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A Novel Set-valued Observer Based State Estimation Algorithm for Non-
linear Systems
Shuai Zhang, Zi-Yun Wang* � , Yan Wang, and Zhi-Cheng Ji

Abstract: This study considers the state estimation problem for nonlinear models with unknown but bounded
noises. A zonotopic set-valued observer based state estimation algorithm is proposed, and the unknown noise term
is wrapped in a zonotope during each recursive step. The second-order polynomial Stirling interpolation improves
the linearization accuracy and reduces the calculation amount. The method that combines sequence updating and
tightening strips reduces the accumulation of errors and improves the estimation accuracy. Finally, the simulations
on the Van der Pol nonlinear model and spring-mass-damper nonlinear model can visually illustrate the feasible
parameter set variation process and motion trail of the zonotope, which demonstrates the effectiveness and accuracy
of the proposed algorithm.
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1. INTRODUCTION

In recent years, studies on sequence estimation methods
have achieved remarkable results, facilitating the applica-
tion of online modeling and model-based control meth-
ods [1–3]. Among the statistical-based system estima-
tion methods, the Kalman filters are the most well-known
[4,5]. This type of filter or state estimator uses the statis-
tical prior knowledge of system measurement noise and
process noise, such as white noise, to obtain the best es-
timated value by optimizing the minimum function of the
expected estimated deviation value. Moreover, this algo-
rithm includes only a prediction step and update step,
which is convenient for online application. Therefore, this
method is widely used, and its subsequent development
of nonlinear system estimation methods, such as the ex-
tended Kalman filtering [6] and unscented Kalman fil-
tering [7], has extended its application range. However,
these estimation methods have a common feature, i.e.,
they require certain prior knowledge of the system’s pro-
cess noise and measurement noise, or they assume that the
noise meets certain distribution conditions and only then
can the model-based optimization problem reach the op-
timum. However, in practical systems and application en-
vironments, the statistical characteristics of noise are gen-
erally considerably complex and constantly change, ren-
dering their accurate measurement and evaluation diffi-

cult. The statistical characteristics of noise are assumed to
be inconsistent with the actual system, which in turn will
cause deviations in the filter, and owing to the noise sen-
sitivity of the Kalman filter, the estimated deviation will
be amplified and the estimator will become unstable as
well. Although several adaptive mechanisms have been in-
corporated into the Kalman filter [8], the shortcomings of
the Kalman filter’s dependence on statistical characteris-
tics and strong sensitivity have led to its application limi-
tations.

Although the statistical characteristics of noise in ac-
tual systems are generally difficult to predict, the noise
can be assumed to be bounded. The set-membership fil-
ter is based on bounded noise assumptions and provides a
feasible bound for the state of the system by calculating
the feasible set [9]. In this manner, the estimation result
ceases to be a value and becomes a feasible set of param-
eters. This feasible set describes all the possible values of
the system ensuring that the true value must be included in
the set. The feasible set of parameters can be represented
by different standard geometries, such as ellipsoid [10,11],
interval [12], orthotope [13], parallelotope [14], zonotope
et al. [15–17]. Among these, the method using the ellip-
soid as the feasible set of parameters is the most widely
used because of its invariance under the affine transforma-
tion and the significance of the covariance of the envelope
matrix to facilitate optimization.
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By combining Kalman filter and set-membership fil-
ter, Scholte et al. proposed extended set-membership fil-
ter (ESMF) [18]. Different from the Kalman filter, ESMF
adopts Taylor expansion to linearize nonlinear systems
and uses linearization errors as virtual process noises.
However, disadvantages such as poor numerical stabil-
ity and difficult selection of filter parameters exist. Since
then, using the set membership identification method to
process the state estimation [19] and model predict con-
trol [20] of the nonlinear system have received wide at-
tention. A factorization-based nonlinear adaptive extended
set-membership filter (AESMF) has been proposed [21].
In this method, each envelope matrix in the algorithm is
expressed and updated in the form of decomposition. Fur-
thermore, the filter parameters can be adaptively selected.
By combining the sequence update and selection update
strategies of observations, the stability of the algorithm is
strengthened and the selection update reduces the compu-
tational complexity of the algorithm [22]. As the above
methods adopt the Taylor expansion method for the pro-
cess of linearizing the nonlinear system, certain disadvan-
tages arise. For example, for strongly nonlinear systems,
ESMF can cause large linearization errors, making it dif-
ficult to stabilize the filter. Furthermore, Jacobian matri-
ces and their power calculations are complex, error-prone,
and the points of the function are differentiable, thereby
increasing the difficulty in using ESMF. Simultaneously,
the linearization error boundary determined by the interval
analysis method is excessively conservative. In addition,
the solution of complex differential equations obtained by
minimizing the volume or trace of the ellipsoid in the mea-
surement update obstructs the implementation of the algo-
rithm. A method using interpolation linearization is pro-
posed [23], and the measurement update is relaxed up to
the intersection of the strips while improving the method
of iteratively determining the intersection [24].

