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New Explicit Criteria for Finite-time Stability of Singular Linear Systems
Using Time-dependent Lyapunov Functions
Qian Ma and Yuangong Sun* �

Abstract: In this paper, the finite time stability and H∞ finite-time stability of singular linear systems are considered.
By constructing a class of time-dependent Lyapunov functions and introducing a zero term with free weighting
matrices, we first establish a new explicit criterion in the form of LMIs for finite-time stability of the system.
Then, an H∞ finite-time stability criterion for the system is obtained. The given results are easily verifiable and
less conservative compared with some existing ones in the literature. Finally, four numerical examples are given to
demonstrate the effectiveness of the proposed method.
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1. INTRODUCTION

Singular system is the basic model in the field of sys-
tem and control science, which is also called differential
algebraic system, implicit system or descriptive system. In
the last two decades, singular system has attracted much
attention due to its extensive application in practice. Com-
pared with the normal system, the performance analysis
of singular systems becomes more complex [1–9]. For ex-
ample, in the stability analysis of singular systems, it is
necessary to consider not only the stability, but also the
absence of pulses.

Finite-time stability is different from the usual stability
concepts such as asymptotic stability and input-output sta-
bility in the sense of Lyapunov. The former mainly stud-
ies the behavior of the system in the finite time interval,
while the latter focuses on the state estimation of the sys-
tem in the whole time period. In the practical application,
the concept of finite-time stability is more consistent with
the actual situation. As a result, more and more scholars
pay attention to the issue of finite time stability of singular
systems. Many results about finite-time stability have been
reported, such as [10–17] for linear systems, and [18–23]
for singular systems. Some finite-time control problems
of singular systems also have been solved in [24–27]. For
more information of finite-time stability for singular sys-
tems, see references [28–33].

At present, although there are a lot of results aimed at
finite-time stability of singular systems, most of them are

presented by using time-independent Lyapunov functions.
There are only few results that are derived from time-
dependent Lyapunov functions. On the other hand, the ex-
isting results for finite-time stability of singular systems
based on time-dependent Lyapunov functions are usually
determined by some matrix differential inequalities that
are not easy to be solved. In this paper, by constructing
a class of time-dependent Lyapunov functions and intro-
ducing a zero term with free weighting matrices, new ex-
plicit conditions for finite-time stability and H∞ finite-time
stability are given in terms of linear matrix inequalities,
which do not contain unsolvable matrix differential in-
equalities. Compared with some existing results in the lit-
erature, the obtained results are easily verifiable and less
conservative owing to the introduction of a zero term with
free weighting matrices.

The rest of this paper is as follows: In Section 2, prob-
lem statements and preliminaries are given. Section 3
presents explicit conditions for finite-time stability and H∞

finite-time stability of singular linear systems. Section 4
gives four numerical examples to demonstrate the effec-
tiveness of the obtained results. Section 5 summarizes this
paper.

2. PROBLEM STATEMENTS AND
PRELIMINARIES

Throughout this paper, Rn stands for the vector space of
all n-tuples of real numbers, Rn×m is the space of n×m ma-
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trices with real entries. For a matrix A ∈ Rn×n, A> denotes
the transpose of A. Given a symmetric matrx P ∈ Rn×n,
P > 0 (P < 0) means that P is positive definite (nega-
tive definite). In addition, if the dimensions of matrices
and vectors are clear in context, they will not be explicitly
mentioned.

Consider the following continuous-time singular linear
system

Eẋ(t) = Ax(t)+Bw(t),

y(t) =Cx(t)+Dw(t), (1)

where x(t) ∈ Rn is the state vector for t ∈ [0,T ] with
T > 0, E ∈ Rn×n is a singular matrix with rank(E) = r < n,
y(t) ∈ Rp is the measured output, w(t) ∈ Rq is the distur-
bance input, A,B,C,D are constant matrices of appropriate
dimensions.

