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Design of Adaptive RBFNN and Computed-torque Control for Manipula-
tor Joint Considering Friction Modeling
Xiaobin Shen, Kun Zhou, Rui Yu, and Binrui Wang* �

Abstract: In this paper, we aim to improve the tracking performance of the manipulator joint system by establishing
accurate friction model based on the Stribeck model and the cubic polynomial method. Meanwhile, in view of the
established system model, an adaptive Radial Basis Function Neural Network (RBFNN) compensation computed-
torque controller is designed for the manipulator joint system. Firstly, we consider the friction modeling process at
low- and high- velocity regions to advance the model accuracy, and identify the parameters in the friction model
equation offline via the particle swarm optimization (PSO) algorithm. Secondly, an adaptive RBFNN algorithm is
developed to analyze the unmodeled dynamics online and introduce it to the computed-torque controller design.
After that, we further conduct the stability analysis for the proposed controller based on the Lyapunov stability
criterion. Finally, the self-developed manipulator joint platform introduction, the simulation experiment and the
contradistinctive experiments are given to illustrate the effectiveness of designed controller.

Keywords: Adaptive control, computed-torque control, friction model, manipulator joint, radial basis function neu-
ral network (RBFNN).

1. INTRODUCTION

In recent years, manipulator joints are developing to-
wards modularization and integration, which are widely
used in field of industry [1], medical [2,3], human-robot
cooperation [4,5], and so on. Therefore, a variety of inno-
vative modular manipulator joints have emerging, which
can be composed of different manipulators to complete
specific tasks. For example, in [1], the dual-arm manipu-
lator robot was used in a footwear production setting. In
[2], the authors developed a robotic spine surgery systems
which based on KUKA LBR collaborative robot. In [4],
Lorenzo Baccelliere designed a modular robot joint with
force feedback and a dual arm robot was built for human-
robot interaction experiments. And the paper [5] devel-
oped a lightweight robot with the joint contains two en-
coders and a force sensor, which can perceive the external
force from the environment sensitively.

Generally, manipulator joints consist of motors, drivers,
sensors and reducers. The reducer has serious nonlinear
friction, which will affect control accuracy [6] and in-
crease control difficulty. The nonlinear friction can be
divided into the dynamic friction and the static friction,
and many models have been established in the literatures,

such as the Coulomb friction model [7,8], Stribeck model
[9,10], Dahl model [11] and LuGre model [12,13]. Based
on the above modeling methods, many research works
have developed the different friction models by consid-
ering some discrepant influence factors. For example, the
paper [14] discussed the friction model with the Stribeck
model and used the Gaussian compensation term to re-
strain the reversal chattering. The work [15] established a
dynamic model based on the LuGre model for the clear-
ance joint, and it is proved that the proposed model is su-
perior to the coulomb friction model. In addition, the tem-
perature influence also was considered in [16], the authors
established a friction model with temperature correction
for the robot joints. Therefore, it is difficult to establish an
accurate model considering different effects.

The unknown parameters in the nonlinear friction
model have also attracted the attention of many re-
searchers. Consequently, many parameter identification
algorithms have been used in the establishment of nonlin-
ear friction models, such as least square method, genetic
algorithm, and particle swarm optimization algorithm. In
[17], the simulated annealing method was introduced in
the genetic algorithm to identify the friction model af-
fected by vibration and collision. The genetic method and
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PSO method were combined in [18] to identify the non-
linear friction model, and a high identification accuracy
was achieved. Besides, the authors compared the dynamic
PSO algorithm with the artificial bee colony algorithm in
[19], and proved that the PSO algorithm has higher iden-
tification correction.

For the research of manipulator joint trajectory track-
ing, many control algorithms have been applied to the
manipulator joint system, such as PID control, computed-
torque control [20,21], model predictive control [22], neu-
ral networks algorithm [23–25], and fuzzy control [26–
29]. For instance, Jiang et al. [25] designed a RBFNN
compensator based on the computed-torque controller to
estimate and compensate the friction torque online, but
the nonlinear friction model of the joint was not consid-
ered. In [29], the researchers used the fuzzy PID algorithm
for the robot dynamics with Stribeck friction model. How-
ever, the fuzzy control must depend on the experience of
users, which is tough to design. Besides, adaptive control
is also widely used in manipulator systems [30–32] for un-
certain items. Sun et al. [30] proposed a reduced adaptive
fuzzy decoupling control method for exoskeleton system,
and the adaptive control was considered to approximate
the coupling parameters in the work.