Differing from the previously proposed algorithms, this
paper uses a zonotope as the parameter feasible set. A cen-
tral difference zonotopic set-valued observer based state
estimation algorithm is proposed. The main contributions
of this paper are listed as follows: 1) The second-order
polynomial Stirling interpolation formula is used to make
the nonlinear error smaller. Reduce the complexity of the
algorithm without determining Jacobian and Hessian ma-
trices; 2) when solving the virtual process noise, it is not
necessary to repeatedly use the box to wrap the ellipsoid
and vice versa. The error range can be locked directly
through the vertices of the zonotope and the conservative-
ness of the algorithm is thus reduced; 3) in the process
of sequence updating, constraints are optimized to reduce
the impact of error accumulation on the algorithm and im-
prove estimation accuracy. And the dimensionality reduc-
tion of singular value decomposition (SVD) of zonotope
reduces the computational complexity.

Briefly, the rest of this paper is organized as fol-

lows: Section 2 presents the system description. Section
3 presents a central differential zonotope set-membership
filter for state estimation. Section 4 provides the simu-
lations to illustrate the accuracy and effectiveness of the
proposed algorithm. Section 5 gives the conclusions.

2. SYSTEM DESCRIPTION

Firstly, certain preliminary notations are introduced. An
interval [a,b] is the set {x : a6 x6 b}. B = [−1,1] repre-
sents the unitary interval, and a box of order l is denoted
as Bl that is composed by l unitary intervals [25]. The no-
tation f (i) is the derivative of order i, HT represents the
transpose of matrix H, and H i,T represents the transpose of
matrix H i. ‖ f (x)‖1 denotes the 1 norm of function f (x), If
function f (x) is a vector f (x) = [x1,x2, · · · ,xn], 1 norm of
f (x) is |x1|+ |x2|+ · · ·+ |xn|. If function f (x) is a matrix,

1 norm of f (x) is max
1≤ j≤n

n
∑

i=1
|xi j|, where n is the number of

columns and xi j represents the element in the ith row and
jth column.

Definition 1: The Minkowski sum of two zonotopes is
defined as Ψs = {xxx : xxx = xxx1 +xxx2,xxx1 ∈ Z1,xxx2 ∈ Z2} and it
can also be expressed as Ψs = Z1⊕Z2.

Definition 2: Z = p⊕HBl = {p+Hz : z∈Bl}, simpli-
fied as Z(p,H), is defined as a zonotope of order l, where
p ∈Rn is the center of the zonotope and matrix H ∈Rn×l .

Consider an uncertain nonlinear discrete-time system,

xxxk+1 = fff (xxxk)+wwwk,

yyyk = qqq(xxxk)+vvvk, (1)

where xxxk+1 ∈ Rnw is the state of the system and yyyk ∈ R is
the measured output vector. The vector wwwk ∈ Rnw repre-
sents the process noise and the vector vvvk ∈Rnv is the mea-
surement noise. fff (·) and qqq(·), assumed as second-order
reachable functions in ESMF and its extension algorithms,
are known as nonlinear functions. Assuming that xxx0 ∈ Z0,
and process noise and measurement noise terms satisfy
wwwk ∈ Z(0,rrrw) and vvvk ∈ Z(0,rrrv), respectively.

