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Online Gait Generation Method Based on Neural Network for Humanoid
Robot Fast Walking on Uneven Terrain
Haoran Zhong, Sicheng Xie, Xinyu Li, Liang Gao* � , and Shengyu Lu

Abstract: Advanced humanoid robots highlight the ability of fast walking and adaptability to uneven terrain. How-
ever, owing to the complexity in walking dynamics, disturbances introduced by terrain height variations can ad-
versely affect the bipedal walking performance. Moreover, to generate periodic gaits, most methods require to solve
the gait generation problem by using nonlinear optimization approaches, resulting in difficulties for online control.
To solve this problem, this paper proposes an online gait generation method to find periodic gaits for fast walking
on uneven terrain by using a pre-trained neural network. First, to enhance the terrain adaptability, this paper pro-
poses an improved walking pattern that allows the robots to skip the last single support phase. Such improvement
enlarges the feasible step region when stepping down. A compensation strategy is also proposed to reduce the ve-
locity tracking error. Then the improved whale swarm algorithm (IWSA) is applied to generate various datasets that
cover the ranges of target velocities and terrain height variations. A back-propagation (BP) network is employed
to train these datasets offline to learn the gait dynamics, which is further used to generate the optimal trajectories.
Simulation results suggest that, compared with the current methods, the proposed method can solve the walking
return map in a short time, with improvements in both maximum walking speed and terrain adaptability.
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1. INTRODUCTION

In recent years, humanoid robots have been receiving
increasing attention. Various robots have been success-
fully developed such as Atlas [1], DRC-Hubo [2], and
DURUS [3]. These robots can accomplish diverse tasks
and even remain stable when walking over snow-covered
ground.

Inspired by previous research, we intend to develop
a humanoid robot with high mobility, which demands
both fast walking velocity and high terrain adaptability.
Moreover, for online applications, the robot needs to cope
with sudden changes in target velocity and terrain situa-
tion, therefore requiring a rapid gait generation in real-
time. However, despite the progress in both theoretical
research and application, online trajectory generation for
fast bipedal walking over uneven terrain remains a tough
task owing to the complexity in walking dynamics, the
modeling errors in the real systems [4–6], and the dis-
turbances introduced by the terrain height variations [7].
Moreover, the solving of gait generation problem brings

considerable computational burden, which can deterio-
rate the robot response speed [8,9]. Although much ef-
forts have been made to improve walking performance
[7,10–13], it is still a challenging work to achieve both
high mobility and flexibility in bipedal robots. Based on
current researches, regular robots can barely reach a 2 m/s
walking over a flat ground even under the simulation en-
vironment [11,15–17], which is far slower than the human
of 4.97 m/s [18]. Such performance cannot meet our re-
quirements. Therefore, in this study, we aim to develop an
online gait generation method that can realize fast bipedal
walking over uneven terrain. Based on our previous work
in compliant control [19,20], we plan to use the spring-
loaded inverted pendulum (SLIP) model to generate the
trajectories.

The SLIP model is one of the most well-studied tem-
plates developed to describe fast and compliant loco-
motion [21–26]. It can effectively produce the center of
mass (CoM) trajectories and ground reaction force (GRF)
which are similar to those observed in human gaits [10,
27,28]. Moreover, compared to the linear inverted pendu-

Manuscript received February 5, 2021; revised April 25, 2021; accepted May 12, 2021. Recommended by Associate Editor Joonbum Bae
under the direction of Editor Euntai Kim. This work was supported by the National Natural Science Foundation of China (grant number
51721092), and the program for the HUST Academic Frontier Youth Team (grant number 2017QYTD04).

Haoran Zhong, Sicheng Xie, Xinyu Li, and Shengyu Lu are with the State Key Laboratory of Digital Manufacturing Equipment and Tech-
nology, the School of Mechanical Science and Engineering, Huazhong University of Science and Technology (HUST), 1037, Luoyu Road,
Hubei, Wuhan, China (e-mails: {1520098925, 592247127}@qq.com, lixinyu@hust.edu.cn, 1258206641@qq.com). Liang Gao is with the
State Key Laboratory of Digital Manufacturing Equipment and Technology, the School of Mechanical Science and Engineering, Huazhong
University of Science and Technology (HUST), 1037 Luoyu Road, Hubei,Wuhan, China (e-mail: gaoliang@mail.hust.edu.cn).
* Corresponding author.

c©ICROS, KIEE and Springer 2022

http://www.springer.com/12555
https://orcid.org/0000-0002-1485-0722


942 Haoran Zhong, Sicheng Xie, Xinyu Li, Liang Gao, and Shengyu Lu

lum model (LIPM) that ignores the leg compliance, the
utilization of the SLIP model improves the robot perfor-
mance in terrain adaption, impact absorption, and energy
conservation at high speed [23,28–31]. With an added
spring-like leg at the double support phase, Geyer et al.
[23] extended this model to the bipedal walking field,
that is, the Dual-SLIP model, and presented the possibil-
ity of analyzing both walking and running dynamics on
the same basis. To cope with the uneven terrain, strategies
that allow the robot to adjust the leg length have been pro-
posed to compensate for the terrain variations [12,32,33].
However, these techniques inevitably introduce additional
control variables that need to be determined. Some re-
searchers consider the terrain height variations as distur-
bances [11,13], which are not appropriate for large ter-
rain height variations. A more effective way is to consider
the terrain condition when developing the dynamic model
and solve the gait-finding problem [12,33]. In fact, con-
tinuous walking is normally modeled by the Poincare re-
turn map and discretized into numbers of single gait cy-
cle [11,13,27,34]. During a cycle, current methods require
the robot to experience single support, double support, and
signal support phases in sequence and return to the initial
posture [11,12,35,36]. Simple and effective as it is, such
strategy also limits the feasible step region. For example,
when stepping down, the robot cannot enter the last single
support phase if the step length is too short, leading to an
infeasible gait. Such limitation can bring negative effects
to the gait finding procedure.