Motivated by the manipulator joint works mentioned
before, the aim of this paper is to achieve the high-
precision trajectory tracking performance for the manip-
ulator joint system. To carry out this goal, we firstly es-
tablish an accurate friction model based on the Stribeck
model and the cubic polynomial method, which can di-
vide friction modeling process into low- and high- veloc-
ity regions to advance the model accuracy. Then, refer to
[18,19], PSO algorithm is chosen to identify the unknown
parameters in the friction model equation offline, due to
its high identification accuracy. Under the comparison of
different control methods, we develop a computed-torque
control algorithm with the adaptive RBFNN method for
the manipulator joint dynamic equation which contains
the uncertain items. The adaptive neural network algo-
rithm is considered to estimate the unknown items on-
line, which can effectively enhance the system tracking
accuracy. Moreover, we demonstrate the effectiveness of
the established model and the proposed algorithm through
the simulation experiments and the comparative experi-
ment on the self-developed manipulator joint platform.
The contributions of this paper can be summarized as fol-
lows:

1) A multi-stage Stribeck friction model based on cubic
polynomial is established to improve the accuracy of
the friction model in a large velocity range.

2) We consider the unmodeled dynamic terms in the ma-
nipulator joint model, and employ the adaptive neural
network algorithm to estimate and solve it online.

3) An adaptive RBFNN computed-torque controller has

been designed for the proposed manipulator joint dy-
namic model, and its good control effect is verified by
simulation and comparative experiments based on the
self-developed platform.

This paper is organized as follows: The dynamic model
and friction model of the robot joint system will be car-
ried out in Section 2. In Section 3, the adaptive RBFNN
computed-torque controller is designed for the established
dynamic model. And the self-developed manipulator joint
platform introduction, the simulation experiment and the
comparative experiments in Section 4. Finally, the conclu-
sion and future works are shown in Section 5.

2. MODELING

2.1. Dynamic model of manipulator

For an multi-joint manipulator, its dynamic equation
can be expressed as

MMM(qqq)q̈qq+CCC(qqq,q̇qq)q̇qq+GGG(qqq) = τττ, (1)

where τττ is joint turque of the manipulator, MMM(qqq) is the
equivalent inertia term, CCC(qqq,q̇qq) is the contribution of the
centripetal and Coriolis forces, GGG(qqq) is the contribution of
gravity at the output, qqq, q̇qq, q̈qq denote the position, velocity
and acceleration.

When considering the joint friction model of the ma-
nipulator, the dynamic model of the manipulator can be
rewritten as

MMM(qqq)q̈qq+CCC(qqq,q̇qq)q̇qq+GGG(qqq)+τττ jf = τττ, (2)

where τττ jf denotes the friction model of manipulator joint.
The unmodeled dynamics in (2), such as friction model

error and dynamic model error, can be inserted into the
dynamic model of the manipulator joint by changing (2)
to

MMM0(qqq)q̈qq+CCC0(qqq,q̇qq)q̇qq+GGG0(qqq)+τττ jf0− fff (·) = τττ (3)

where

fff (·) = ∆MMMq̈qq+∆CCCq̇qq+∆GGG+τττ jf,

MMM(qqq) =MMM0(qqq)−∆MMM,

CCC(qqq,q̇qq) =CCC0(qqq,q̇qq)−∆CCC,

GGG(qqq) =GGG0(qqq)−∆GGG,

τττ jf = τττ jf0−∆τττ jf,

where MMM0(qqq), CCC0(qqq,q̇qq) and GGG0(qqq) can be obtained by us-
ing a computer-aided designed (CAD) software, τττ jf0 can
be obtained by friction modeling, ∆MMM, ∆CCC, ∆GGG and ∆τττ jf

are terms referring to the error of the system, fff (·) is the
unmodeled dynamics of the system.
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Fig. 1. Joint model diagram.

Fig. 2. Joint transmission diagram.

2.2. Dynamic model of manipulator joint
In this subsection, we will develop the dynamic model

for the manipulator joint based on the dynamic model of
manipulator. The 3D model of the manipulator joint is
given in Fig. 1. And the schematic diagram of the joint
transmission chain is presented in Fig. 2.