3. CENTRAL DIFFERENCE ZONOTOPIC
SET-VALUED OBSERVER

During the iterative update process, errors will accumu-
late as the number of iterations increases, and in the se-
quence update, if only the last step of the zonotope is con-
sidered, the error will be amplified. Therefore, to avoid the
decrease in estimation accuracy caused by the accumula-
tion of errors, the intersection of the strip and zonotope
should be tightened first, and all zonotopes in the previous
step need to be considered when updating in the present
step. Next we consider the support planes of the zonotope
and propose a method for strip tightening in the observer.
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3.1. Nonlinear model linearization
As Jacobian matrix and Hessian matrix of Taylor se-

ries causes computational complexity, polynomial inter-
polation can be used to approximate nonlinear functions
in an interval. Furthermore, most interpolation formulas
do not require differentiation, thus it is considerably eas-
ier to obtain approximate values. Moreover, the accuracy
of the interpolation formula can be set higher than the Tay-
lor series of the same order by setting an appropriate step
size. After transformation [26], the Stirling interpolation
formula for the function fff (xxx) centered on the point xxx = x̄xx
can be transformed into

fff (xxx)≈ fff (x̄xx)+ fff
′
(x̄xx)(xxx− x̄xx)+

fff
′′
(x̄xx)

2!
(xxx− x̄xx)2

+

(
fff (3)(x̄xx)

3!
h2 +

fff (5)(x̄xx)
5!

h4 + · · ·
)
(xxx− x̄xx)

+

(
fff (4)(x̄xx)

4!
h2 +

fff (6)(x̄xx)
6!

h4 + · · ·
)
(xxx− x̄xx)2,

(2)

where h denotes a selected interval length.
Assuming that only the second-order polynomial Stir-

ling interpolation formula is considered and extended to
the high-dimensional case, the Stirling interpolation for-
mula at xxx = x̄xx of fff (xxx) can be expressed as

fff (xxx) = fff (x̄xx)+ D̃∆x fff +
1
2!

D̃2
∆x fff +H.O.T., (3)

where H.O.T. is the higher-order co-item of the Stirling
interpolation formula of fff (·); the difference operators can
be expressed as follows:

D̃∆x fff =
1
h

( n

∑
i=1

∆xiµiδi

)
f (x̄)f (x̄)f (x̄), (4)

D̃2
∆x fff =

1
h2

( n

∑
i=1

∆x2
i δ 2

i

+
n

∑
i=1

n

∑
q=1,q6=i

∆xi∆xq(µiδi)(µqδq)

)
f (x̄)f (x̄)f (x̄), (5)

where µi is the i-th average operator and δi is the i-th dif-
ference operator. And the parameters δi f (x̄)f (x̄)f (x̄),µi f (x̄)f (x̄)f (x̄) and
the first-order polynomial Stirling interpolation formula
can be found in [27]. For the convenience of calculation,
the second-order Stirling interpolation formula is simpli-
fied as

f (x)f (x)f (x)≈ fff (x̄̄x̄x)+ fff
′
DD(x̄)(xxx− x̄̄x̄x)+

fff
′′
DD(x̄̄x̄x)
2!

(xxx− x̄̄x̄x)2, (6)

where

fff
′
DD(x̄̄x̄x) =

fff (x̄̄x̄x+heeei)− fff (x̄̄x̄x−heeei)

2h
,

fff
′′
DD(x̄̄x̄x) =

fff (x̄̄x̄x+heeei)+ fff (x̄̄x̄x−heeei)−2 f (x̄)f (x̄)f (x̄)
h2 .

Expanding fff (xxxk) in (1) into the form of (6) at state x̂̂x̂xk

fff (xxxk)≈ fff (x̂̂x̂xk)+FFF
′
k(xxxk− x̂̂x̂xk)+FFF

′′
k(xxxk− x̂̂x̂xk)

2, (7)

where

FFF
′
k =

1
2h


( fff (x̂̂x̂x1+

k )− fff (x̂̂x̂x1−
k ))T

( fff (x̂̂x̂x2+
k )− fff (x̂̂x̂x2−

k ))T

...
( fff (x̂̂x̂xn+

k )− fff (x̂̂x̂xn−
k ))T


T

,

FFF
′′
k =

1
2h2


( fff (x̂̂x̂x1+

k )+ fff (x̂̂x̂x1−
k )−2 fff (x̂̂x̂x1

k))
T

( fff (x̂̂x̂x2+
k )+ fff (x̂̂x̂x2−

k )−2 fff (x̂̂x̂x2
k))

T

...
( fff (x̂̂x̂xn+

k )+ fff (x̂̂x̂xn−
k )−2 fff (x̂̂x̂xn

k))
T


T

,

and x̂̂x̂xi+
k = x̂̂x̂xk +heeei, x̂̂x̂xi−

k = x̂̂x̂xk−heeei, x̂̂x̂xi
k = x̂̂x̂xk.

