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Fixed-time Disturbance Observer-based Sliding Mode Control for Mis-
matched Uncertain Systems
Yang Wang* � and Mingshu Chen �

Abstract: This paper concerns with fixed-time control for the mismatched uncertain system. We propose a fixed-
time disturbance observer (DO). Then, a non-singular fixed-time sliding-mode surface and controller are designed
based on the estimations of proposed DO. Existing DO-based sliding-mode control (DOSMC) and finite-time
DOSMC schemes can eliminate the mismatched uncertain problem by using traditional sliding-mode control
(TSMC). However, the convergence times of these DOSMC schemes are infinite or related to the initial system
conditions. Unlike existing approaches, the proposed fixed-time DOSMC can guarantee the convergence time is
uniformly bounded and the upper bound is independent on initial system conditions, which implies that the pro-
posed scheme can provide similar convergence performance with the same control parameters under different initial
conditions. Simulation result shows the excellent convergence performance of the proposed scheme.

Keywords: Finite-time convergence, fixed-time convergence, mismatched disturbance, observer, sliding-mode con-
trol.

1. INTRODUCTION

Sliding-mode control (SMC) is a effective scheme to
handle the disturbances [1–4]. Due to the significance of
suppressing disturbances, SMC schemes have been ap-
plied to many actual systems in recent years [5–10]. How-
ever, the robustness of the traditional SMC (TSMC) can
be held only if disturbances and control inputs are in the
same channel, this is known as the matching condition.

In fact, many practical systems are affected by vari-
ous mismatched disturbances such as flight control system
[11,12], permanent magnet synchronous motor system
[13] and flexible joint manipulator system [14]. To apply
the TSMC for the system with mismatched disturbances,
various control schemes like Riccati-based SMC [15,16],
LMI-based SMC [17–19], and adaptive SMC [20] have
been developed. However, these modified SMC schemes
in [15–20] require that the mismatched disturbances sat-
isfy the H2 norm-bounded assumption, which means that
the mismatched uncertainties must belong to vanishing
uncertainties. This assumption is unreasonable for most
of practical systems [11–14]. In recent year, some results
have adopted the disturbance observer (DO) to modify
the SMC to suppress the mismatched and matched distur-
bances [21–25]. These disturbance observer-based SMC

(DOSMC) schemes not only can relax the unreasonable
H2 norm-bounded assumption in [15–20], but also retain
the nominal control performance of SMC [21–25]. Thus,
the study on the DOSMC has increasingly became a re-
search hotspot. The DOMSC in [21–25] assumed that the
derivatives of the mismatched disturbances are to vanish
when the time approaches to infinity. However, the as-
sumption is still too restrictive. The DOMSC in [26] ex-
tended the results in [21–25]. The main feature of the
method in [26] is that, it assumed that the disturbances
and the derivatives of disturbances are bounded.

It is worthy of noting that, although DOSMC provides
the high robust performance for mismatched uncertain
system, the DOSMC schemes [21–26] are designed by
using the asymptotic stability analysis. It is implied that
these schemes in [21–26] only achieve the infinite conver-
gence time. The fast convergence is critical desired per-
formance in control systems. Thus, the finite-time SMC is
necessary for these control systems. With the development
of finite-time convergence theory, serval SMC schemes
with finite convergence time have been developed, such
as the TSMC [27], nonsingular TSMC [28,29], finite-time
integral SMC [30]. However, most of existing finite-time
SMC schemes [27–30] can only deal with the matched un-
certain problem. Recently, for the mismatched uncertain
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system, a few DOSMC schemes with finite convergence
time have been developed [31,32] based on the finite-time
control and extending DOSMC schemes in [21–26]. In
[31], a finite-time DOSMC scheme was proposed by us-
ing the finite-time DO and nonsingular terminal sliding-
mode surface. In [32], a finite-time DOSMC was devel-
oped by combining the finite-time DO and finite-time
integral sliding-mode surface. Under mismatched distur-
bances, the finite convergence can be guaranteed by the
DOSMC schemes in [31,32]. However, the convergence
times in [31,32] are mainly related to the initial system
conditions. And, the convergence time may be very large
if the initial system conditions increase greatly.

Recently, as a novel fast convergent control notion
[33,34], the fixed-time convergence has been studied in
some control problems. Fixed-time control guarantees that
convergence time is bounded by a fixed constant under dif-
ferent initial system conditions. Then, the above problem
of finite-time control can be avoided. In [35], for a power
system, a fast fixed-time SMC was developed. In [36], the
authors designed a fixed-time TSMC for a general non-
linear second-order system. In [37], based on fixed-time
SMC and DO, a fixed-time formation tracking scheme
was developed. However, these fixed-time SMC scheme
in [35–37] are only suitable for the system which is sub-
jected to matched disturbances.

According to the discussions above, even if the
DOSMC is a good candidate to solve the mismatched
uncertain problem in TSMC, existing DOSMC schemes
still have limitations: 1) the convergence time of conven-
tional DOSMC is infinite; 2) For different initial system
conditions, the finite-time DOSMC cannot achieve similar
fast convergence performance under same control param-
eters. In this paper, to avoid these limitations, we propose
a novel fixed-time DOSMC. The main contribution of this
paper is

1) In comparison with existing DOSMC schemes in
[21–26,31,32], the proposed DOSMC is fixed-time
stable, which can guarantee the convergence times
of system states and estimation errors are uniformly
bounded and the upper bounds are not related to
the initial system condition. Thus, the limitations of
convergence performance in the existing DOSMC
schemes can be eliminated.