As discussed before, the computational burden is an-
other issue that exists in most current methods. After the
parametric modeling, the gait generation task is generally
formulated as an optimization task with a group of un-
solved control variables, such as touch-down angle and
leg stiffness [30,37]. Some researchers used the evolution-
ary algorithm, e.g., differential evolution (DE) algorithm,
genetic algorithm, and particle swarm optimization (PSO)
algorithm, to optimize the parameters [38–44]. However,
these methods require a long computing time that makes
it difficult to realize an online tuning for robots. To re-
duce computing time, the most popular techniques are nu-
merical methods, such as the fmincon function in Mat-
lab/Optimization Toolbox [11–13,30]. These methods suf-
fer from poor searching ability, and a lower cost time
is not guaranteed. To realize online generation, tabular
methods were proposed for fast gait generation [45,46].
The required parameters can be optimized off-line and re-
stored in the look-up table. Unfortunately, the increase of
input variables leads to an exponential growth of the ta-
ble, which limits its practical application. Artificial neural
network shows a strong ability of nonlinear information
processing, and is gradually applied in bipedal walking
[47–49]. Xin et al. [50] therefore attempted to solve the
problem by using an artificial neural network to train the
optimized datasets for running. The results suggest that

the trained neural-network-based generator can effectively
realize online gait generation for fast running with satis-
fying accuracy. However, the biped walking case was not
discussed. Capi et al. [8] applied a Radial Basis Function
Neural Network (RBFNN) based on a preset step length
and step time, which is relatively not flexible. Nonethe-
less, neural networks have proven to be effective tools for
realizing online gait generation [51–56].

To meet our requirements, we propose an improved
neural-network-based gait generation method. To ame-
liorate the walking performance for uneven terrain, an
improved walking pattern that allows the robot to au-
tonomously skip the last single support phase is pro-
posed. Such enhancement removes the step length restric-
tion when stepping down. A velocity compensation strat-
egy is also proposed for accurate speed tracking. Differs
from previous researches that used fixed leg stiffness dur-
ing a single step cycle [11,12,57], we allow the robot to
adjust leg stiffness when entering the next phase. To re-
alize online generation, a back propagation (BP) neural
network is employed to learn the walking dynamics based
on target and initial states, including both robot posture
and velocity. The training datasets are generated by using
the improved whale swarm algorithm (IWSA) [58], which
is a powerful metaheuristic algorithm developed for the
optimization task. The validity of the proposed method is
confirmed by simulation experiments, in which both on-
line and off-line walking performances in terms of max-
imum speed, tracking accuracy, and computing time are
evaluated.

The contributions of this work include
1) Propose an improved walking pattern with a velocity

compensation strategy that reduces speed tracking error
and enlarges the feasible step region when stepping down.

2) Apply the IWSA algorithm to generate optimized
gait datasets of high quality.

3) Employ a BP network-based control framework to
realize online gait generation.

The remainder of this paper is organized as follows:
The improved walking pattern with velocity compensa-
tion strategy is proposed in Section 2. The data generation
and training procedures are presented in Section 3. Sim-
ulation experiments are conducted to verify the proposals
in Section 4. Finally, the conclusion and future work are
provided in Section 5.

2. TRAJECTORY OPTIMIZATION FOR
UNEVEN TERRAIN

2.1. CoM trajectory implementation based on Dual-
SLIP model

In this section, an improved walking pattern is proposed.
First, the Dual-SLIP model considering the terrain height
variations is developed. The proposed walking pattern is
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then presented, and the gait finding issue is further con-
verted to an optimization problem.

2.1.1 Improved walking pattern for uneven terrain
The conventional Dual-SLIP model consists of three

phases [11], that is, the first single support phase SSA, the
double support phase DS and the second support phase
SSB, that is, the three-phase walking pattern, as shown in
Fig. 1(a). In this study, 2D gait dynamics are developed.
By considering the terrain height variations ∆h, the CoM
trajectory follows the basic spring-mass dynamics as

mp̈m = mg+∑
i, j

k j
i (l0 +∆h−‖li‖)êx,z, (1)

where m is the mass, k j
i is the spring stiffness, in which

i ∈ {SSA, DS, SSB} represent the phase index, respec-
tively, and j ∈ {A, B} indicates the support and swing
legs at the SSA phase, respectively. l0 is the rest length of
the legs. êx,z = [0, 1] indicates the unit vectors in vertical
and horizon directions. pm = [mx, mz] is the CoM position,
where mx and mz represent the coordinates at correspond-
ing axes. g is the gravity vector. li denotes the leg vector.
Both two legs contact the ground during the DS phase,
whereas legs A and B contact the ground solely during
SSA and SSB phases, respectively. Based on Fig. 1(a),
xTD and θ represent the touchdown position and angle,
respectively.