3.2. Bounded linearization error
Assuming that f (x)f (x)f (x) is the difference of convex func-

tion on a convex set S, then there are two convex functions
g1(xxx) and g2(xxx) such that f (x)f (x)f (x) = g1(xxx)− g2(xxx). The con-
vex hypothesis of f (x)f (x)f (x) is easy to satisfy, because f (x)f (x)f (x) is a
second-order continuous differentiable function, and each
continuous function can be approximated by the function
with arbitrary precision [24].

Assuming that ∂ 2 fff (xxx)
∂xxx2 > −2αI,α > 0 and selecting

g1(xxx) = fff (xxx)+αxxxTxxx, g2(xxx) = αxxxTxxx. The Stirling interpo-
lation formula for the functions g1 and g2 at the current
state point xxxk can be expressed as

g1(xxxk)> g1(x̂̂x̂xk)+G
′
1,k(xxxk− x̂̂x̂xk)+G

′′
1,k(xxxk− x̂̂x̂xk)

2, (8)

g2(xxxk)> g2(x̂̂x̂xk)+G
′
2,k(xxxk− x̂̂x̂xk)+G

′′
2,k(xxxk− x̂̂x̂xk)

2. (9)

Define

fff L(xxx) := fff (x̄̄x̄x)+ fff
′
DD(x̄)(xxx− x̄̄x̄x)+

fff
′′
DD(x̄̄x̄x)
2!

(xxx− x̄̄x̄x)2,

(10)

ḡ1(xxxk) := g1(x̂̂x̂xk)+G
′
1,k(xxxk− x̂̂x̂xk)+G

′′
1,k(xxxk− x̂̂x̂xk)

2,

(11)

ḡ2(xxxk) := g2(x̂̂x̂xk)+G
′
2,k(xxxk− x̂̂x̂xk)+G

′′
2,k(xxxk− x̂̂x̂xk)

2.

(12)

The linearization error e(k) = fff (xxxk)− fff L(xxxk) = g1(xxxk)−
g2(xxxk)− fff L(xxxk), and ḡ1 − g2 − fff L is a concave function
while g1− ḡ2− fff L is a convex function. Thus, the range of
e(k) is[

min
xxxk∈VS
{ḡ1(xxxk)−g2(xxxk)− fff L(xxxk)},

max
xxxk∈VS
{g1(xxxk)− ḡ2(xxxk)− fff L(xxxk)}

]
, (13)
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where VS involves the vertices of the feasible parameter
set (FPS), and then the linearization error is wrapped with
the minimum volume zonotopeZ(aaae,rrre), where

aaae = (eeek,max +eeek,min)/2,

rrre = (eeek,max−eeek,min)/2.

Then the total process noise is the Minkowski sum of the
linearization noise and process noise:

Z(aaae,rrre)⊕Z(000,rrrw) = Z(aaae, [rrre +rrrw]). (14)

3.3. Time update
Assuming that the feasible parameter set at step k is
Zk = pk⊕HkBl . According to the zonotope formula, the
vertices of the FPS can be obtained, and the predicted
zonotopeZ̃k = f (pk)⊕H̃kBl can be obtained by predicting
the vertices and center point of the zonotope, respectively.
Then the time updated zonotope is the Minkowski sum of
the total process noise and predicted zonotope

Zk+1,k = pk+1,k⊕Hk+1,kBl+rew

= f (pk)⊕ [H̃k,rrre +rrrw]Bl+rew , (15)

where rew is the number of columns in the matrix rrre +rrrw.