In Fig. 2, τmotor is the electromagnetic torque of motor,
J1 and J2 are the momentum of inertia of the high-velocity
and low- velocity shafts, respectively, τfm and τfr mean the
friction torque at high-velocity and low-velocity sides, re-
spectively, θm stands for the position of the high-velocity
side, τm means output torque at high-velocity side; n is
the reduction ratio, τr means the output torque at the low-
velocity side.

Through the analysis of Fig. 2, the electromagnetic
torque generated by the DC servo motor can be expressed
as

τmotor = Kmi, (4)

where Km denotes the motor torque constant, and i denotes
the motor current.

The dynamic equation of high-velocity shaft can be ex-
pressed as

τm = τmotor− τfm− J1θ̈m. (5)

Meanwhile, the dynamic equation of high-velocity shaft
can be obtained as

nτm = τr + τfr + J2q̈. (6)

Assuming the stiffness of the harmonic reducer is suffi-
ciently large and the deformation of the harmonic reducer
could be neglected, the relationship between θm and q is

q =
θm

n
. (7)

Combining (2) and (4)-(7), the dynamic model of the robot
joint is defined as

nτmotor = Jq̈+nτf + τr + f (·), (8)

where J = n2J1 + J2 denotes the equivalent momentum of
inertia on the low-velocity side, and τf = τfm + τfr/n de-
notes the equivalent friction torque on the high-velocity
side.

Remark 1: The torque balance equations with low ve-
locity shaft or high velocity shaft as reference can be con-
verted to each other. However, in order to unify in the
subsequent calculation process, the low-velocity axis will
only be considered for the manipulator dynamic model.

Due to the importance of the nonlinear friction part in
the joint, we will consider the friction model for the ma-
nipulator joint in the next subsection.

2.3. Friction model of manipulator joint
In this subsection, the friction characteristics of the ma-

nipulator joint will be modeled. Firstly, we can obtain the
relationship between velocity with friction torque in Fig.
3, through the data measurement and the following equa-
tions.

From (4) and (8), the τf can be obtained as follows:

τf =−
1
n
[Jq̈+ τr + f (·)]+Kmi. (9)

Fig. 3. Velocity-friction torque diagram.
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Because the joint friction torque can be regarded as the
electromagnetic torque generated by the motor under no
load and assume f (·) = 0. Equation (9) can be rewritten
as

τf = Kmi. (10)

Remark 2: For convenience, we only consider the ef-
fect of velocity during the friction modeling in this paper.
However, other influence factors also can be considered in
future works, such as temperature, position and external
load.

Remark 3: The relationship curve in Fig. 3 is obtained
through the self-develop manipulator joint platform, and
is familiar with the results from other brand manipulator
joint and in [33]. Thus, the relationship in Fig. 3 can be
regarded as a typical velocity-friction torque relationship
for modeling.

Then, it is obvious that the low-velocity segment in Fig.
3 fits to the Stribeck model. However, the friction curve
is not completely in conformity with the Stribeck model
when the velocity increase, especially in high-velocity
segment.

Consequently, a multistage friction model is proposed
in this paper, in which the Stribeck friction model and a
lower-order cubic polynomial are applied in the low- and
high-velocity segments, respectively. The friction model
τf for velocity v can be expressed as

ϕ
−(v) = f−a0+ f−a1v+ f−a2v2+ f−a3v3, v−max ≤ v < v−,

τ
−
fs(v) =−τ

−
c −(τ−s −τ

−
c )e
− v

ω
−
s

2

+τ
−
v v, v−≤ v < 0,

τ
+
fs(v) = τ

+
c +(τ+s −τ

+
c )e
− v

ω
+
s

2

+τ
+
v v, 0≤ v≤ v+,

ϕ
+(v) = f+a0+ f+a1v+ f+a2v2+ f+a3v3, v+< v≤ v+max,

(11)

where v−max and v− denote the maximum and critical rota-
tion velocity of motor in the negative direction, v+max and
v+ denote the maximum and critical rotation velocity of
motor in the positive direction, f−a0, f−a1, f−a2, f−a3 and f+a0,
f+a1, f+a2, f+a3 denote the coefficients of the cubic polyno-
mial, τ−c and τ+

c denote the Coulomb friction, τ−s and τ+
s

mean static friction torque, τ−v and τ+
v stand for the co-

efficient of viscous friction, ω−s and ω+
s denote feature

velocity.