2) In comparison with the recent fixed-time SMC
schemes in [35–37], the propose DOMSC scheme
can extend the fixed-time SMC to suppress the mis-
matched disturbances.

The rest parts are given as follows: In Section 2, the
preliminaries and motivation are given. The disturbance
observer and controller are design in Section 3. The simu-
lation results demonstrate the fast convergent performance
of proposed controller in Section 4. The conclusion is
given in Section 5.

Notations: t represents time (Initial time is zero). Rn

represents the Euclidean space with n dimension. sign(·)
denotes the symbolic function.

2. PRELIMINARIES AND MOTIVATION

2.1. System description
A system with mismatched and matched disturbances

can be given as in [21–26,31,32]
ẋ1 = x2 +d1,

ẋ2 = f (x1, x2)+u+d2,

y = x1,

(1)

where u represents the control input, x1 and x2 represent
the system states, y is the system output and f (x1, x2) de-
notes a nonlinear function. d j ( j = 1,2) denote the time-
varying mismatched and matched disturbances, respec-
tively. x1(0) and x2(0) are the initial system conditions.
The disturbances satisfy.

Assumption 1: The disturbances d j ( j = 1, 2) are dif-
ferentiable, |d j| ≤ D j max and

∣∣ḋ j
∣∣ ≤ Dd

j max, where D j max

and Dd
j max are positive constants.

Assumption 1 means that the matched and mismatched
disturbances are bounded by a positive constant, and the
derivatives of these disturbances are also bounded. This
assumption not only releases the H2 norm-bounded as-
sumption in [15–20], but also the assumption in [21–25]
that the derivatives of the mismatched disturbances are to
vanish when the time approaches to infinity.

Control objective: The objective of design of control
input u is that u can drive the system output x1 to zero
despite the presence of matched and mismatched distur-
bances. And convergence time is always bounded by a
constant for different initial system conditions.

2.2. Problem formulation
In order to explain the motivation of this paper, we

now briefly introduce TSMC, DOSMC, and finite-time
DOSMC.

2.2.1 TSMC
The traditional linear sliding-mode surface can be de-

signed as

s1 = x2 + c1x1, (2)

where the constant c1 > 0.
Calculating time derivative of s1 gives

ṡ1 = ẋ2 + c1ẋ1

= f (x1, x2)+u+d2 + c1 (x2 +d1) . (3)

Then TSMC can be designed as

u =− f (x1, x2)− c1x2− k1sign(s1) , (4)
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where k1 is positive constant. According to (3) and (4), it
can be known that s1ṡ1 ≤ −(k1− (d2 + c1d1)) < 0 if we
select k1 > D2max + c1D1max (D j max ( j = 1,2) has been
defined in Assumption 1). Then s1 = 0 can be guaranteed
in finite time by using controller (4). According to the con-
dition s1 = 0 in (2) and the system (1), the sliding motion
can be given as

ẋ1 + c1x1 = d1. (5)

From (5), we know that the matched disturbance d2 can be
directly compensated, but x1 still be affected by the mis-
matched disturbance d1. As stated in [21–26,33,34], the
reason is that, for the mismatched disturbances, invariabil-
ity of TSMC cannot be guaranteed, and the system states
still be affected by the disturbances on the sliding mode
surface.

2.2.2 DOSMC
According to [25,26], the DO-based linear sliding-

mode surface can be designed as

s2 = x2 + d̂DO + c2x1. (6)

The estimation of mismatched disturbance d̂DO is given by
following DO{

ṗDO =−lDO pDO− lDO (lDOx1 + x2) ,

d̂DO = pDO + lDOx1,
(7)

where the constant lDO > 0. Then calculating time deriva-
tive of s2 and considering (1), we have

ṡ2 = ẋ2 +
˙̂dDO + c2ẋ1

= f (x1, x2)+u+d2 + ṗDO

+ lDOẋ1 + c2 (x2 +d1)

= f (x1, x2)+u+d2− lDO pDO

− lDO (lDOx1 + x2)+ lDO (x2 +d1)

+ c2 (x2 +d1) . (8)

Then DOSMC can be designed as

u = − f (x1, x2)+lDO pDO + lDO (lDOx1 + x2)− lDOx2

− c2x2− k2sign(s2) . (9)

According to (8) and (9), it is easy to know that s2ṡ2 ≤ 0 if
we select k2 > D2max + lDOD1max + c2D1max. Thus, s2 = 0
is guaranteed in finite time by using DOSMC (9). Then
the sliding motion can be given as

ẋ1 + c2x1 = d̂DO−d1. (10)

From [25,26], we can know that DO (7) can guarantee∣∣d̂DO−d1
∣∣≤ d̄max, where d̄max is a small positive constant.

Then, from (10), we can know that the mismatched distur-
bance d1 can be suppressed by designing the DO-based

linear sliding-mode surface (6). Thus, by using the es-
timation of DO to modified the traditional sliding-mode
surface, these DOSMC can compensate the disturbance
on the sliding-mode surface, thus the invariability can be
guaranteed in these DOSMC methods. However, the lin-
ear characteristic of sliding-mode surface (6) can only
guarantee the slow asymptotic stability. Recently, to sup-
press the mismatched disturbance and achieve the fast
convergence performance, the DO-based finite-time SMC
schemes have been developed in [31,32].