Definition 1 [22]: Given positive scalars T , c1, c2 and
a positive definite matrix U , system (1) with w(t) ≡ 0 is
said to be finite-time stable with respect to (T,U,c1,c2) if

x>(0)E>UEx(0)≤ c1⇒ x(t)>E>UEx(t)≤ c2,

where t ∈ [0,T ].
Definition 2 [4]: Given positive scalars T , c1, c2, γ and

a positive definite matrix U , system (1) is said to be H∞

finite-time stable with respect to (T , U , c1, c2, γ) if system
(1) with w(t) ≡ 0 is finite-time stable with respect to (T ,
U , c1, c2), and under the zero-initial condition the output
y(t) satisfies

∫ T
0 y>(s)y(s)ds≤ γ

∫ T
0 w>(s)w(s)ds.

Definition 3 [27]: i) Singular system is regular if
det(sE − A) is not identical zero. ii) Singular system is
impulse-free if deg(det(sE−A)) = r = rank(E).

We are also concerned with the following discrete-time
singular linear system

Ex(k+1) = Ax(k)+Bw(k),

y(k) =Cx(k)+Dw(k), (2)

where x(k) ∈ Rn is the state vector for k = 0,1, · · · ,T −1,
E ∈ Rn×n is a singular matrix satisfying rank(E) = r < n,
y(k) ∈ Rp is the measured output, w(k) ∈ Rq is the dis-
turbance input, A,B,C and D are matrices of appropriate
dimensions.

Definition 4 [22]: Given positive scalars T , c1, c2 and
a positive definite matrix U , system (2) with w(k) ≡ 0 is
said to be finite-time stable with respect to (T,U,c1,c2) if

x>(0)E>UEx(0)≤ c1⇒ x>(k)E>UEx(k)≤ c2,

where k = 0, 1, · · · , T −1.
Definition 5 [22]: Given positive scalars T , c1, c2, γ

and a positive definite matrix U , system (2) is said to be
H∞ finite-time stable with respect to (T , U , c1, c2, γ) if
system (2) with w(k)≡ 0 is finite-time stable with respect
to (T , U , c1, c2), and under the zero-initial condition the
output y(k) satisfies ∑

T
k=0 y>(k)y(k)≤ γ ∑

N
k=0 w>(k)w(k).

3. MAIN RESULTS

Since rank(E) = r < n, there are two nonsingular ma-

trices M,N such that MEN =

(
Ir 0
0 0

)
. Let

MAN =

(
A11 A12

A21 A22

)
, M̄ =

(
0 0
0 In−r

)
M.

Lemma 1 [7]: Singular system (1) is impulse-free, if
and only if A22 is nonsingular.

3.1. The FTS of continuous time singular systems
For system (1), we construct the following time-

dependent Lyapunov function

V (t,x(t)) = x>(t)E>G(t)Ex(t),

where G(t) =P−tQ for t ∈ [0,T ], P and Q are appropriate
constant matrices. Set

(M>)−1PM−1 =

(
P11 P12

P21 P22

)
,

(M>)−1QM−1 =

(
Q11 Q12

Q21 Q22

)
.

It is obvious that M̄AN =

(
0 0

A21 A22

)
. We first establish

an explicit finite-time stability criterion for system (1).
Theorem 1: Given positive scalars T,c1 < c2 and a pos-

itive definite matrix U , system (1) with w(t)≡ 0 is finite-
time stable with respect to (T,U,c1,c2) if there exist a pos-
itive constant α > 1, a positive definite matrix P, a sym-
metric matrix Q and two free weighting matrices R and R̃
such that

X1 < 0, (3)

X2 < 0, (4)

U < P, U < P−T Q, (5)

P < αU, (6)

αc1 < c2, (7)

where

X1 = A>PE +E>PA−E>QE−RM̄A−A>M̄>R>,

X2 = A>(P−T Q)E +E>(P−T Q)A−E>QE

− R̃M̄A−A>M̄>R̃>.