2.4. Parameters identification of friction model
The developed friction model (11) is a nonlinear multi-

segmented model, which is composed of parameters that
need to be identified. Refer to [22–24], we choose the PSO
algorithm to identify the unknown parameters, because it
has the faster convergence speed, no codon, less internal
parameters and engineering application value. The flow
chart of the PSO algorithm is presented in Fig. 4. Firstly,

Fig. 4. Flow chart of PSO.

the fitness function (E) of the PSO, which contains un-
known parameters in the friction model (11), can be de-
fined as

E =
S

∑
c=0

[τf (vc)− τaf (vc)]
2 , (12)

where vc is the sample velocity, S denotes the total num-
ber of samples in the experiment, τf (vc) is the friction
torque which can be calculated by (11), τaf (vc) is the fric-
tion torque which is sampled from the manipulator joint.
Noticeably, when the E in (12) reaches to the minimum
point, we can obtain the optimal values of the identified
parameters.

3. CONTROLLER DESIGN

In view of the dynamic equation, we will design and
analyse the controller for the manipulator system in this
section.

Let qqqd be the desired trajectory of the manipulator
joints, the actual tracking error eee can be defined as

eee = qqq−qqqd. (13)

Based on the computed-torque control scheme [34] and
the manipulator model (3), and the RBFNN is used to es-
timate the fff (·), the controller of the manipulator can be
designed as

τττout =MMM0(qqq)(q̈qqd−kkkvėee−kkkpeee)+CCC0(qqq,q̇qq)q̇qq

+GGG0(qqq)+τττ jf0− f̂ff (x),

f̂ff (xxx) = ŵwwThhh(xxx), (14)
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where τττout is the output torque of the controller, kkkv and kkkp

are the symmetric positive definite matrices, f̂ff (·) is the es-
timation of the fff (·), ŵww and xxx are the estimated weights and
the input vector of the neural network, hhh(xxx) = exp(−|xxx−
ccc2|/(2bbb2)) is radial basis function with the width vector bbb
and center vector ccc.

When the modeling error and external disturbance in
the system are not considered, therefore, fff (·) = 0, the er-
ror dynamics can be expressed as

ëeed +kkkvėee+kkkpeee = 000. (15)

In this ideal situation, (ėee,eee) = (000, 000) is a balanced point
of the global asymptotic stability as long as kkkv and kkkp

are symmetric positive definite matrices. Therefore, the
computed-torque controller avoids the calculation of q̈qq,
and only qqq and q̇qq need to be concerned.

At most time, fff (·) always exists and is unknown, thus,
by combining (3) and (14), the error equation can be
rewritten as

ëee+kkkvėee+kkkpeee =MMM−1
0 (qqq)

[
fff (·)− f̂ff (x)

]
. (16)

Let the neural network input xxx = [eee ėee]T as the state vari-
able, (16) can be modified to

ẋxx =AAAxxx+BBB
[

fff (·)− f̂ff (xxx)
]
, (17)

where AAA =

[
0 III
−kkkp −kkkv

]
, B =

[
000

MMM−1
0 (qqq)

]
.

Moreover, the RBFNN approximation error εεε is defined
as

εεε = fff (·)− fff ∗(xxx) (18)

where fff ∗(xxx) =www∗Thhh(xxx) is the optimal output with the op-
timal weight www∗.

Assuming that εεε is bounded, the maximum output error
εεε0 of RRFNN can be expressed as

εεε0 = sup‖ fff (·)− fff ∗(xxx)‖ . (19)

Therefore, the error equation of the entire system in state-
space form is obtained as

ẋxx =AAAxxx+BBB
[
εεε−w̃wwThhh(xxx)

]
, (20)

where w̃ww = ŵww−www∗ denotes weight error.
Meanwhile, the Lyapunov equation can be expressed as

PPPAAA+AAATPPP =−QQQ, (21)

where PPP and QQQ are the symmetric positive definite matri-
ces.