Generally, a single step sequentially experiences the
three phases that are divided and triggered by two events:
touch down (TD) and lift off (LO) events. The TD event
suggests that the swing leg B contacts the ground and
the walking state is transmitted from SSA to DS phase,
whereas the LO event indicates that leg A lifts off from
the ground and the walking state is transmitted from DS to
SSB phase. Conventional methods require the robot to ex-
perience all three phases to perform a complete step, and
a single gait cycle finishes when the CoM reaches the top

(a) (b)

Fig. 1. Walking pattern. (a) Conventional walking pattern
that experiences 3 phases; (b) Proposed walking
pattern that allows skipping SSB phase to enhance
flexibility.

of the contact point (that is, mx = xT D) [11,12,35]. How-
ever, for certain cases such as ∆h < 0, LO event may not
occur during the entire gait cycle. This condition occurs
when the step length xT D is too short under a certain ∆h,
as shown in Fig. 1(b), which can be described as follows:

‖lA‖=
√
(‖lB‖−∆h)2 + xT D

2 < l0, (2)

where ‖lA‖ and ‖lB‖ represents the leg length of leg A
and leg B. Normally, conventional methods consider such
condition as an infeasible gait. However, the neglection of
such condition can remarkably narrow the feasible region
of step length, which brings a negative effect to the flexi-
bility in robot walking. The limitation in the step region is
expressed as

xT D >
√

l02− (‖lB‖−∆h)2. (3)

To remove such restriction, this study proposes a more
flexible model that allows the robot to skip the SSB phase
and moves to the next gait cycle. In this case, the robot
only experiences two phases: SSA and DS phase, that
is, the two-phase pattern. The robot can autonomously
choose to experience three or two phases based on the cur-
rent condition. The improved walking pattern is therefore
developed.

The state at each phase is defined as

SSA = {(pm, ṗm) | ṁz < 0, mz > zT D}, (4)

where zT D = l0 sin(θ)+∆h indicates the desired height of
CoM when TD event occurs, and the beginning condition
is ṁz0 = 0, mz0 = l0. The other two phases can be similarly
defined as

DS = {(pm, ṗm) | ‖lA‖< l0 and mx < xT D}, (5)

SSB = {(pm, ṗm) | ‖lA‖= l0, mx < xT D}. (6)

The phase transfer occurs when the corresponding event
happens, which can be defined as

ST D = SSSA→DS = {(pm, ṗm) | ṁz < 0, mz = zT D},
(7)

SLO = SDS→SSB = {(pm, ṗm) | lA = l0 and mx < xT D}.
(8)

Especially, the proposed pattern allows a phase transfer
from DS to the SSA phase in the next gait cycle, which
can be described as

SDS→SSA = {(pm, ṗm) | lA < l0 and mx = xT D}. (9)

The procedure of the improved walking pattern is shown
in Fig. 2.
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Fig. 2. The holistic procedure of the proposed walking pattern, which allows the robot to skip the SSB phase based on
the current state. This characteristic can remove the step length limitations, therefore enlarging the feasible step
region.

2.1.2 Periodic gait generation with velocity compen-
sation

The control of the Dual-SLIP model can be implemented
by analyzing the CoM motion at certain states. A typical
discrete dynamic based on (1) can be described based on
the Poincare return map as follows:

xn+1 = P(xn,un,∆h), (10)

where xn = [mxn mzn ṁxn ṁzn] denotes the initial state of
CoM at the nth step, including the information of positions
and velocities at xz plane. xn+1 represents both the final
state and initial state at the nth and n+ 1th steps, respec-
tively. un is the control variable matrix, and P represents
the mapping from xn to xn+1 according to (1). Therefore,
one step gait can be implemented if an appropriate un is
found that makes xn+1 follows the target state.

Previous researches have proven that the adjusting of
leg stiffness and touch-down angle can effectively control
the CoM motion [13,35]. Although current studies allow
two legs to exhibit different compliance characteristics,
the stiffness values are required to be fixed during a gait
cycle, which can limit the maximum walking speed.

In this study, we remove such limitations and allows
an adjustment to stiffness during different phases for each
leg. The touch-down angle is also selected for control.
Therefore, the control variable u is defined as

u = [kA
SSA, kA

DS, kB
DS, kB

SSB, θ ], (11)

where kA
SSA, kA

DS, kB
DS, and kB

SSB represent the correspond-
ing leg stiffness values in corresponding phases, as shown
in Fig. 1. Therefore, the periodic trajectory generation is
formulated as an optimization problem that aims to deter-
mine appropriate u for the given initial state x0, desired
final state xd , and terrain condition ∆h as follows:

min
u
‖xd−xm‖

s.t. ‖lA‖ ≤ l0, ‖lB‖ ≤ l0, mz > ∆h, ṁx > 0, (12)

where the constraints limit the leg maximum length and
ensure the CoM to move forward. xd = [mzd ṁxd ṁzd ] de-
notes the desired final state. In this study, the step length
control is not considered. xm is the measured final state,
which can be represented by

xm = P(x0, u, ∆h). (13)

Fig. 3. Poincare return map for gait cycle. Conventional
methods only focus on the initial and final states.
However, the velocity during the middle state is
uncontrollable therefore introducing unpredictable
errors to the average velocity.