2.2.3 Finite-time DOSMC
According to [32], for system (1), the DO-based inte-

gral sliding-mode surface is given as

s3 = x2 + z11 +
∫ t

0
( fs3)dτ, (11)

where

fs3 = k31|x1|α31 sign(x1)

+ k32|x2 + z11|α32 sign(x2 + z11) . (12)

The value range of the positive constants k31, k32, α31 and
α32 can be found in [32]. Then the finite-time DOSMC
can be designed as

u =− ( f (x1, x2)+ v11 + z12)− fs3

− k33|s3|1/2sign(s3)−
∫ t

0
k34sign(s3)dτ, (13)

where the estimations of disturbances z11 and z12 are given
by following finite-time DO

ż0 j = v0 j + x j+1,

ż1 j = v1 j,

ż2 j = v2 j,

v0 j =−λ0L1/3
j |z0 j− x j|2/3sign(z0 j− x j)

−ρ0 (z0 j− x j)+ z1 j,

v1 j =−λ1L1/2
j |z1 j− v0 j|1/2sign(z1 j− v0 j)

−ρ1 (z1 j− v0 j)+ z2 j,

v2 j =−λ2L jsign(z2 j− v1 j)−ρ2 (z2 j− v1 j) ,

(14)

where x3 = f (x1, x2)+ u and j = 1, 2. λ0, λ1, ρ0 and ρ1

are observer parameters and can be found in [32]. z0 j is
the estimation of x j, and z1 j is estimation of disturbance
d j. According to [32], s3 = 0 can be guaranteed in finite
time. And, then x1 = 0 can achieved in finite time

x1 = 0, if t ≥ Tf (x1(0), x2(0)) , (15)

where Tf (x1(0), x2(0)) is the convergence time. Compared
with DOSMC, finite-time DOSMC (13) not only suppress
the mismatched disturbance, but also achieve a faster con-
vergence rate. But Tf (x1(0), x2(0)) is unbounded and re-
lated to the initial conditions x1(0) and x2 (0). Especially,
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Tf (x1(0), x2(0)) may be large if the initial conditions in-
crease greatly. Thus, the fast convergence performance of
finite-time control in [31,32] may not be guaranteed in this
case.

2.2.4 Motivation

Motivation: From the previous discussion, the
DOSMC is a good candidate to solve the mismatched
uncertain problem of TSMC. Finite-time DOSMC can
not only eliminate the mismatched uncertain problem, but
also further improve the convergence rate. However, the
convergence performance of finite-time DOSMC is still
related to initial system conditions. In some initial condi-
tion cases, the convergence perfromance may be affected.
This provies the motivation of this paper, that is, design-
ing a new fixed-time DOSMC to suppress the mismatched
and matched disturbances, and guarantee the convergence
time is bounded by a fixed constant, and the constant is
not related the initial system conditions.

Two useful definitions are given as follows:
Definition 1 [38]: The system (1) is finite-time output

stable if x1 = 0 is asymptotically stable and x1 = 0 can be
guaranteed at finite time time, i.e., ∀t ≥ Tf (x1(0), x2(0)) :
x1 = 0, where Tf (x1(0), x2(0)) : R→ R+∪{0} is finite.

Definition 2 [39]: The system (1) is fixed-time output
stable if x1 = 0 is finite-time stable and the convergence
time Tf (x1(0), x2(0)) is bounded by a fixed value Tmax, i.e.,
∃Tmax ≥ 0 : ∀x1(0)∈ R and ∀x2(0)∈ R, Tf (x1(0), x2(0))≤
Tmax.

3. MAIN RESULT

A fixed-time DO will be proposed in this section to es-
timate the mismatched and matched disturbances of sys-
tem (1) by using the control algorithm of [40]. Then, a
fixed-time DOSMC will be designed by using the output
of the proposed fixed-time DO. Unlike the DOSMC (9)
and the finite-time DOSMC (13), the proposed fixed-time
DOSMC can achieve fixed-time stability.

3.1. Fixed-time disturbance observer

Before giving the fixed-time DO and DOSMC, two use-
ful lemmas are given as follows:

Lemma 1 [41, Theorem 2]: Consider a dynamic system
with disturbance d(t):{

σ̇0 =−k̄1 fσ0 +σ1,

σ̇1 =−k̄2 fσ1−d(t),
(16) fσ0 = |σ0|1/2sign(σ0)+θ |σ0|3/2sign(σ0) ,

fσ1 =
1
2

sign(σ0)+2θσ0 +
3
2

θ
2|σ0|2sign(σ0) .

(17)

If the parameter θ > 0, the disturbance d(t) is bounded as
|d(t)| ≤ dmax, and the parameters satisfy

κ =

{(
k̄1, k̄2

)
∈ R2 | 0 < k̄1 ≤ 2

√
dmax,

k̄2 >
k̄2

1

4
+

4d2
max

k̄2
1

}
∪
{(

k̄1, k̄2
)
∈ R2 |

k̄1 > 2
√

dmax, k̄2 > 2dmax

}
. (18)

Then σ0 = 0 and σ1 = 0 can be achieved in time t f , where
t f ≤ Tf max and Tf max is a constant which is not related to
the initial conditions σ0(0) and σ1 (0).