3.4. Observation update
The function qqq(·) of (1) can be approximated by the

first-order polynomial Stirling interpolation formula at a
predicted state x̂̂x̂xk+1,k as

qqq(xxxk+1,k) = qqq(x̂̂x̂xk+1,k)+QQQ
′
k+1(xxxk+1,k− x̂̂x̂xk+1,k)+oook,

(16)

where

QQQ
′
k+1 =

1
2h


(qqq(x̂̂x̂x1+

k+1,k)−qqq(x̂̂x̂x1−
k+1,k))

T

(qqq(x̂̂x̂x2+
k+1,k)−qqq(x̂̂x̂x2−

k+1,k))
T

...
(qqq(x̂̂x̂xn+

k+1,k)−qqq(x̂̂x̂xn−
k+1,k))

T


T

, (17)

and x̂̂x̂xi+
k+1,k = x̂̂x̂xk+1,k + heeei, x̂̂x̂xi−

k+1,k = x̂̂x̂xk+1,k − heeei, x̂̂x̂xi
k+1,k =

x̂̂x̂xk+1,k and oook is the linearization error.
Similarly, according to the processing described in the

first few sections, the total measurement noise can be ob-
tained as

Z(aaao,rrro)⊕Z(000,rrrv) = Z(aaao, [rrro +rrrv]), (18)

where Z(aaao,rrro) is the linearization error of the measure-
ment equation, and Z(000,rrrv) is the input error of the mea-
surement equation.

The observation set can be expressed as

Sk+1 =

{
xxx : |yyyk+1−qqq(x̂̂x̂xk+1,k)

+Q′Q′Q′k+1(x̂̂x̂xk+1,k−xxx)|6 rrro +rrrv

}
. (19)

Equation (19) can be viewed as the intersection of m
independent strips

m⋂
i=1

Sk+1,i =
m⋂

i=1

{
xxx : |ya

k+1,i−QQQ
′
k+1,ixxx|6 ra

i

}
, (20)

where ya
k+1,i and ra

i are the i-th components of yyyk+1 −
qqq(x̂̂x̂xk+1,k)+QQQ

′
k+1x̂̂x̂xk+1,k and rrro +rrrv, respectively.

Thus, the feasible set of parameters is derived as

Zk+1 = Zk+1,k
⋂
(

m⋂
i=1

Sk+1,i). (21)

As
⋂m

i=1 Sk+1,i is a polyhedron, it is usually difficult
to solve the intersection of a polyhedron and zonotope.
Equation (21) is decomposed into the intersection of a
zonotope with m strips. Initialize iteration zonotope as in
(15), where p0 = pk+1,k, H0 = Hk+1,k.

Assuming that the i-th strip is
{

xxx :
∣∣cTxxx−d

∣∣6 σ
}

.
Then the iterative formulas are

v( j) =


pi−1 +

(
d− cT p
cTH i−1

j

)
H i−1

j ,

if 16 j 6 r and cTH i−1
j 6= 0,

pi−1, otherwise,

(22)

T ( j) =


[
T j

1 T j
2 . . .T j

r

]
, if 16 j6r and cTH i−1

j 6= 0,

H i−1, otherwise,
(23)

T j
l =


H i−1

l −
(

cTH i−1
l

cTH i−1
j

)
H i−1

j , if l 6= j,(
σ

cTH i−1
j

)
H i−1

j , if l = j,

(24)

where r is the number of columns in the matrix H i−1 and

j∗ = arg min
06 j6r

2nw
√

det(T ( j)T ( j)T)

= arg min
06 j6r

det
(
T ( j)T ( j)T) . (25)

Then pi = v( j∗),H i = T ( j∗) and Zk+1 = pm⊕HmBl+rew .
The specific process of central difference zonotopic

set-valued observer based state estimation algorithm
(CDZSVO) is given in Algorithm 1.

4. NUMERICAL EXAMPLES

Example 1: The following Van der Pol nonlinear
discrete-time system is studied [28].[

x1,k+1

x2,k+1

]
=

[
x1,k +hx2,k

x2,k +hδ2,k

]
+wwwk,
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Algorithm 1: Framework of the CDZSVO algorithm

Input: The initial zonotopeZ0 = p0⊕H0Bl and system
output yk.