Proof: The proof will be divided into the following two
parts:

Part I: We first show that system (1) is regular and
impulse-free. Since N is nonsingular, we get from (3) that

0 >N>(A>PE +E>PA−E>QE−RM̄A

−A>M̄>R>)N



1188 Qian Ma and Yuangong Sun

= N>A>M>(M>)−1PM−1MEN−N>RM̄AN

+N>E>M>(M>)−1PM−1MAN

−N>E>M>(M>)−1QM−1MEN

−N>A>M̄>R>N

=

(
P11A11 +P12A21 P11A12 +P12A22

0 0

)
+

(
A>11P11 +A>21P21 0
A>12P11 +A>22P21 0

)
−
(

Q11 0
0 0

)
−
(
(N>R)12A21 (N>R)12A22

(N>R)22A21 (N>R)22A22

)
−
(
(N>R)12A21 (N>R)12A22

(N>R)22A21 (N>R)22A22

)>
,

which implies (N>R)22A22 +A>22(N
>R)>22 > 0. Therefore,

A22 is nonsingular. That is, system (1) is regular, and hence
it is also impulse-free by Lemma 1.

Part II: Taking the derivative of V (t,x(t)) with respect
to t along the trajectory of system(1), we have

V̇ (t,x(t))=x>(t)(A>G(t)E+E>G(t)A−E>QE)x(t).
(8)

Noting that M̄E = 0 and multiplying both sides of (1) by
−2x>(t)F(t)M̄ from the right, where F(t) = R− tW for
t ∈ [0,T ] and W = (R− R̃)/T , we get

−2x>(t)F(t)M̄Ax(t) = 0. (9)

Combining (8) and (9) gives

V̇ (t,x(t)) = x>(t)Ω(t)x(t), (10)

where

Ω(t) = A>G(t)E +E>G(t)A−E>QE

−F(t)M̄A−A>M̄>F>(t).

Next we show that Ω(t)< 0 for t ∈ [0,T ]. Denote H(t) =
ξ>Ω(t)ξ , t ∈ [0,T ], ξ ∈ Rn. It is sufficient to verify that
H(t)< 0 for t ∈ [0,T ], ξ ∈ Rn and ξ 6= 0. For any ξ ∈ Rn

and ξ 6= 0, it is easy to see that H(t) is monotone. Con-
sequently, H(t) < 0 for t ∈ [0,T ] if Ω(0) = X1 < 0 and
Ω(T )=X2 < 0, which is an immediate result of conditions
(3) and (4). It implies that V̇ (t,x(t))≤ 0 for t ∈ [0,T ]. On
the other hand, similar to the above analysis, we get from
(5) that G(t)>U for t ∈ [0,T ]. This together with (6) and
(7) yields that

x>(t)E>UEx(t)≤V (t,x(t))

≤ x>(0)E>G(0)Ex(0)

= x>(0)E>PEx(0)

≤ αx>(0)E>UEx(0)

≤ αc1 ≤ c2, t ∈ [0,T ],

i.e., system (1) is finite-time stable with respect to
(T,U,c1,c2). This completes the proof of Theorem 1.

Remark 1: Although a time-dependent Lyapunov func-
tion defined by (1) has been used in the proof of Theorem
1, the given conditions are explicit linear matrix inequali-
ties, which can be verified easily by using the LMI Tool-
box in Matlab.

Remark 2: In the proof of Theorem 1, we introduce
a zero term F(t)M̄E ≡ 0 for t ∈ [0,T ], where the time-
varying matrix F(t) = R− t(R− R̃)/T for certain free
weighting matrices R and R̃. Due to the introduction of
the free weighting matrices R and R̃ in (3) and (4), The-
orem 1 is less conservative than some existing results in
the literature. For details, please see Example 1 given in
Section 4.

Next, we further present the following H∞ finite-time
stability criterion for system (1).