The detailed proof process of fixed-time convergence of
Lemma 1 can be found in the Section 3 of [41].

Lemma 2 [40, Theorem 3.1]: Consider a dynamic sys-
tem as follows:

ë1 =−Kp|e1|α1 sign(e1)−Kd |ė1|α2 sign(ė1)

−Lp|e1|β1 sign(e1)−Ld |ė1|β2 sign(ė1) , (19)

where e1 and ė1 are the system states. If the constants
Kp > 0, Kd > 0, Lp > 0, Ld > 0, 0 < α1 < 0.5, α2 =
2α1/(α1 +1), β1 = 2α1 +1 and β2 = (2α1 +1)/(α1 +1),
then the states e1 and e2 satisfy

e1 = 0, ė1 = 0, if t ≥ te, (20)

and

te ≤ Te, (21)

where Te is a constant and not related to the initial system
conditions.

Lemma 3 [38]: Provided that M(t) is differentiable and
nonnegative, and satisfies Ṁ(t)≤−αMψ (t), where α and
ψ are positive constants, and α > 1, 0 < ψ < 1. Then, we
have

M(t) = 0, if t ≥ tM, (22)

where the finite time tM ≤M1−ψ(0)/(α (1−ψ)).
The fixed-time DO and the stability proof are given as

follows:
Theorem 1: For the mismatched uncertain system (1),

the fixed-time DO is constructed as

ḣ11 =−µ11 fh11 +h12 + x2,

ḣ12 =−µ13 fh12,

h̄1 = h11− x1,

ḣ21 =−µ21 fh21 +h22 + f (x1, x2)+u,

ḣ22 =−µ23 fh22,

h̄2 = h21− x2,

(23)
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where

fh11 =
∣∣h̄1
∣∣1/2sign

(
h̄1
)
+µ12

∣∣h̄1
∣∣3/2sign

(
h̄1
)
,

fh12 =
1
2

sign
(
h̄1
)
+2µ12h̄1 +

3
2

µ
2
12

∣∣h̄1
∣∣2sign

(
h̄1
)
,

fh21 =
∣∣h̄2
∣∣1/2sign

(
h̄2
)
+µ22

∣∣h̄2
∣∣3/2sign

(
h̄2
)
,

fh22 =
1
2

sign
(
h̄2
)
+2µ22h̄2 +

3
2

µ
2
22

∣∣h̄2
∣∣2sign

(
h̄2
)
,

(24)

where h11 and h21 are the states of observer. h12 is the es-
timation of mismatched disturbance d1. h22 is the estima-
tion of matched disturbance d2. Assumption 1 is valid. For
j = 1, 2, µ j2 > 0, µ j1 and µ j3 are in the following set:

Ω =

(µ j1,µ j3) ∈ R2

∣∣∣∣∣∣∣∣
0 < µ j1 ≤ 2

√
Dd

j max,

µ j3 >
(µ j1)

2

4
+

4
(
Dd

j max

)2

(µ j1)
2


∪

{
(µ j1, µ j3) ∈ R2

∣∣∣∣∣ µ j1 > 2
√

Dd
j max,

µ j3 > 2Dd
j max

}
,

(25)

where Dd
j max ( j = 1, 2) is defined in Assumption 1. ∃TDO >

0 : x1(0)∈ R and x2(0)∈ R, the estimation errors will con-
verge to zero

d1−h12 = 0 and d2−h22 = 0, if t > TDO, (26)

where TDO is a constant and not related to the initial system
conditions.

Proof of Theorem 1: Define the estimation errors as
ϕ j = d j−h j2 ( j = 1,2), Differentiating ϕ j ( j = 1,2) gives{

ϕ̇1 = ḋ1− ḣ12,

ϕ̇2 = ḋ2− ḣ22.
(27)

Substituting the expressions of ḣ12 and ḣ22 in (23) into
(27), we have{

ϕ̇1 = ḋ1 +µ13 fh12,

ϕ̇2 = ḋ2 +µ23 fh22,
(28)

where fh12 and fh22 are defined in (24). Differentiating
h̄ j ( j = 1,2) gives{ ˙̄h1 = ḣ11− ẋ1,

˙̄h2 = ḣ21− ẋ2.
(29)

Substituting the expressions of ḣ11 and ḣ21 in (23), ẋ1 and
ẋ2 in (1) into (29), we have{ ˙̄h1 =−µ11 fh11 +h12−d1,

˙̄h2 =−µ21 fh21 +h22−d2.
(30)

Considering the definition ϕ j = d j − h j2 ( j = 1, 2), then
we have{ ˙̄h1 =−µ11 fh11−ϕ1,

˙̄h2 =−µ21 fh21−ϕ2.
(31)

Combining (28) and (31), we have{ ˙̄h1 =−µ11 fh11−ϕ1,

ϕ̇1 = µ13 fh12 + ḋ1,
(32){ ˙̄h2 =−µ21 fh21−ϕ2,

ϕ̇2 = µ23 fh22 + ḋ2.
(33)

According to Lemma 1, for j = 1, 2, if µ j2 > 0, µ j1 and
µ j3 are chosen in the set (25), then the estimation errors ϕ j

( j = 1, 2) are bounded from the initial time and fixed-time
stable

ϕ1 = d1−h12 = 0 and ϕ2 = d2−h22 = 0,

if t > TDO, (34)

where the constant TDO > 0 is not related to the initial sys-
tem conditions.