Another limitation that exists in current researches is they
mainly focus on controlling the terminal velocity rather
than the average speed. However, the velocity is varying
during the step cycle, as shown in Fig. 3. This can in-
troduce an adverse effect on the velocity tracking perfor-
mance for multi-step gait generation owing to the cumu-
lative error. In this study, we propose a velocity compen-
sation strategy for accurate velocity control in continuous
walking, in which the average speed of one step, rather
than the terminal velocity, is controlled. The measured ve-
locity for nth step, v̄n, is defined as

v̄n = xT D
n/t f

n, (14)

where t f
n represents the time length of nth step. The mea-

sured final sate xm is re-defined as

xm = P(x0, u, ∆h) = [mz f , v̄ f , ṁz f ], (15)

where mz f and ṁz f are measured CoM position and veloc-
ity at z axis, respectively. v̄ f represent the measured aver-
age velocity. This strategy aims to regard one single step
as a unity and regulate its average speed, which compen-
sates for the cumulative error.

2.2. Trajectory optimization based on IWSA algo-
rithm

In this section, the optimization problem of gait genera-
tion is solved by the IWSA algorithm. We first provide a
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brief introduction to the IWSA algorithm. Then, the fitness
function is constructed, and the optimization procedure is
presented.

2.2.1 Introduction to IWSA algorithm
The IWSA algorithm is an effective metaheuristic algo-

rithm proposed for optimization tasks. It contains a unique
evaluation scheme that makes the search agents follow the
guidance of their “better and nearest” members. In addi-
tion, a neighborhood searching strategy is adopted to en-
hance its local search ability and convergence rate. Pre-
vious researches have validated its superiority over tra-
ditional algorithms in terms of parameter optimization
[58,59]. The evaluation procedure is described as follows:

X∗ = X + rand(0,2) · (Y −X), (16)

where X∗ and X denote the search agent in original and
new positions. Y is the “better and nearest” member of
X , indicating that Y has a better fitness value and stays
closest to X . rand(0,2) represents a uniformly distributed
random number in a 0 to 2 range. For an individual Xi that
stays in the current best position, no “better and nearest”
members can be found. Therefore, it will search for the
neighborhood area as follows:

Xi
∗ = Xi + rand(0.5,1) · (X j−Xk), (17)

where i 6= j 6= k, and X j and Xk denote the two nearest
members to Xi. The details can be found in [44].

2.2.2 Fitness function development
Based on (12), the target final state xd consists of two

parts: a) the target posture parameters, including CoM
height, mzd , and its velocity at the vertical direction, ṁzd ;
and b) target velocity v̄d . Therefore, for the formulated
problem, the fitness value, fit, can be defined as

f it =α1 · ‖v̄ f −barvd‖+α2 · ‖mz f −mzd‖
+α3 · ‖ṁz f − ṁzd‖, (18)

where [α1 α2 α3] is the matrix of weight factors. Since
the posture errors can result in infeasible gait, thus draw-
ing more of our concern. Therefore, the values are selected
as [2 3 1], which is constant.

In this study, the desired control variables are deter-
mined by using the IWSA algorithm. In this study, we

require the robot to return to its initial posture at the ter-
minal station. The initial and target posture is selected as
ṁz f = ṁzd = 0, mz f = mzd = l0.

2.2.3 Stop criterion
In this study, the optimum solution to this optimization

problem is unknown. Therefore, we use the maximum it-
eration for the stop condition. In this case, the algorithm
will stop when the predetermined maximum generation is
reached.

2.2.4 Optimization procedure
The values of the control variable u = [kA

SSA, kA
DS, kB

DS,
kB

SSB, θ ] are used to represent the individuals in the pop-
ulation pool of the IWSA algorithm. Each parameter is
normalized to 0 to 1 range before calculating the fitness
value. After obtaining the optimized control parameters,
the CoM trajectory can be easily acquired based on (1) us-
ing numerical approaches such as Runge-Kutta methods.

2.3. Foot trajectory planning
The previous section provides a way to obtain the ap-

propriate control parameters as well as the desired CoM
trajectory. In this section, the foot trajectory is obtained
through a fifth-order Bézier Curve. It has the advantages
of continuity, local controllability, and smooth curve,
which can be expressed as follows [60]:

B(t) =
n=5

∑
i=0

(
n
i

)
t i(1− t)n−iPi, (19)

where t is the normalized time coefficient from 0 to 1.
B(t) and Pi are the Bézier curve and selection point, re-
spectively, which are of two dimensions (x and z) in this
study. Owing to the proposed walking pattern that con-
sists of two conditions, that is, three-phase pattern and
two-phase pattern, the foot trajectory generation also re-
quires to consider both these two patterns. After setting
up certain conditions such as initial and final positions, as
shown in Table 1, the Bézier curve is obtained.