Theorem 2: Given positive scalars T , c1 < c2, γ and a
positive definite matrix U , system (1) is H∞ finite-time sta-
ble with respect to (T , U , c1, c2, γ) if there exist a positive
constant α > 1, a positive definite matrix P, a symmetric
matrix Q and two free weighting matrices R and R̃ such
that (

X3 X4

X>4 D>D− γI

)
< 0, (11)(

X5 X6

X>6 D>D− γI

)
< 0, (12)

and conditions (5)-(7) holds, where

X3 = A>PE +E>PA−E>QE +C>C

−RM̄A−A>M̄>R>,

X4 = E>PB+C>D−RM̄B,

X5 = A>(P−T Q)E +E>(P−T Q)A+C>C

−E>QE− R̃M̄A−A>M̄>R̃>,

X6 = E>(P−T Q)B+C>D− R̃M̄B.

Proof: The proof will be divided into the following two
parts:

Part I: We first show that system (1) is regular and
impulse-free. From (11), we get

0>A>PE+E>PA+C>C−E>QE−RM̄A−A>M̄>R>.

Since C>C≥ 0 and N is nonsingular, it yields that A>PE+
E>PA− E>QE − RM̄A− A>M̄>R> < 0. The remaining
proof is similar to that given in Theorem 1, and hence it is
omitted.

Part II: Taking the derivative of V (t,x(t)) with respect
to t along the trajectory of system (1), we have

V̇ (t,x(t)) =x>(t)A>G(t)Ex(t)− x>(t)E>QEx(t)

+w>(t)B>G(t)Ex(t)
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+ x>(t)E>G(t)Ax(t)

+ x>(t)E>G(t)Bw(t). (13)

Set

Φ(t) = V̇ (t,x(t))+ y>(t)y(t)− γw>(t)w(t). (14)

From (13) and (14), we have

Φ(t) = h>(t)Ψ(t)h(t), (15)

where

h(t) = (x>(t),w>(t))>,

Ψ(t) =
(

Ψ1(t) E>G(t)B+C>D
B>G(t)E +D>C D>D− γI

)
,

Ψ1(t) = A>G(t)E +E>G(t)A+C>C−E>QE.

Noticing M̄E = 0 and multiplying both sides of (1) by
−2x>(t)F(t)M̄ from the right, where F(t) = R− tW for
t ∈ [0,T ] and W = (R− R̃)/T , we get

−2x>(t)[F(t)M̄Ax(t)+F(t)M̄Bw(t)] = 0. (16)

Combining (15) and (16) gives Φ(t) = h>(t)Ω(t)h(t),
where

Ω(t) =
(

Ω1(t) Ω2(t)
Ω>2 (t) D>D− γI

)
,

and

Ω1(t) = A>G(t)E +E>G(t)A+C>C−E>QE

−F(t)M̄A−A>M̄>F>(t),

Ω2(t) = E>G(t)B+C>D−F(t)M̄B.

Next, we show that Ω(t) < 0 for t ∈ [0,T ], which can be
derived from conditions (11) and (12) by following the
same analysis in the proof of Theorem 1. It implies that
Φ(t)≤ 0 for t ∈ [0,T ]. Since condition (5) guarantees that
V (t,x) is nonnegative, an integration from 0 to T under the
zero-initial condition yields∫ T

0
y>(s)y(s)ds≤ γ

∫ T

0
w>(s)w(s)ds.

On the other hand, it is obvious that conditions (11) and
(12) imply that conditions (3) and (4). By using Theorem
1, system (1) with w(t) ≡ 0 is finite-time stable with re-
spect to (T,U,c1,c2). Therefore, system (1) is H∞ finite-
time stable with respect to (T,U,c1,c2,γ). This completes
the proof of Theorem 2.

3.2. The FTS of discrete time singular systems
For system (2), we construct the following time-

dependent Lyapunov function

V (k,x(k)) = x>(k)E>G(k)Ex(k),

where G(k) = P− kQ for k = 0,1, · · · ,T , P and Q are ap-
propriate constant matrices.

We first establish an explicit finite-time stability crite-
rion for system (2).