The proof is finished. �
Remark 1: For the fixed-time DO (23), the fixed

convergence time TDO is determined by the parameters
µi j (i = 1,2; j = 1,2,3). The estimation of TDO can be
found in the Section IV of [41].

3.2. Fixed-time sliding mode control
By using the estimations of fixed-time DO (23), a novel

DO-based integral sliding-mode surface is proposed as

s = x2g +
∫ t

0
fsdτ, (35)

where fs = K1|x1|ω1 sign(x1) + K2|x2g|ω2 sign(x2g) +
L3|x1|γ1 sign(x1) + L4|x2g|γ2 sign(x2g), x2g = x2 + h12 and
h12 is given by the fixed-time DO (23). The constants K j >
0, L j > 0 ( j = 1, 2), 0 < ω1 < 0.5, ω2 = 2ω1/(ω1 +1),
γ1 = 2ω1 + 1 and γ2 = (2ω1 +1)/(ω1 +1). Then the
fixed-time DOSMC is designed as

u =−φ

(
|s|q + |s|2−q

)
sign(s)− f (x1, x2)

+µ13 fh12− fs−h22, (36)

where φ and q are control parameters and are positive con-
stants. q satisfies the inequation 0 < q < 1.

Then, stability proof of proposed fixed-time DOSMC
(36) are given as

Theorem 2: The system (1) adopts fixed-time DOSMC
(36). If Assumption 1 can be satisfied, then s = 0 is
achieved in fixed time. And the system (1) is fixed-time
output stable, i.e., the system output x1 = 0 can be satis-
fied in finite time tall

x1 = 0, if t ≥ tall , (37)
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and

tall ≤ Tm, (38)

where Tm is a constant and not related to the initial system
conditions.

Proof of Theorem 2: Calculating the derivative of s,
and considering (1) and (23), we have

ṡ = u+ f (x1, x2)+d2−µ13 fh12 + fs. (39)

Substituting the proposed fixed-time DOSMC (36) into
(39), we have

ṡ =−φ
(
sq + s2−q)sign(s)+(d2−h22) . (40)

Construct Lyapunov function V1 as

V1 =
1
2

s2. (41)

Then calculating derivative of V1 and considering (40), we
get

V̇1 = sṡ

=−φ

(
|s|1+q+|s|3−q

)
+(d2−h22)s

≤−φ

(
2

(1+q)
2 V

(1+q)
2

1 +2
(3−q)

2 V
(3−q)

2
1

)
+
√

2 |ϕ2|V 1/2
1 , (42)

where ϕ2 = d2− h22 is the estimation error and has been
defined in Theorem 1. From (42), it is clear that V1 is af-
fected by the estimation error ϕ2. Although Theorem 1 has
proved that the estimation error ϕ2 is fixed-time stable, the
convergence stability of sliding-mode surface s and state
x1 may not be guaranteed during the convergence period
of ϕ2.

In order to consider the affection of ϕ2, we consider four
proof steps: First, it will be proved that sliding-mode sur-
face s is bounded before the estimation error ϕ2 converges
to zero. Second, we will prove that s = 0 will be achieved
in fixed time after ϕ2 = 0. Third, we will prove that the
states x1 and x2g are bounded before the estimation error
ϕ2 converges to zero. Fourth, we will prove that the output
state x1 = 0 will be achieved in fixed time after ϕ2 = 0, and
x1 = 0 is fixed-time output stable.

Step 1: According to Young’s inequality [42], (42) can
be rewritten as

V̇1 ≤ −φ

(
2

(1+q)
2 V

(1+q)
2

1 +2
(3−q)

2 V
(3−q)

2
1

)
+
√

2 |ϕ2|V 1/2
1

≤−φ

(
2

(1+q)
2 V

(1+q)
2

1 +2
(3−q)

2 V
(3−q)

2
1

)
+
(
ϕ

2
2 +V1

)
/
√

2

≤
(

1/
√

2
)

V1 +R(t), (43)

where R(t) = ϕ2
2/
√

2. It can be known from Theorem 1
that the estimation error ϕ2 is bounded from the initial
time. Thus R(t) is bounded. Define the upper bound of
R(t) as |R(t)| ≤ Rmax, where Rmax is a positive constant.
Then, it can be obtained from (43) that

V̇1 ≤
(

1/
√

2
)

V1 +Rmax, if t ≥ 0. (44)

From (44), we have

V1 ≤V1(0)e(1/
√

2)t

+
√

2Rmax

(
1− e(1/

√
2)t
)
, if t ≥ 0. (45)

From (45), we know that V1 is bounded in arbitrary finite
time. Thus it can be known that s is bounded in arbitrary
finite time

s≤ smax, i f t ≤ ts, (46)

where smax is a unknow positive constant and ts is an arbi-
trary finite time.

Step 2: Substituting (34) into (42), we have

V̇1 ≤−φ

(
2

(1+q)
2 V

(1+q)
2

1 +2
(3−q)

2 V
(3−q)

2
1

)
, if t ≥ TDO.