In this study, to lower the contact impact and simplify
the model, the foot movement in the ideal situation follows
these assumptions:

1) the velocities at both x and z axes decrease to zero
when contacting the ground.

Table 1. Initial and final states for foot trajectory generation.

Initial state Final state at each phase
SSA to DS DS to SSB DS to SSA

axis x z x z x z x z
Leg A mx0 mz0 mx0 mz0 mx0 + xtd mz0 +∆h+hp mx0 mz0

Leg B mx0 mz0 +hp mx0 + xtd mz0 +∆h mx0 + xtd mz0 +∆h mx0 + xtd mz0 +∆h
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2) Considering the terrain height variations ∆h, the height
of peak point is set to ∆h + hp to realize a smooth
parabolic curve.

3) No collision occurs during the steps.
4) Foot-floor contact is without sliding.

In summary, the IWSA-based trajectory generation pro-
cedure follows:

1) Set up the population size psize = 50 initial state
x0, desired final state xd , and maximum generation
Maxgen = 3000.

2) Randomly generate an initial population group, and
each individual contains control variables in the 0 to
1 range.

3) Conduct the IWSA algorithm, the fitness value is cal-
culated based on (18).

4) Return to Step 3 unless the stop criterion is satisfied.
5) Obtained the CoM trajectory using the optimized con-

trol parameters based on (1).
6) Obtained the foot trajectory using the fifth-order

B?zier Curve based on (19) and Table 1.
7) The final state is restored for the initial state for the

next step.

Therefore, the IWSA-based off-line gait generator is
developed for bipedal walking based on known terrain
conditions.

3. DEVELOPMENT OF NEURAL
NETWORK-BASED ONLINE GAIT

GENERATOR

In this section, a neural network-based gait generator
is developed to realize online trajectory generation. First,
we introduce how to generate the datasets for training, and
then present the structure of the developed neural network.

3.1. Training dataset generation
The basic idea of using a neural network is to gen-

erate the desired control variable matrix u = [kA
SSA, kA

DS,
kB

DS, kB
SSB, θ ] based on terrain height variations ∆h, the ini-

tial state x0 = [mz0 ṁx0 ṁz0], and the target final state
xd = [mzd ṁxd ṁzd ]. Therefore, the input dataset Xin to
the neural network is defined as Xin = [x0, xd , ∆h]T . The
validation dataset Yout used for performance evaluation is
described using the optimized control variable matrix as
Yout = u. A group of the training dataset is thus formu-
lated.

In this study, we aim to generate a fast walking trajec-
tory for uneven terrain. The velocity and terrain height
variations range from 1 to 3 m/s and 0 to 0.2 m, re-
spectively. Both the indices of maximum velocity and ter-
rain height variations are higher than previous researches
[11,12,61]. With a control accuracy of 0.05 m/s, 8405

groups of data can be used for training. However, small
data size can result in overfitting or underfitting. In ad-
dition, 5% of the datasets are selected as the test sets.
Compared to the current studies that check through all
the feasible regions of control variables [50], the proposed
method based on the IWSA algorithm is suggested to be
more efficient and generate well-distributed data.

3.2. Training dataset generation
A BP neural network is developed to train the collected

datasets, which consist of 4 hidden layers. The number
of units per layer is set to be 32, 64, 64, 32. The general
parameters of the network are listed in Table 2 and the BP
network structure is shown in Fig. 4. The learning process
of BP network can be described as follows:

W (n) =W (n−1)−∆W (n), (20)

∆W (n) = η
∂E
∂W

(n−1)+α∆W (n−1). (21)

The output of the back-propagation network can be de-
scribed as follows:

y j = f (∑
i

w jixi−θ j), (22)

zl = f (∑
j

vl jy j−θl), (23)

where xi, yi, and zi represent the input node, the node of the
hidden layer, and the node of the output layer respectively.

Table 2. BP network structure and settings.

Parameters Values
Unit number in each hidden layer 32-64-64-32

Activation function in each hidden layer relu
Learning rate 0.001

Optimizer Adam
Batch size 128

Evaluation indicator Mean-squared error

Fig. 4. BP neural network structure.
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Fig. 5. Holistic online gait generation for fast walking on
uneven terrain.

Table 3. Parameters selected for gait optimization.

Parameters Definitions Values
m Mass 100 kg
l0 Leg length 1 m
∆h Terrain height variations −0.02 to 0.02 m
k Leg stiffness 10 to 50 kN/m
θ Tough-down angle 5 to 85◦

psize Population 100
Maxgen Maximum generation 3000

hp Ankle swing height 0.1 m

w ji and v ji represent the weight value. θ j and θl represent
the threshold. tl is the expected value of the output node.

The learning rate can severely affect the performance
of the trained model. Previous studies suggest that an ap-
propriate learning rate can balance the convergence speed
and model effectiveness [62]. In this study, the learning
rate lr is experimentally set as 0.001. The mean-squared
error MSE is used as the loss function, which is described
as

MSE =
1
N

N

∑
i=1

(Yout − fBP(Xin))
2, (24)

where fBP represents the mapping relation of the BP net-
work, and N denotes the dimension.