Theorem 3: Given positive scalars T,c1,c2 and a posi-
tive definite matrix U , system (1) with w(k) ≡ 0 is finite-
time stable with respect to (T,U,c1,c2) if there exist a pos-
itive constant α > 1, a positive definite matrix P, a sym-
metric matrix Q and two free weighting matrices R and R̃
such that

A>(P−Q)A−E>PE−RM̄A−A>M̄>R> < 0, (17)

X1 < 0, (18)

U < P, U < P−T Q, (19)

P < αU, (20)

αc1 < c2, (21)

where X1 =A>(P−T Q)A−E>(P−(T−1)Q)E−R̃M̄A−
A>M̄>R̃>.

Proof: The proof will be divided into the following
three parts:

Part I: Condition (19) implies that P−Q > 0, and
hence A>(P−Q)A ≥ 0 (see the analysis given in the se-
quel Part III). Since N is nonsingular, we get from (17)
that

0 >N>(−E>PE−RM̄A−A>M̄>R>)

=−N>E>M>(M>)−1PM−1MEN

−N>RM̄AN−N>A>M̄>R>N

=−
(

I 0
0 0

)(
P11 P12

P21 P22

)(
I 0
0 0

)
−
(
(N>R)11 (N>R)12

(N>R)21 (N>R)22

)(
0 0

A21 A22

)
−
(

0 A>21
0 A>22

)(
(N>R)11 (N>R)12

(N>R)21 (N>R)22

)>
=−

(
(N>R)12A21 (N>R)12A22

(N>R)22A21 (N>R)22A22

)
−
(
(N>R)12A21 (N>R)12A22

(N>R)22A21 (N>R)22A22

)>
−
(

P11 0
0 0

)
,

which implies (N>R)22A22 +A>22(N
>R)>22 > 0. Therefore,

A22 is nonsingular. That is, system (2) is regular, and hence
it is also causal by Lemma 1.

Part II: Let ∆V be the difference of V (·). We have

∆V =x>(k+1)E>G(k+1)Ex(k+1)

− x>(k)E>G(k)Ex(k)

=x>(k)(A>G(k+1)A−E>G(k)E)x(k). (22)
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Noting that M̄E = 0 and multiplying both sides of (1) by
−2x>(k)F(k)M̄ from the right, where F(k) = R− kW for
k = 0,1, · · · ,T −1 and W = (R− R̃)/(T −1), we get

−2x>(k)F(k)M̄Ax(k) = 0. (23)

Combining this and conditions (22) and (23) gives

V (x(k+1))−V (x(k)) = x>(k)Ω(k)x(k),

where

Ω(k) =A>G(k+1)A−E>G(k)E

−F(k)M̄A−A>M̄>F>(k).

Next we show that Ω(k) < 0 for k = 0, 1, · · · , T − 1. De-
note H(k) = ξ>Ω(k)ξ , k = 0, 1, · · · , T − 1, ξ ∈ Rn. It is
sufficient to verify that H(k) < 0 for k = 0,1, · · · ,T − 1,
ξ ∈ Rn and ξ 6= 0. For any ξ ∈ Rn and ξ 6= 0, it is easy
to see that H(k) is monotone. Consequently, H(k)< 0 for
k = 0, 1, · · · , T −1 if

Ω(0) = A>(P−Q)A−E>PE−RM̄A−A>M̄>R>

<0,

and Ω(T − 1) = X1 < 0, which is an immediate result of
conditions (17) and (18).

Part III: Similar to the same discussion in Part II,
we can obtain from condition (19) that G(k) > U for
k = 0,1, · · · ,T . Therefore, conditions (19)-(21) imply that

x>(k)E>UEx(k)≤V (x(k))

≤ x>(0)E>PEx(0)

≤ αx>(0)E>UEx(0)

≤ αc1

≤ c2, k = 0,1, · · · ,T,

i.e., system (2) is finite-time stable with respect to
(T,U,c1,c2). This completes the proof of Theorem 3.