Then, we use the Lyapunov method to derive the adap-
tation law and prove the stability of the system. The Lya-
punov function V is designed as

V =
1
2

xxxTPPPxxx+
1

2β
‖w̃ww‖2, (22)

where β > 0. Thus, V is a positive definite function.
The derivative V̇ can be obtained as

V̇ =− 1
2

xxxTQQQxxx+
1
β

tr(−βBBBTPPPxxxhhhT(xxx)w̃ww+ ˙̂wwwTw̃ww)

+εεε
TBBBTPPPxxx, (23)

where tr(·) is the trace of the matrix.
Let the adaptive law as

˙̂www = βhhh(xxx)xxxTPPPBBB. (24)

Theorem 1: With adaptive RBFNN compensation
computed-torque controller including the control law (14)
and the adaptation law (24), the manipulator system is sta-
ble, and (ėee, eee)→ (000, 000) as t→ ∞.

Proof: Substituting (24) into (23) can yield

V̇ =−1
2

xxxTQQQxxx+εεε
TBBBTPPPxxx. (25)

Considering (25) and the principle of inequality, the fol-
lowing inequality is obtained

V̇ ≤− 1
2
‖xxx‖[λmin(QQQ)‖xxx‖

−2‖εεε0‖‖MMM−1
0 (qqq)‖λmax(PPP)], (26)

where λmin(QQQ) is the minimum eigenvalue of QQQ, and
λmax(PPP) is the maximum eigenvalue of PPP.

Then, the following inequality (27) needs to be proved
to be true, which is expressed as

λmin(QQQ)‖xxx‖−2‖εεε0‖‖MMM−1
0 (qqq)‖λmax(PPP)≤ 0. (27)

Inequality (27) can be rewritten as

λmin(QQQ)≥
2‖MMM−1

0 (qqq)‖λmax(PPP)
‖xxx‖

‖εεε0‖. (28)

In inequality (28), MMM0(qqq) is a constant parameter, QQQ and PPP
are the constant parameters of the controller. And εεε0 is the
boundary value of εεε , so ‖xxx‖max is obtained with εεε = εεε0.
Therefore, the values of QQQ and PPP can always be found to
ensure inequality (28) to be true and V̇ ≤ 0.

Through above proof, we can know (ėee, eee)→ (000, 000) as
t → ∞ when the adaptive law (25) is used. Thus, the sta-
bility of the manipulator system can be ensured.

Finally, the complete controller can be expressed as

τττout =MMM0(qqq)(q̈qqd−kkkvėee−kkkpeee)+CCC0(qqq,q̇qq)q̇qq

+GGG0(qqq)+τττ jf0− f̂ff (xxx),

f̂ff (x) = ŵwwThhh(xxx),
˙̂www = βhhh(xxx)xxxTPPPBBB. (29)

The block diagram of the designed adaptive RBFNN com-
pensation computed-torque controller is presented in Fig.
5.
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Fig. 5. Block diagram of the control system.

Besides, inequality (28) can also be rewritten as

‖xxx‖ ≥
2‖MMM−1

0 (qqq)‖λmax(PPP)
λmin(QQQ)

‖εεε0‖. (30)

In inequality (30), as the eigenvalue of QQQ increases or the
eigenvalue of PPP decreases, the system converges faster and
its accuracy is improved.

4. EXPERIMENT STUDY

4.1. Platform introduction and parameter identifica-
tion

In this subsection, the self-developed manipulator joint
platform is presented in Fig. 6, and the system parameters
will be given as follows:

Firstly, the main component models used in the manipu-
lator joint are given in Table 1, and the manipulator joint’s
parameters are shown in Table 2.

Fig. 6. Experimental equipment diagram.

Table 1. The models of the main parts.

Item Model
Motor TBM7615A

Reducer LHSG-20-CL-120
Encoder MBS
Driver G-MOLWHI20/100SE

Table 2. Robot joint parameters.

Item Parameter
Rated torque (Nm) 60

Rated velocity (r/min) 33
Reduction ratio n = 121
Inertia (Kg·m2) J = 2.1

(a) Fitting comparison.

(b) Fitting error.

Fig. 7. Parameter optimization results.

Then, identify the parameters of the friction model
based on the PSO algorithm, and some coefficients are set
as follows:

CCC0(qqq,q̇qq)=GGG(q)= 0, S= 225, v−max =−200, v+max = 200,
v− =−40 , v+ = 40, and the number of particles and iter-
ations are 1000 and 5000, respectively.

The results of fitting comparison and fitting error are
shown in Fig. 7, and the results of parameter identification
are presented in Table 3.
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Table 3. Friction model parameters.