Output: The parameter estimate xxxk+1 and final
zonotopeZk = pk⊕HkBl

1 k← 0, L← Constant;
2 Initialization: Selected initial length h, Z0 = p0⊕H0Bl ,

initial state xxx0 = p0;
3 for k = 1 : L do
4

5

6

7

8

9

10

11

Linearize the function fff (·) at the state point xxxk; 
Set the DC functions g1(xxx), g2(xxx), and linearize to 
obtain ḡ1(xxx), ḡ2(xxx);
According to (13), the bounded linearization error is 
obtained;
According to (14), calculate the total process noise;
Update time and obtain
Zk+1,k = pk+1,k ⊕Hk+1,kBl+rew ;
Obtain the linearization error of the function qqq(xxx) 
according to the same method;
Observation update: Initialize iteration zonotope
p0 = pk+1,k, H0 = Hk+1,k;
for j = 1 : m do

12 Obtain the i-th strip from Eq.(20) and calculate
the support planes of the zonotope:
qu,0 = cT p0 +‖H0,Tc‖1,ql,0 = cT p0−‖H0,Tc‖1;

13 if y+σ > qu,0 > y−σ > ql,0 then
14 y = qu,0+y−σ

2 ,σ =
qu,0−y+σ

2 ;
15 else if y+σ > qu,0 > ql,0 > y−σ then
16 y = qu,0+ql,0

2 ,σ =
qu,0−ql,0

2 ;
17 else if qu,0 > y+σ > ql,0 > y−σ then
18 y = y+σ+ql,0

2 ,σ =
y+σ−ql,0

2 ;
19 end
20 end
21 end
22 if j > 1 then
23 for i = 1 : j do
24 Calculating the support planes of the

zonotope: qu,i = cT pi +‖H i,Tc‖1,ql,i =

cT pi−‖H i,Tc‖1;
25 if y+σ > qu,i > y−σ > ql,i then
26 y = qu,i+y−σ

2 ,σ =
qu,i−y+σ

2 ;
27 else if y+σ > qu,i > ql,i > y−σ

then
28 y = qu,i+ql,i

2 ,σ =
qu,i−ql,i

2 ;
29 else if

qu,i > y+σ > ql,i > y−σ then
30 y = y+σ+ql,i

2 ,σ =
y+σ−ql,i

2 ;
31 end
32 end
33

34

35

36

end
end

end
According to (22), (23), (24), and (25), 
obtain the i-th iteration
zonotopepi = v( j∗),H i = T ( j∗);

37 end
38 end
39 Using SVD to reduce the dimension of the zonotope;
40 return k-th zonotope Zk = pk⊕HkBl and the state xxxk+1;

yyyk =

[
0 1
1 0

][
x1,k

x2,k

]
+vvvk, (26)

where δ2,k = −9x1,k + µ
(
1− x2

1,k

)
x2,k. The initial con-

ditions are h = 0.02, µ = 2, xxx0 = (1,2)T, p0 = (1,2)T,
and H0 = diag(0.1,0.1). The process and measurement
disturbances are uniformly distributed and |wk,i| 6 0.01,
|vk,i|6 0.001.

In comparison to the central difference set-membership
filtering (CDSMF) algorithm that is described in [23], the
simulation results are shown in the Figs. 1-3.

• Fig. 1 shows the state trajectories and changes in the
FPS of the two algorithms. As can be seen from the
Fig. 1, both algorithms track the true trajectory well.

Fig. 1. Comparison of state trajectories and feasible pa-
rameter sets between CDZSVO and CDSMF algo-
rithms.
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Fig. 2. Comparison of guaranteed bounds and centers of
state x1 between CDZSVO and CDSMF algo-
rithms.
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Fig. 3. Comparison of guaranteed bounds and centers of
state x2 between CDZSVO and CDSMF algo-
rithms.

It should be noted that the state trajectory is only a
mathematical probability, not a real motion trajectory.
In the upper right corner, lower right corner, and mid-
dle position of Fig. 1, an enlarged graph of the FPS at
time k = 200, time k = 1, and random time is given.
The FPS of CDZSVO is always smaller than the one
of CDSMF, which illustrates that CDZSVO is less
conservative than CDSMF.