Next, we further present the following H∞ finite-time
stability criterion for system (2).

Theorem 4: Given positive scalars T,c1,c2,γ and a pos-
itive definite matrix U , system (2) is H∞ finite-time stable
with respect to (T,U,c1,c2,γ) if there exist a positive con-
stant α > 1, a positive definite matrix P, a symmetric ma-
trix Q and two free weighting matrices R and R̃ such that(

X2 X>3
X3 B>(P−Q)B+D>D− γI

)
< 0, (24)(

X4 X>5
X5 B>(P−T Q)B+D>D− γI

)
< 0, (25)

and conditions (19)-(21) holds, where

X2 = A>(P−Q)A+C>C−E>PE−RM̄A

−A>M̄>R>,

X3 = B>(P−Q)A+D>C−B>M̄>R>,

X4 = A>(P−T Q)A+C>C− R̃M̄A

−E>(P− (T −1)Q)E−A>M̄>R̃>,

X5 = B>(P−T Q)A+D>C−B>M̄>R̃>.

Proof: The proof will be divided into the following two
parts:

Part I: We first show that system (2) is regular and
causal. From (24), we get

A>PA+C>C−E>PE−RM̄A−A>M̄>R> < 0.

Since A>PA ≥ 0, C>C ≥ 0 and N is nonsingular, it yields
that−E>PE−RM̄A−A>M̄>R> < 0. The remain proof is
similar to that given in Theorem 1, and hence it is omitted.

Part II: Let ∆V be the difference variation of V (·).
Then, we have

∆V =x>(k+1)E>G(k+1)Ex(k+1)

− x>(k)E>G(k)Ex(k)

=x>(k)A>G(k+1)Ax(k)

+2x>(k)A>G(k+1)Bw(k)

+w>(k)B>G(k+1)Bw(k)

− x>(k)E>G(k)Ex(k). (26)

Set

Φ(k) =V (x(k+1))−V (x(k))+ y>(k)y(k)

− γw>(k)w(k), k = 0,1, · · · ,T −1. (27)

From (26) and (27), we have

Φ(k) =
(

x>(k) w>(k)
)

Ψ(k)
(

x(k)
w(k)

)
, (28)

where

Ψ(k) =
(

Ψ1(k) Ψ>2 (k)
Ψ2(k) B>G(k+1)B+D>D− γI

)
,

Ψ1(k) = A>G(k+1)A−E>G(k)E +C>C,

Ψ2(k) = B>G(k+1)A+D>C.

Since M̄E = 0, multiplying both sides of (2) by
−2x>(k)F(k)M̄ from the right, where F(k) = R− kW
is defined as in the proof of Theorem 1, we get

−2x>(k)[F(k)M̄Ax(k)+F(k)M̄Bw(k)] = 0. (29)

Combining this and conditions (28) and (29) gives

Φ(k) =
(

x>(k) w>(k)
)

Ω(k)
(

x(k)
w(k)

)
, (30)
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where

Ω(k) =
(

Ω1(k) Ω>2 (k)
Ω2(k) B>G(k+1)B+D>D− γI

)
,

Ω1(k) = A>G(k+1)A+C>C−E>G(k)E

−F(k)M̄A−A>M̄>F>(k),

Ω2(k) = B>G(k+1)A+D>C−B>M̄>F>(k).

We can show that Ω(k) < 0 for k = 0,1, . . . ,T −1, which
can be derived from conditions (24) and (25) by follow-
ing the proof of Theorem 3. Consequently, summing Φ(k)
from k = 0 to T , under the zero-initial condition, it holds
∑

N
k=0 y>(k)y(k)≤ γ ∑

N
k=0 w>(k)w(k). On the other hand, it

is obvious that conditions (24) and (25) imply that condi-
tions (17) and (18). By using Theorem 3, system (2) with
w(k)≡ 0 is finite-time stable with respect to (T,U,c1,c2).
Therefore, system (2) is H∞ finite-time stable with respect
to (T,U,c1,c2,γ). This completes the proof of Theorem 4.