(47)

Let m = 1− (1+q)/2 and V2 = 2V1, we get

V̇2 ≤−2φ
(
V 1−m

2 +V 1+m
2

)
, if t ≥ TDO, (48)

V̇2 ≤−2φV 1−m
2 , if t ≥ TDO. (49)

Since 1−m < 1 and φ > 0, according to Lemma 3, it can
be obtained from (49) that

V2 = 0, if t ≥ tV2 , (50)

where the constant tV2 is a finite convergence time. Inte-
grating (48) from t = TDO to t = tV2 gives∫ V2(tV2)

V2(TDO)

1
V 1−m

2 +V 1+m
2

d (V2)≤−
∫ tV2

TDO

2φdt. (51)

Then, we have

tV2 ≤

(∫ V2(tV2)

V2(TDO)

1
V 1−m

2 +V 1+m
2

dV2

)
/(−2φ)

=

(∫ V2(TDO)

V2(tV2)

1
V 1−m

2 +V 1+m
2

dV2

)
/(2φ)

= atan(V m
2 (TDO))/(2mφ)

− atan(V m
2 (tV2))/(2mφ) . (52)

Considering (50) and (46) (s is bounded in arbitrary
finite time), it can be known that atan(V m

2 (tV2)) and
atan(V m

2 (TDO)) is bounded. Then we have

tV2 ≤ atan(V m
2 (TDO))/(2mφ)
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≤ π/(4mφ) . (53)

Thus, it can be known from (50) and (53) that the sliding-
mode surface is fixed-time stable

s = ṡ = 0, if t ≥ π/(4mφ) . (54)

Step 3: Consider x2g = x2 + h12 and the estimation er-
rors ϕ j = d j−h j2 ( j = 1,2). Then, substituting the control
input (36) into (1) gives{

ẋ1 = x2g +ϕ1,

ẋ2g =− fs−φ
(
sq + s2−q)sign(s)+ϕ2.

(55)

Construct Lyapunov function V3 as

V3 =
1
2
(
x2

1 + x2
2g

)
. (56)

Then calculating V̇3 and considering (55) give

V̇3 = x1ẋ1 + x2gẋ2g

= x1 (x2g +ϕ1)− x2g fs

− x2gφ

(
|s|q + |s|2−q

)
sign(s)+ x2gϕ2. (57)

Consider fs = K1|x1|ω1 sign(x1) + K2|x2g|ω2 sign(x2g) +
L3|x1|γ1 sign(x1)+L4|x2g|γ2 sign(x2g), we have

V̇3 = x1 (x2g +ϕ1)− x2gφ

(
|s|q + |s|2−q

)
sign(s)

− x2gK1|x1|ω1 sign(x1)−K2|x2g|1+ω2

− x2gL3|x1|γ1 sign(x1)−L4|x2g|1+γ2 + x2gϕ2

≤ x1 (x2g +ϕ1)− x2gφ

(
|s|q + |s|2−q

)
sign(s)

− x2gK1|x1|ω1 sign(x1)− x2gL3|x1|γ1 sign(x1)

+ x2gϕ2. (58)

Considering −x2g = ϕ1− (x2g +ϕ1), we have

V̇3 ≤ x1 (x2g +ϕ1)− x2gφ

(
|s|q + |s|2−q

)
sign(s)

+ϕ1K1|x1|ω1 sign(x1)+ϕ1L3|x1|γ1 sign(x1)

− (x2g +ϕ1)L3|x1|γ1 sign(x1)

− (x2g +ϕ1)K1|x1|ω1 sign(x1)+ x2gϕ2. (59)

Then, two cases can be given as
Case 1: If x1 (x2g +ϕ1) ≤ 0, we have x1ẋ1 ≤ 0. Then,

we know that x1 is bounded.
Case 2: If x1 (x2g +ϕ1)> 0, we have (x2g +ϕ1)sign(x1)>

0. Then, it can be known from (59) that

V̇3 ≤ x1 (x2g +ϕ1)− x2gφ

(
|s|q + |s|2−q

)
sign(s)

+ϕ1K1|x1|ω1 sign(x1)+ϕ1L3|x1|γ1 sign(x1)

+ x2gϕ2. (60)

Since 0 < ω1 < 0.5 and γ1 = 2ω1 +1, we have

0 < ω1 < 0.5, 1 < γ1 < 2. (61)

Then, it can be known that{
|x1|ω1 ≤ 1+ |x1|2,
|x1|γ1 ≤ 1+ |x1|2.

(62)

According to Young’s inequality [42] and (62), then ( 60)
can be rewritten as

V̇3 ≤(1+ |ϕ1|(K1 +L3))x2
1 +3/2x2

2g

+
(
|ϕ1|2+|ϕ2|2

)
/2+ |φ |2

(
|s|q + |s|2−q

)2
/2

+(K1 +L3) |ϕ1| . (63)

It can be known from Theorem 1 that the estimation error
ϕ j = d j− h j2 ( j = 1, 2) is bounded from the initial time.
And considering we have proved that s is bounded in ar-
bitrary finite time (see (46)), we have

1+ |ϕ1|(K1 +L3)≤ L̄1max, if t ≤ ts, (64)

and (
|ϕ1|2+|ϕ2|2

)
/2+|φ |2

(
|s|q + |s|2−q

)2
/2

+(K1 +L3) |ϕ1|
≤ L̄2max, if t ≤ ts, (65)

where L̄jmax ( j = 1, 2) are unknown constants and ts is an
arbitrary finite time. Then, combining (63), (64) and (65)
yields

V̇3 ≤ 2Kmax
(
x2

1+x2
2g

)
/2+ L̄2max

≤ 2KmaxV3 + L̄2max, if t ≤ ts, (66)

where Lmax and Kmax are unknown positive constants. And
Kmax is given as

Kmax = max{L̄1max, 3} . (67)

Thus, it can be known easily from (66) that V3, x1 and x2g

are bounded in arbitrary finite time ts for Case 1. Combin-
ing the results of Cases 1 and 2, in arbitrary finite time, we
know that V3, x1 and x2g are bounded.