Item Positive direction Negative direction
τc 0.11985 0.1063
τs 0.14537 0.1575
ω 1.2301 2.887
τv 0.0026518 0.002475
fff a3 −7.6969×10−9 2.1182×10−8

fff a2 −6.5261×10−7 1×10−5

fff a1 0.0012298 0.0022866
fff a0 0.17995 −0.1272

The root-mean-square error (RMSE) is introduced to
reflect the deviation between the real value and the fitting
value of the joint friction model. The smaller the RMSE,
the higher the fitting accuracy, and the specific calculation
formula is as follows:

RMSE =

√
1
S

E. (31)

Fig. 7(a) presents the fitting diagram only using the
Stribeck friction model and its RMSE is 0.0632 Nm.
Meanwhile, it also presents the friction model fitting di-
agram with proposed model and its RMSE is 0.0046 Nm.
Fig. 7 and the RMSE value demonstrate that the pro-
posed friction model can more accurately represent the
static friction characteristics at the joints compared with
the Stribeck model only.

Taking the identified parameters into the model equa-
tion (11), the calculated value of joint friction torque can
be obtained. By comparing with the actual friction torque ,
we can obtain the error diagram as shown in Fig. 7(b). The
fitting error is less than 10% when fit with Stribeck and cu-
bic polynomial, which is far less than fitting with Stribeck
model only. Thus, the effectiveness of the proposed joint
friction model can be verified.

Finally, the related parameters in neural network and
controller will be given as follows:

The number of neurons in the hidden layer are 15 and
the center vector is defined as

ccc =
[
−cccp 0 cccp

]
,

where

cccp = 10−2×
[
−5 −3 −1 −0.8 −0.4 −0.1 −0.05
−5 −3 −1 −0.8 −0.4 −0.1 −0.05

]
.

The radial basis function width is constructed as

bbb =
[
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

]
.

Here, the initial value of the neural network weight is
selected as 0.01. The other parameters are selected as
β = 80, kp = 784, kv = 56. Note that, at the initial mo-
ment, the joint is stationary, at the origin (position zero)
and no load is applied to it.

Remark 4: The parameters in the neural network de-
sign are determined by simulation and experiments. Then,
for the faster convergence, we choose a bigger eigenvalue
of QQQ and a smaller eigenvalue of PPP. Besides, because the
established dynamic model still has some errors, the pa-
rameter QQQ designed in simulation and experiment are dif-
ferent, namely QQQ = 2500 III and QQQ = 1800 III, where III is the
two dimensional identity matrix.

4.2. Neural network simulation
Due to the limitation of the experimental platform such

as memory size and running speed of the microcontroller
unit (MCU), we cannot obtain the specific data in the neu-
ral network online learning process through platform ex-
periments. Therefore, we design the following simulation
experiment to demonstrate the variations in neural net-
work learning.

We set the 0.35sin(0.2πt) as the target trajectory, and
set 10% as the friction torque error (10% is the maximum
calculation error of friction model).

The simulation results are shown in Fig. 8. The inputs
of the neural network are shown in Fig. 8(a), which are
also the position error and velocity error of the manipula-
tor joint. It shows that the errors are bounded and tending
to zero with continuously learning. Besides, the position
error in Fig. 8(a) is less than ±0.002 rad, and which is
less than the error in [25]. Therefore, this comparison can
illustrate that the friction model we have established can
improve the control precision effectively. Fig. 8(b) is the
comparison result of estimated model error by neural net-
work method with the theoretical value, and it shows that
the two tend to be consistent. Figs. 8(c) and 8(d) are the
part of weights of the neural network and hidden layer out-
puts respectively. We know that the weights of the neural
network tend to be fixed after learning.

4.3. Comparative platform experiments
In this subsection, we will design some comparative

experiments on the self-developed manipulator joint plat-
form to illustrate the effectiveness and superiority of the
proposed model and algorithm.

Firstly, we design a set of comparative experiments
about whether there is a friction model to compare the ef-
fect of joint tracking. The results including tracking curve
and RBFNN output curve are shown in Figs. 9 and 10, and
the error comparison curves are given in Fig. 11. Besides,
Table 4 also demonstrates the specific error range after 75
s for two cases.

From Figs. 10 and 11, we can acquire that the estab-
lished friction model can effectively decrease the tracking
error and the output of RBFNN, especially near the zero
velocity of the trajectory.

Secondly, we vary the frequency and amplitude of the
target trajectory in the experiment to see how they af-
fect the results. Fig. 12 shows the experiments of chang-
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(a) Neural network input. (b) Neural network output.