4. EXAMPLES

Example 1: Consider the singular system (1) with

w(t) ≡ 0, E =

(
1 −0.9
0 0

)
and A =

(
0.2 0.6
0.4 1

)
. Let U

be an identity matrix, T = 50. Choose α = 1.01,c1 =
0.1,c2 = 0.102. By a simple algebraic computation, we
can find

M =

(
1 0
1 −1

)
, M̄ =

(
0 0
1 −1

)
.

Using the LMI toolbox of Matlab to solve inequalities
(3)-(7), we get that they are feasible with appropriate ma-
trices P, Q, R and R̃. According to Theorem 1, system
(1) is finite-time stable with respect to (T,U,c1,c2). The
state trajectory of system (1) under the initial condition
x(0) = (0.51,−0.2)> and the system response from [0,50]
are shown in Figs. 1 and 2. However, when applying The-
orem 1 in [19] and [31] to the above example, we find it
is infeasible. Although Theorem 1 in [33] can be applied
to this example, it yields that c2 = 0.7 which is conserva-
tive than the estimation given by our result. The system
response from 0 to 50s are shown in Fig. 1.

Example 2: Consider the singular system (1), where

E =

(
−1 1.5
0 0

)
, A =

(
0.1 0.01

0.02 0.41
!
)
,

B =

(
0.12 0.05
0.04 0.02

)
, C =

(
0.1 0.02
0.03 0.12

)
,

and D =

(
0.02 0.2
0.03 0.02

)
. Let U be an identity matrix, T =

50. Choose α = 1.71, c1 = 0.5, c2 = 0.86,γ = 0.1.
Using the LMI toolbox of Matlab to solve inequalities

(5)-(7), (11) and (12), we obtain that they are feasible with

Fig. 1. The state trajectory of system (1).

Fig. 2. The system response from 0 to 50 s.

appropriate matrices P, Q, R and R̃. According to Theorem
2, system (1) is H∞ finite-time stable with respect to (T , U ,
c1, c2, γ).

Example 3: Consider the discrete-time singular system

(2) with w(k)≡ 0 E =

(
1 −1.1
0 0

)
and A =

(
0.1 0.05
0.2 1

)
.

Let U be an identity matrix and T = 100.
Choose α = 2, c1 = 0.1, c2 = 0.21. Using the LMI tool-

box of Matlab to solve inequalities (17)-(21), we get that
they are feasible with appropriate matrices P, Q, R and R̃.
Then Theorem 3 implies that system (2) with w(k)≡ 0 is
finite-time stable with respect to (T , U , c1, c2). However,
when applying Theorem 7 in [28] to the above example,
we find it is infeasible.

Example 4: Consider the discrete-time singular system
(2) with

E =

(
2 −1
0 0

)
, A =

(
0.3 0.1
1 0

)
,
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B =

(
0.3 0.04
0.3 0.2

)
, C =

(
0.02 0.01
0.33 0.01

)
,

and D =

(
0.04 0.2
0.14 0.03

)
. Let U be an identity matrix and

T = 100.
Choose α = 1.5, c1 = 0.2, c2 = 0.31, and γ = 3. Using

the LMI toolbox of Matlab, we find that inequalities (19)-
(21), (24) and (25), are feasible with appropriate matrices
P, Q, R, and R̃. According to Theorem 4, the system is H∞

finite-time stable with respect to (T , U , c1, c2, γ).

5. CONCLUSION

In this paper, the finite time stability and H∞ finite-time
stability of singular linear systems are studied. By intro-
ducing a class of time-dependent Lyapunov functions and
a zero term with free weighting matrices, sufficient con-
ditions for finite-time stability and H∞ finite-time stability
of the system are given in terms linear matrix inequalities.
Finally, four numerical examples are given to verify the
validity of our results. For finite-time stability of singular
linear time-delay systems, it remains for further study.
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