Step 4: Considering (54), the system dynamic (1) is re-
duced as follows in a fixed time

ẋ1 = x2g +ϕ1 and ẋ2g =− fs, if t ≥ t1. (68)

Combining (34) and (68), the system dynamic (1) is re-
duced as follows in a fixed time t2 = max{π/(4mφ), TDO}

ẍ1 =− fs

=−K1|x1|ω1 sign(x1)−K2|ẋ1|ω2 sign(ẋ1)
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−L3|x1|γ1 sign(x1)−L4|ẋ1|γ2 sign(ẋ1) ,

if t ≥ t2. (69)

According to the Step 3 above, we know that x1 (t2) is
bounded. Then, based on Lemma 2, we know that the sys-
tem (1) is fixed-time output stable

x1 = 0, if t ≥ t2 + tx, (70)

and

tx < Txmax, (71)

where Txmax is a constant and not related to the initial sys-
tem conditions. Since t2 = max{π/(4mφ), TDO} is also a
constant and not related to the initial system conditions,
(37) and (38) can be guaranteed.

Remark 2: The stability proof in Theorem 2 consid-
ered the affect of estimation errors ϕ j = d j− h j2 ( j = 1,
2). Thus, this is a proof of fixed-time output stability for
the whole hybrid system which contains the observer sys-
tem and controller system. Based on this proof, it can be
known that the fixed-time stability of sliding-mode surface
s and output state x1 will not be affected by the observer
dynamic.

Remark 3: Based on the integral design of sliding-
mode surface (35), we can know from (36) that the pro-
posed controller does not contain any singular term.

Remark 4: Unlike the finite-time DOSMC (15), the
proposed scheme (68) can achieve a convergence time
which is bounded by a fixed constant. This implies that
the proposed scheme provides a similar excellent conver-
gence performance without adjusting the control param-
eters under different initial system conditions. To future
illustrate this advantage, a simulation comparison for the
finite-time and proposed fixed-time DOSMC with differ-
ent initial system conditions will be given in Section 4.

4. SIMULATION RESULTS

The simulation is presented in this section. We consider
the following mismatched uncertain system

ẋ1 = x2 +d1(t),

ẋ2 =−4x1−10x2 +5sin(x1)+u+d2(t),

y = x1.

(72)

The disturbances are selected as{
d1(t) = 2+ sin(t)−0.5cos(t),

d2(t) = cos(t)+ cos(2t) .
(73)

For the comparison, TSMC (4), DOSMC (9), finite-time
DOSMC (13) and proposed fixed-time DOSMC (36) are
considered in this section.
The parameters of TSMC are selected as

c1 = 1, k1 = 15. (74)

The parameters of DOSMC are selected as

lDO = 10, c2 = 1, k2 = 35. (75)

The parameters of finite-time DOSMC are chosen as

λ0 = 5, λ1 = 5, λ2 = 5, ρ0 = 2, ρ1 = 2,

ρ2 = 2, L1 = 3, L2 = 3, α31 = 0.3, α32 = 0.6,

k31 = 10, k32 = 7, k33 = 5, k34 = 5. (76)

The parameters of fixed-time DOSMC are chosen as

q = 0.4, φ = 4, ω1 = 0.3, K1 = 8/3, K2 = 5/3,

L3 = 8/3, L4 = 5/3, L = 4, µ11 = µ21 = 3
√

L,

µ12 = µ22 = 1, µ13 = µ23 = 2.2L. (77)

To remove the chattering, the symbolic function in
fixed-time DOSMC (36), TSMC (4) and DOSMC (9) are
modified by the following sigmf() as in [20]:

sigmf(υ) =
(

1
1+e−∂υ

−1/2
)
, (78)

where ∂ is selected as 30.
The following three different kinds of initial system

conditions which are chosen from the small value to the
large value are considered

Case 1 (Small initial system states): The initial system
states are set as x1(0) = 4, x2(0) = 0. Figs. 1-4 give the
simulation results of Case 1. From Fig. 1, the TSMC can-
not guarantee the system output x1 converge to zero. This
is because TSMC cannot suppress the mismatched distur-
bance, as stated in Subsection 2.2. From Fig. 1, the three
DOSMC methods (DOSMC, finite-time DOSMC and pro-
posed fixed-time DOSMC) can suppress the mismatched
disturbance. But the DOSMC cannot control the system
output x1 converge to zero, and the convergence rate of
DOSMC is much slower than the finite-time and fixed
time DOSMC. As stated in Subsection 2.2, the reason is
that the DO of DOSMC cannot drive the estimation er-
ror of mismatched disturbance to zero (see Fig. 2), and
the DOSMC is designed based on the asymptotic stability.
Fig. 1 also show that both the finite-time and fixed-time
DOSMC can effectively suppress the disturbances and
drive the state x1 to zero in 3 seconds. Then, we can know
that the control parameters used in Case 1 for the finite-
time DOSMC and fixed-time DOSMC guarantee a simi-
lar good convergence performance when the initial system
states are small. Moreover, from Figs. 1-4, we can know
that the state x1, the estimation errors ϕ j ( j = 1, 2) and
sliding-mode surface s of proposed fixed-time DOMSC
are all bounded during the convergence period of system
states and estimation errors. Thus, this simulation result
illustrates the four steps of the proof of Theorem 2.