(c) Neural network weight. (d) Neural network hidden layer output.

Fig. 8. Simulation results.

Table 4. Errors comparison.

Item Error range/rad
Without friction model (−0.0029, 0.0028)

With friction model (−0.0012, 0.0012)

ing the trajectory frequency including the tracking re-
sult in Fig. 12(a), RBFNN output in Fig. 12(b) and
the error curve after 82.5 s in Fig. 12(c), and the ideal
tracking signal is changed from 0.35sin(0.2πt) rad to
0.35sin(0.125π(t +1.5)) rad at 82.5 s. Fig. 13 shows the
experiment of changing the trajectory amplitude including
the tracking result in Fig. 13(a), RBFNN output in Fig.
13(b) and the error curve after 82.5 s in Fig. 13(c), and the
ideal tracking signal is changed from 0.35sin(0.2πt) rad
to 0.175sin(0.2πt) + 0.175 rad at 82.5 s. Moreover, the
RMSE values are given in Table 5.

Through observing Fig. 12, Fig. 13, and Table 5, the

Table 5. Error of trajectory changed.

Item Error (10−3 rad) RMSE/rad
Frequency change (−0.89, 1.4) 4.014×10−4

Amplitude change (−0.61, 1.3) 2.999×10−4

change of target trajectory frequency and amplitude will
not affect joint tracking performance.

Finally, the experiment of changing the load is carried
out. And the external loads are added in the form of step.
At 80 s, we add the 3 Nm step load to the manipulator joint
system. The experimental results are shown in Fig. 14.

Through Fig. 14(a), we can see that the tracking per-
formance is not affected by the additional load. And, it
can be seen from Fig. 14(b) that the neural network can
respond quickly and maintain the stability of the system
when an external load is added in the step form. The
external load is mainly compensated by the neural net-
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(a) Trajectory chart.

(b) RBFNN output.

Fig. 9. The experimental results without friction model.

work. Therefore, it illustrates that the introduced neural
network method has good compensation performance and
anti-interference ability for the manipulator joint system.
Besides, Fig. 14(c) shows the tracking error after 80 s,
and the range is (−0.0008, 0.0014) rad and the RMSE
is 4×10−4 rad.

Through above comparative experiments, we can ob-
tain that the adaptive RBFNN compensation computed-
torque control with friction model has good trajectory
tracking performance. Compared with the controller with-
out friction model, the trajectory tracking error is reduced
by more than 50%. And, the change of the target trajec-
tory and the external load will not decrease the tracking
performance of the system due to the introduced neural
network method. The neural network method makes the
joint system have better compensation performance and
anti-interference ability, though it may increase the con-
vergence time.

(a) Trajectory chart.

(b) RBFNN output.

Fig. 10. The experimental results with friction model.

Fig. 11. Trajectory error comparison chart.
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(a) Trajectory.

(b) RBFNN output.

(c) Trajectory error.

Fig. 12. Trajectory frequency change.

(a) Trajectory.

(b) RBFNN output.

(c) Trajectory error.

Fig. 13. Trajectory amplitude change.
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(a) Trajectory.

(b) RBFNN output.

(c) Trajectory error.

Fig. 14. Load change.

5. CONCLUSIONS

In this paper, a multi-stage Stribeck friction model com-
bined with cubic polynomial is established for the nonlin-
ear friction in the manipulator joint, and the PSO algo-
rithm is used to identify the parameters in the proposed
friction model. Then, based on the manipulator joint dy-
namic model with friction model and unmodeled dynam-
ics, the adaptive RBFNN compensation computed-torque
controller is designed to realize joint angle trajectory
tracking. In addition, the results of simulation experiment
and contrastive experiments based on the self-developed
joint can demonstrate that the joint dynamic model with
the proposed friction model in this paper can effectively
reduce the tracking error and improve the tracking accu-
racy. Especially, the multi-stage Stribeck friction model
combined with cubic polynomial has higher fitting accu-
racy than using Stribeck model only. And the change of
target trajectory and load will not affect the tracking per-
formance based on the adaptive RBFNN compensation
computed-torque controller, which is useful in practical
engineering. For the next work, we will consider enhance
the research results to the multi-DOF manipulator and a
multi parameter adaptive adjustment of the neural network
controller can be designed.
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