen as θθθ(0) =
[0.8, 1.5]T and θ̇θθ(0) = [−1, 1]T . Additionally, the ref-
erence trajectory is specified as θθθ d = [1.25− 1.4e−t +
0.35e−4t , 1.25+ e−t −0.25e−4t ]T.

To make the comparison results fair and convincing, the
simulations are implemented under the same conditions.
In this work, the fluctuations of system parameters are set
as 20% of their nominal values. The friction and the dis-
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Table 1. Quantitative analysis.

Controller IAE (rad) ITAE (rad·s)
Joint 1 Joint 2 Joint 1 Joint 2

Method in [28] 0.3237 0.4027 0.6194 2.6276
Method in [27] 0.2963 0.2456 0.1511 0.2581

RNFTSMC 0.2952 0.2356 0.1232 0.0959

turbance are assumed to be

F(θθθ ,θ̇θθ) =
(

F1(θθθ ,θ̇θθ)

F2(θθθ ,θ̇θθ)

)
=

(
5θ̇1 +5sign(θ̇1)
5θ̇2 +5sign(θ̇2)

)
, (48)

τττd =

(
0.5sin(200πt)+2sin(t)
0.5sin(200πt)+ cos(2t)

)
. (49)

Moreover, suppose that m2 increases to 3.5 kg when t ≥
10 s to simulate sudden load variation.

In order to perform favorable tracking, the coefficients
of the proposed NDOB based RNFTSMC are selected as
K1 = diag(1, 1), K2 = diag(1, 1), A = diag(2, 2), B =
diag(5/3, 5/3), K = diag(100, 100), H = diag(2, 2), ρ =
1, σ = 0.001, ε = 0.001, and ΛΛΛ= diag(20, 20) by trial and
error method.

The tracking performance comparisons are depicted in
Figs. 2-7. It can be figured out from Figs. 2-5 that all
the three controllers can make the robot track the refer-
ence trajectory accurately before t = 10 s. When sudden
load variation occurs, the proposed RNFTSMC controller
achieves the smallest overshoot and the highest tracking
precision, while the method in [28] produces the largest
overshoot and tracking errors. Although the method in
[27] performs a smooth response, it has small steady state
errors. Moreover, as observed in Fig. 6, the RNFTSMC
controller and the method in [27] suffer fewer chattering
than the method in [28]. It can be found from Fig. 7 that
the RNFTSMC controller exhibits the strongest robust-
ness and the fastest convergence rate. Table 1 gives the in-
tegral of the absolute value of the error (IAE) and the inte-
gral of the time multiplied by the absolute value of the er-
ror (ITAE) indices of the three controllers. The two indices
are presented by (50) and (51). It is clear that the adopted
controller shows lower IAE and ITAE values, and achieves
better tracking performance. The results demonstrate that
the designed RNFTSMC based on NDOB exhibits supe-
rior performance over the existing control strategies, such
as more precise tracking, stronger robustness, fewer chat-
tering, and faster response.

IAE =
∫ tn

0
|ei|dt, (50)

ITAE =
∫ tn

0
t |ei|dt, (51)

where tn is the total running time.

(a) Joint 1.

(b) Joint 2.

Fig. 2. Position tracking performance comparisons.

5. CONCLUSION

This paper designs a novel RNFTSMC approach based
on the NDOB technique for robot tracking under time-
varying perturbations. The proposed controller utilizes an
improved nonsingular fast terminal sliding manifold to
perform finite time convergence and avoid the singular-
ity. Subsequently, a continuous robust reaching law is de-
veloped not only to achieve high precision tracking and
strong anti-interference ability of the system, but also to
attenuate chattering phenomena effectively. Moreover, a
NDOB is exploited to compensate system perturbations,
so that the prior information about the uncertainties is
unnecessary for the design and the control input can be
further smoothed. Simulation results indicate the validity
and advantages of the presented robust controller by com-
parative research. In future works, we intend to improve
the proposed scheme to remove the reaching stage and
achieve global robustness, and evaluate our design on a
real robotic system.
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(a) Joint 1.

(b) Joint 2.

Fig. 3. Velocity tracking performance comparisons.
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