Case 2 (Larger initial system states): To guarantee the
fairness of comparison, we still chosen the same control
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Fig. 1. The system output x1 of Case 1 (small initial sys-
tem states).
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Fig. 2. The estimation error of d1 of Case 1 (small initial
system states).

parameters as in Case 1. We only increase initial states to
x1 (0) = 20 and x2 (0) = 0 in this case. Figs. 5 and 6 give
the simulation results of Case 2. From Fig. 5, unlike Case
1, we know that the finite-time DOSMC cannot guarantee
the system output x1 in 3 seconds. The convergence per-
formance of the DOSMC and finite-time DOSMC both
are affected. As stated in Subsection 2.2, this is because
the convergence time of DOSMC and finite-time DOSMC
are not independent on the initial system conditions. From
Fig. 5, like the result in Case 1, the proposed fixed-time
DOSMC still guarantees the system output x1 is conver-
gent to zero in 3 seconds and is not affected by the increase
of initial system conditions.

Case 3 (Super large initial system states): To guarantee
the fairness of comparison, we still chosen the same con-
trol parameters as in Cases 1 and 2. Compared with Cases
1 and 2, we only increase the initial states to x1 (0) = 50
and x2 (0) = 0. It can be known that the initial system
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Fig. 3. The estimation error of d2 of Case 1 (small initial
system states).
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Fig. 4. The sliding-mode surface s of Case 1 (small initial
system states).

states in Case 3 are much larger than that in Case 1 and
2. Figs. 7 and 8 give the simulation results of Case 3.
From Fig. 7, the convergence performances of DOSMC
and finite-time DOSMC are greatly affected. Like the re-
sults in Cases 1 and 2, Fig. 7 also shows the excellent con-
vergence performance of fixed-time DOSMC still can be
guaranteed.

For convenience, the convergence performances of
finite-time DOSMC and proposed fixed-time DOSMC in
the above three cases are plotted in the Figs. 9 and 10.
From Figs. 9 and 10, the convergence performance of
finite-time DOSMC are gradually affected with the in-
crease of initial system states. The proposed fixed-time
DOSMC still achieve similar excellent convergence per-
formance under the three cases.

Then, the following conclusion of simulation can be
given as follows:

1) The performance of TSMC is affected by the mis-
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Fig. 5. The control input u of Case 1 (small initial system
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Fig. 6. The system output x1 of Case 2 (larger initial sys-
tem states).

matched disturbance (Figs. 1, 5, and 7). By using the
estimation of mismatched disturbance to design the
sliding-mode surface, the DOSMC effectively sup-
press the mismatched uncertainties. Meanwhile, with
the help of nonlinear DO and nonlinear sliding-mode
surface, the finite-time and fixed time DOSMC can
provide faster convergence rate and higher precision
than the conventional DOSMC (Figs. 1-3).

2) But, for the finite-time DOSMC, the convergence per-
formance may be affected if the initial system condi-
tions are change. In particular, the convergence per-
formance of finite-time DOSMC may exhibit poor
convergence performance if the initial conditions are
large (Figs. 1, 5, 7, and 9). Unlike the existing finite-
time DOSMC, the convergence rate of proposed
fixed-time DOSMC are independent on the initial sys-
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Fig. 7. The control input u of Case 2 (larger initial system
states).
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Fig. 8. The system output x1 of Case 3 (super large initial
system states).

tem conditions (Figs. 1, 5, 7, and 10).

5. CONCLUSION

A new fixed-time DOSMC was proposed for systems
with mismatched and matched disturbances. The con-
vergence rates of conventional DOSMC and finite-time
DOSMC can be affected by the initial system condi-
tions. The main contribution here is that the proposed
fixed-time DOSMC scheme not only achieve a similar re-
ject performance for mismatched disturbance like exist-
ing DOSMC schemes, but also can guarantee a excellent
convergence performance which is not related to the ini-
tial system conditions. The proposed fixed-time DOSMC
suppressed the mismatched uncertainties effectively, and
achieved a better convergence performance than the exist-
ing DOSMC schemes when the initial system conditions
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Fig. 9. The control input u of Case 3 (super large initial
system states).
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Fig. 10. The convergence rates of x1 under finite-time
DOSMC for the three cases.

change greatly. In the future, the proposed method will be
improved from two aspect. First, many engineering sys-
tems not only are affected by mismatched uncertainties
but also are high order, such as the flexible joint manip-
ulator is a four-order mismatched system, and the inte-
grated guidance and control system of missile is a three-
order mismatched system. Second, although the conver-
gence time of proposed scheme is bounded by a constant,
the estimation of the upper bound is crude. Thus, we will
focus on the improvement of estimation precision of con-
vergence time in the future research.
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