Fig. 5 shows the schematic diagram of the holistic on-
line gait generation for fast walking on uneven terrain.
First, the online gait generator needs to be developed.
Based on the requirement, a group of Xin and Yout are
sent to generate the datasets by using IWSA. The opti-
mized control variables are used to establish the training
database, and the BP network is applied to learn from
these data, therefore constructing the online gait generator.
For online gait generation, based on the measured initial

velocity, terrain condition, and target velocity, the optimal
control variables and CoM trajectories can be generated
by the developed online gait generator, and the foot trajec-
tory can be planned based on the fifth-order Bézier Curve.
Therefore, optimal one-step gaits are generated.

4. SIMULATION RESULTS AND DISCUSSION

4.1. Experimental setup

The experiments are performed in Matlab 2017b/
Simulink software The IWSA-based optimization method
proposed in Section 2 is applied to generate gaits of veloc-
ity ranges from 1 to 3 m/s. The parameters selected for op-
timization are listed in Table 3. The range of leg stiffness is
selected according to human gaits [63]. In this study, the
control of step length is not considered. The initial state
x0 = [mz0 ṁx0 ṁz0] is set to [l0, vx0, 0], and the target final
state xd = [mzd ṁxd ṁzd ] is set to [l0, vxd , 0], where vx0

and vxd are initial and desired velocities, respectively.
In this study, the fitness value, the velocity tracking er-

ror, the feasibility, and the computing time are used as
the indexes to evaluate the effectiveness of the proposed
method. We conduct four experiments as follows:

Experiment 1 (Maximum-speed walking experi-
ments): The initial and target velocities are set to 3 m/s,
and the ∆h is set to−0.2 m,−0.1 m, 0 m, 0.1 m, 0.2 m, re-
spectively. Experiment 1 is designed to test the maximum
speed of bipedal walking under various terrain conditions.

Experiment 2 (General variable-speed walking exper-
iments): The initial and target velocities range from 1 to
3 m/s. Experiment 2 is designed to evaluate the general
performance of the optimization-based generation method
with full-speed rang.

Experiment 3 (Online gait generation experiments):
Walking performances at both uniform and variable veloc-
ity are evaluated. In uniform-velocity walking, the initial
and target velocities are set to 3 m/s; in variable-velocity
walking, the target speed increases from 1 to 3 m/s. ∆h
is set to −0.2 m. The gaits are generated by using the
off-line gait generator, non-compensated off-line gait gen-
erator, and neural-network-based online method. Exper-
iment 3 is designed to evaluate the performance of the
proposed online generation method under different speed
conditions, in which the online generation method is com-
pared to optimization-based and non-compensated gener-
ation methods to validate its effectiveness.

Experiment 4 (Verification experiment based on We-
bots platform): The walking environment is constructed
with height variations of±0.2 m. The robot needs to walk
continuously for 10 steps at a speed of 3 m/s. Experiment
4 is designed to evaluate the walking performance of the
real robot in real scene. The virtual prototype of the de-
signed robot is shown in Fig. 6 and Table 4.
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Fig. 6. The virtual prototype of biped robot.

Table 4. The parameters of the biped robot.

Parameter value Parameter Value
g/m·s−2 9.81 L2/m 0.55
m1/kg 14 L3/m 0.8
m2/kg 16 Lah/m 0.115
m3/kg 55 Lab/m 0.125
L1/m 0.55 La f /m 0.205

4.2. Results and discussion
4.2.1 Maximum-speed walking evaluation experi-

ments

Fig. 7 shows the optimized CoM and foot trajectories for
terrain height changes from −0.2 to 0.2 m with a con-
stant speed of 3 m/s. Based on Figs. 7(b) to 7(e), the CoM
trajectories are consistent with those obtained by humans,
that is, the CoM first drops to the lowest point in the first
half step and then raises in the last half [11,64]. Under
these conditions, the robot experiences all three phases.

However, a different curve is presented in Fig. 7(a), in
which the last single support phase SSB is not observed.

This is owing to the disturbance introduced by the large
terrain height descent that prevents the swing leg (that is,
leg A) from leaving the ground. In this case, the proposed
walking pattern allows the robot to skip the SSB phase
and prepare to enter the next step, which benefits flexibil-
ity. In terms of foot trajectories, we observe that smooth
curves are obtained through the fifth-order Bzier Curve.
The contact speed is restrained to 0 to reduce the impact.
Moreover, the pre-set ankle swing height hp is introduced
to avoid the collision and realize a parabolic curve. Re-
sults from Fig. 7 validates the effectiveness of the pro-
posed IWSA-based method to generate a fast walking gait
that tolerates large known height variations (up to 20% of
the leg length).

4.2.2 General variable-speed walking experiments
Table 5 shows the general performance of optimized

gaits. The gaits obtained under the condition of flat terrain
(∆h = 0) achieve better performance than those acquired
on uneven terrain. Moreover, larger terrain height change
leads to worse performance. The fitness values rise from
0.36 to 0.48 when ∆h changes from 0.1 to 0.2 m. Under
stepping down conditions (∆h < 0), by comparing results
obtained by the proposed method with the conventional
method, we observe that the former one performs better in
terms of both maximum and average fitness values. Under
the condition of ∆h = −0.2 m, the proposed method aids
to reduce the average fitness value from 0.43 to 0.37. The
results obtained under the condition of ∆h =−0.1 m indi-
cate a similar performance. Besides, although results ob-
tained conventional method at stepping up (∆h> 0) condi-
tion shows no distinct differences compared to those un-
der the stepping down (∆h < 0) condition, smaller aver-

Fig. 7. The optimized CoM and foot trajectories for various terrain height variations (3 m/s). (a) ∆h =−0.2 m; (b) ∆h =
−0.1 m; (c) ∆h = 0 m; (d) ∆h = 0.1 m; (e) ∆h = 0.2 m.
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Table 5. Results of optimized gaits.