• In Figs. 2 and 3, the state boundary of both algo-
rithms can contain true values. However, compared
with CDSMF, the CDZSVO proposed in this paper
can obtain tighter boundaries that can be also verified
from Fig. 1. Again, the conservative improvement of
this algorithm is demonstrated, showing the superior-
ity of this algorithm.

Example 2: A spring-mass-damper nonlinear system
estimation example in [18,22,23] is also given to illustrate
the effectiveness of the proposed algorithm and its dia-
gram is shown as Fig. 4. The discrete-time system of the
Duffing equation can be expressed as[

x1,k+1

x2,k+1

]
=

[
x1,k−1 +∆T x2,k−1

x2,k−1 +∆T δ2,k−1

]
+wwwk,

yyyk =
[

1 0
][ x1,k

x2,k

]
+vvvk, (27)

where δ2,k−1 =−k0x1,k−1(1+kdx2
1,k−1)−cx2,k−1. The pro-

cess and measurement disturbances are uniformly dis-
tributed. For the simulations to follow the system param-
eters, the initial setting parameters are shown in Table 1
[18]. In comparison to ESMF that is described in [18] and
CDSMF that is described in [23], the results are shown in
the Figs. 5-10.

m

x

c

2

0 (1 )
d

k k x

Fig. 4. The spring-mass-damper system.

Table 1. Parameters of the spring-mass-damper nonlinear
system.

Parameter Value
∆T 0.1
kd 3
k0 1.5
c 1.24
xxx0 (1,2)T

wk 0.002
vk 10.001
p0 (1,2)T

H0 diag(0.06,0.06)
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Fig. 5. Comparison of state trajectories between
CDZSVO, CDSMF and ESMF algorithms.

• As can be seen from Fig. 5, all three algorithms can
track the true value trajectory very well. Although
CDZSVO and CDSMF did not work well at the be-
ginning of the algorithm, they still converged to the
true value at the end. Fig. 6 shows the changes of the
feasible parameter set of CDZSVO and CDSMF. The
feasible parameter sets of the two algorithms always
wrap the true value, and the feasible parameter set of
CDZSVO is smaller than CDSMF.
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Fig. 6. Comparison of feasible sets between CDZSVO and
CDSMF algorithms.
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Fig. 7. Comparison of state estimation of x1 between
CDZSVO, CDSMF and ESMF algorithms.

• Figs. 7 and 8 show the variation curves of the cen-
ter estimates and true values of the three algorithms.
Although the CDZSVO and CDSMF center estimates
are the same, the performance of the three algorithms
is similar irrespective of state x1 or x2.
• The guaranteed bounds for states x1 and x2 are shown

in Figs. 9 and 10. It can be seen that the state bounds
of the three algorithms can contain true value; how-
ever, CDZSVO is more compact than CDSMF and
ESMF, indicating that the algorithm proposed in this
paper has made a large improvement on conservative-
ness.
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Fig. 8. Comparison of state estimation of x2 between
CDZSVO, CDSMF and ESMF algorithms.
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Fig. 9. Comparison of guaranteed bounds of state x1 be-
tween CDZSVO, CDSMF and ESMF algorithms.
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Fig. 10. Comparison of guaranteed bounds of state x2 be-
tween CDZSVO, CDSMF and ESMF algorithms.
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5. CONCLUSIONS

A new set-member filtering method is proposed to solve
the state estimation problem of unknown but bounded
noise nonlinear systems. First, the nonlinear system is lin-
earized by the second-order polynomial Stirling interpola-
tion to further reduce linearization error. Simultaneously,
the uncertainty caused by the linearization error is consid-
ered, and its boundary is determined by the difference of
convex function. Next, the observation set is decomposed
into the intersection of multiple bands and a serialized up-
date method is used to determine the FPS. To avoid errors
caused by iteration, a method of tight strips and zonotope
is proposed. To avoid greater computational complexity,
using SVD technology to reduce the dimensionality of
zonotopes. Finally, the performance advantages of the pro-
posed algorithm in point estimation and boundary estima-
tion are verified by simulation.

The proposed algorithms can also be further applied to
combine with the robust control algorithms and to solve
the state estimation of switched systems [29–31] and other
nonlinear models [32,33], and future research work also
includes exploring high-performance delimitation meth-
ods, and experimental verification of the filtering algo-
rithm [34,35].
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