∆h
−0.2 −0.1

0 0.1 0.2
Proposed Conventional Proposed Conventional

Max. fit 1.46 1.70 1.42 2.26 1.42 1.52 1.80
Ave. fit 0.37 0.43 0.37 0.41 0.29 0.36 0.48
Inf. gait 0 125 0 125 0 0 0

* Max. fit: Maximum fitness value; Ave. fit: Averages fitness value; Inf. gait: Number of infeasible gaits; The proposed method indicates
the proposed walking pattern that allows the robot to skip the SSB phase, while the conventional method requires to experience all three
phases.

age fitness values can be achieved by using the proposed
method when stepping down. Such improvements are ow-
ing to the improved walking pattern enlarges the feasible
step region, which leads to better optimization results. The
number of infeasible gaits also suggests that the require-
ment of experiencing all three phases can limit the maxi-
mum speed range. When stepping down, 125 sets of tar-
get velocity cannot be achieved by using the conventional
method. That is, the maximum speed is restricted to 2.7
m/s.

Fig. 8 presents the comparison of results obtained with
and without velocity compensation strategy. We can ob-
serve from this figure that the proposed velocity compen-
sation strategy can effectively reduce the velocity track-
ing error. On the flat terrain, an 64.7% (from 0.51 to 0.18
m/s) improvement in average performances. Results from
uneven terrain tests show are similar. With compensation,
we can control the general step motion, rather than the fi-
nal state. A more distinct effect is expected in multi-step
gaits, in which the errors are accumulated. Based on the
average results, the robot achieves the smallest error on the
flat terrain, while the performance degrades when the ter-
rain height variation increases. Moreover, the results ob-
tained from the stepping down condition are better than
those acquired from stepping up. The robot achieves 0.24
m/s tracking error when stepping down (∆h = −0.2 m),
while this value increases to 0.35 m/s under stepping up
(∆h = 0.2 m) condition. Such results are consistent with
those in Table 5. As discussed before, this is owing to that
when during stepping down, the proposed walking pattern
not only eliminates the restriction on step length but also
removes the constraints in the SSB phase, therefore ben-
efiting the optimization procedure. Also, combined with
Table 5, we observe that the average errors in posture and
velocity are less than 10% with the consideration of the
weighting factors. The posture error, however, is smaller
than that of the velocity error. This is reasonable since we
assign higher weight values to posture based on (18).

Fig. 9 presents the results of the average velocity track-
ing error of all generated gaits. This figure shows the in-
fluence of initial and target velocities on tracking accu-
racy. We observe that a larger change between initial and

Fig. 8. The velocity tracking results, in which the initial
and target velocities range from 1 to 3 m/s.

Fig. 9. The average velocity tracking error.

target velocities brings difficulties in control, resulting in
larger errors. The largest error is obtained under such con-
dition: initial velocity of 1 m/s and target velocity of 3
m/s. However, an acceleration condition (target velocity is
higher than initial velocity) seems to achieves worse per-
formance. This can be caused by the asymmetry in con-
straints. For example, the acceleration requires a higher
stiffness in leg A during the DS phase. However, higher
stiffness also leads to a fast speed at z axis, which vio-
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lates the need of ṁzd = 0, therefore harming the optimiza-
tion performance. Nonetheless, Fig. 9 suggests that small
tracking errors under the condition of a velocity change
within approximately 2 m/s. Moreover, higher accuracy
can be achieved when tracking a constant velocity, even
with fast speed up to 3 m/s.

4.2.3 Online gait generation experiment
BP network is developed to train the optimized gait

datasets. After training, the MSE values of both training
and testing datasets are less than 0.001, and the network is
used to design the gait generator. Figs. 10 and 11 show the
results of continuous walking under ∆h = 0.2 m at con-

Fig. 10. Walking at a constant speed (3 m/s, ∆h = 0.2 m)

.

Fig. 11. Variable speed walking (acceleration condition,
from 1 to 3 m/s, ∆h = 0.2 m).

stant and variable speeds, respectively. From these two
figures, we observe that the condition of constant veloc-
ity achieves better results than the acceleration condition.
Nonetheless, all three competitive methods can effectively
generate gaits for 20 steps walking in the two cases. The
IWSA-based method achieves the best results, while the
non-compensated method performs the worst. Such re-
sults are consistent with those from Fig. 8, which fur-
ther validates the effectiveness of the proposed velocity
compensation strategy in continuous walking. In addition,
compared with the IWSA-based off-line method, the re-
sults achieved by the BP network-based method distribute
near the reference line, indicating a good fitting of the
optimized datasets and the stability of continuous gaits.
The observed deviations are tolerable, which are derived
from the prediction error introduced by the BP network.
The details are summarized in Table 6. Although the opti-
mization method generates gaits that accurately track the
target velocity, the large computational burden (comput-
ing time of 203.11 s) makes it hard to be applied for on-
line control. By contrast, the proposed BP network-based
gait generator can generate appropriate gaits within 0.03 s,
which allows rapid regulation. Therefore, the proposed BP
network-based gait generator provides a potential solution
for online walking control of humanoid robots.

4.2.4 Verification experiments based on Webots plat-
form

Fig. 12 provides the simulation environment, while Fig.
13 shows the side view of the second step. We can see that
the step size of the robot becomes larger to adapt to the
faster walking speed. When the swing leg touches down,
the CoM shows an obvious rebound process, which is sim-
ilar to human walking. During this process, the CoM mo-
mentum can be absorbed by changing the stiffness of the
legs. In this way, the robot could avoid the rigid collision
between the foot and the ground and realize stable walk-
ing. Fig. 14 shows the CoM trajectory of the biped robot.
It can be seen that CoM can return to the preset position at
the beginning and end of each step to avoid the accumu-
lation of posture errors. The results show that the biped
robot can smoothly pass through the complex terrain with
continuous changing of height variations, showing good

Table 6. Results of continuous walking.

Method
Average error Maximum error Computing

time/step
[second]

Constant velocity
[m/s]

Acceleration
[m/s]

Constant velocity
[m/s]

Acceleration
[m/s]

Off-line
gait generator

0.03 0.09 0.17 0.78 203.11

Non-compensated
gait generator

2.57 0.93 1.90 1.95 201.06

Online
gait generator

0.35 0.39 0.80 0.96 0.03
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Fig. 12. The simulation environment.

Fig. 13. The side view of the second step.

Fig. 14. The CoM trajectory during walking.

terrain adaptability. The results further verify the effec-
tiveness of the proposed gait generation method.

4.2.5 Comparison with current methods
Table 7 shows a comparison of the proposed method

with the current online generation method for bipedal
walking on uneven terrain. For a fair comparison, the se-
lected methods are all verified through simulations. The
maximum velocity and tolerable ∆h are derived either
from the statement or experimental results in the corre-
sponding paper. The method proposed in [11] is designed
for walking over stairs, thus is more adaptive to higher
terrain variations. Although the proposed method suffers
a 38.3% loss in terrain adaptability (20% leg length com-
pared to 32.4% leg length), it also achieves a 275% im-
provement (3 m/s compared to 0.8 m/s) in walking ve-
locity. Therefore, the proposed method obtains a better
achievement in the general performance, which can be
beneficial to practical use. It should be pointed out that the
computing time for the method proposed by Heydari and
Farrokhi [14] is not clear. However, the authors indicated
that they used fmincon function in Matlab to solve the gait
generation problem, which is the same tool used by Liu
et al. [12]. Therefore, we suggest that these two meth-
ods can achieve familiar performances in terms of com-
puting time. Based on Table 7, we observe that the pro-
posed method can achieve the highest velocity and low-
est computing time. In terms of maximum tolerable ∆h,
the proposed method achieves the second best. In fact, as
long as we reduce the target velocity to 2 m/s, the max-
imum tolerable ∆h can increase to 30% leg length. The
results of computing time for each step suggest that the
neural network is much more efficient than the commonly
used numerical method, which helps the robots to adapt to
complicated and changeable environments. In conclusion,
the proposed method fulfills our requirements in terms of
both mobility and adaptability.

5. CONCLUSION AND FUTURE WORK

This study proposes a BP network-based online gait
generation method for fast biped walking on uneven ter-
rain. To improve walking performance when stepping
down, an enhanced walking pattern is developed that al-
lows the robot to skip the last single support phase SSB,
which enlarges the feasible step region. A velocity com-
pensation strategy is also proposed to reduce tracking er-
rors in continuous walking. We apply the IWSA algorithm
to generate gait datasets that cover the range of target ve-

Table 7. Performance comparison results.

Method Maximum velocity [m/s] Maximum tolerable ∆h Computing time/step [second]
Proposed method 3 20 % leg length 0.03

Hou et al. [10] 0.7 1.2 % leg length 0.38
Liu et al. [11] 1 6.0 % leg length 2.02

Heydari and Farrokhi [14] 0.8 32.4 % leg length
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locity and terrain height variations. A BP neural network
is then developed to learn from these datasets and is fur-
ther applied online to generate gaits for continuous walk-
ing. Simulation experiments are conducted to validate the
proposals.

Based on the experimental results, we observe that: a)
fast walking gaits up to 3 m/s on uneven terrain can be re-
alized with smooth CoM and foot trajectories; b) the pro-
posed walking pattern can improve walking performance
when stepping down; and c) online walking control can
be achieved by using the proposed method with tolerable
performance loss. However, in this study, the step length
is not a pre-set parameter that makes the foothold uncon-
trollable. Also, the actuator peak power constraint is not
considered in this study. Such limitation can adversely af-
fect the walking performance in real applications.

In future work, we plan to consider the step length con-
trol and apply the proposed method to real-world cases to
further test its effectiveness.
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