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Robust Fault Estimation Based on Proportional Differential (PD) Learn-
ing Observer for Linear Continuous-time Systems with State Time-
varying Delay
Fuqiang You and Chao Wang* �

Abstract: This article studies the fault estimation problem of linear systems with unkown state time-varying delay.
A new PD learning observer (LO) is proposed to realize the simultaneous estimation of system states and actuator
fault. Furthermore, the time-delay dependence criterion of the existence of the proposed observer is given through
the technique of linear matrix inequalites (LMIs). Because the mismatch between the original system and the ob-
server system in the time delay term has a bad influence on the fault estimation, the H∞ performance index is
introduced. At the same time, the problem of sensor fault estimation based on PD learning observer for time-delay
systems is studied. Finally, three simulation examples are used to prove the effectiveness of the proposed method.

Keywords: Fault estimation, H∞ performance index, linear continuous-time systems, linear matrix inequalities, PD
learning observer.

1. INTRODUCTION

Modern industrial control systems are becoming more
and more complex, so the possibility of system faults is
increasing. The occurrence of actuator, sensor and com-
ponent faults may degrade system performance or cause
more serious consequences. Fault diagnosis and fault-
tolerant control technology can effectively improve the re-
liability and security of systems [1]. Fault-tolerant control
enables the closed-loop systems to be stable and have ac-
ceptable system performance even if faults occur [2]. Usu-
ally what we call fault diagnosis consists of three parts:
fault detection, fault isolation and fault estimation (fault
reconstruction) [3]. The function of fault detection and
fault isolation is to determine whether a fault occurs and
to determine the location of the fault. The task of fault es-
timation is to confirm the size of the fault and its change
process. Many fault-tolerant control systems have a fault
diagnosis subsystem that provides fault information.

In the last few decades, the fault diagnosis technol-
ogy of dynamic systems based on observer has received
extensive attention from scholars. In order to realize the
fault estimation of the system, many observer algorithms
are designed. For example, adaptive observer [4–6], slid-
ing mode observer [7–9] and learning observer (LO) etc.
[10–13]. In [4], the author solves the problem of actuator
fault estimation in nonlinear cascade systems by design-

ing an adaptive observer. In [5], The author realizes the
state estimation and the reconstruction of unknown input
based on the adaptive H∞ observer. In [6], The author stud-
ies filter design problems for nonlinear systems with con-
straints such as time delay, actuator fault, and sensor fault.
In this paper, a filter design method based on adaptive neu-
ral network is proposed. In [7], for a class of uncertain
nonlinear systems, a sliding mode observer is proposed to
realize system fault detection and fault estimation. In [8],
the author proposes a high-order sliding mode observer
to accurately estimate the observable states of multi-input
and multi-output nonlinear systems with unknown inputs,
and to estimate the unobservable states progressively. In
[9], for a class of non-infinitely observable descriptor sys-
tems, the author uses a state and fault estimation scheme
to estimate faults of system. In [10], the author uses a ro-
bust fuzzy learning observer to solve the problem of ro-
bust actuator fault estimation in the Takagi-Sugeno time-
delay system with actuator fault and unknown input. In
[11], considering the actuator fault that occur when the mi-
crosatellite is in orbit, the fault reconstruction of the satel-
lite attitude control system based on the nonlinear learning
observer is studied. In [12], The author uses the learning
observer to reconstruct the actuator fault and sensor fault
of the system respectively. In [13], the author realizes the
fault estimation of the nonlinear system with state delay
and external disturbances by learning the observer.
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Time delay is widely present in industrial control sys-
tems [14]. The existence of time delay may make the per-
formance of the system deteriorate or even cause the sys-
tem to be unstable, which brings difficulties to the accurate
analysis of the system. There are many results in research
on time-delay systems [15–24]. In [15], the paper inves-
tigates the problem of fuzzy-approximation-based adap-
tive fault-tolerant tracking control for uncertain nonlin-
ear time-varying delay systems. In [16], the author studies
the fuzzy control problem of the uncertain time-delay ac-
tive steering system with actuator fault. In [17], the author
realizes the fault-tolerant control of uncertain time-delay
system through adaptive sliding mode observer. In [18],
the author studies the faults/states estimation and active
fault-tolerant control of time-delay systems described by
the T-S fuzzy model with external disturbances and actu-
ator faults. In [19], the author uses the sliding mode ob-
server to estimate the fault and states of the system with
state and output delay. In [20], the authors studie the prob-
lem of simultaneously estimating the states and time delay
of a nonlinear system with input delay. In [21], aiming at
the unmanned ship with signal quantization and state time
delay, the author studied its adaptive sliding mode fault-
tolerant control problem. In [22], author studies an adap-
tive practical preassigned finite-time fault-tolerant control
problem for a class of time-delay nonlinear systems. In
[23], for a class of nonlinear systems , the author studied
the problem of state estimation. The system in [23] suffers
from unknown state delay and output delay. In [24], the
author studies the distributed control problem of a class of
uncertain nonlinear following time delay systems.

In recent years, the problem of fault estimation based
on learning observers has attracted the attention of many
scholars. The learning observer has the advantages of
loose fault constraints and small calculations. The learn-
ing observer can also estimate the states of the system and
the actuator faults at the same time. Based on the above
advantages, it has strong practical significance to study the
fault estimation problem of time-delay systems based on
learning observer. In [25], the author uses iterative learn-
ing observer to realize the fault detection, estimation and
compensation of time-delay nonlinear systems. Similar to
Chen and Saif [25], Jia et al. [10], and Jia et al. [12] also
use learning observers to implement fault estimation for
time-delay systems. The above-mentioned fault estima-
tion of the time-delay system uses proportional (P) learn-
ing observer and these articles assume that the time delay
is constant or the time delay must be known in advance.
However, the time delay of most systems is time-varying
and unknowable. Therefore, the fault estimation problem
of time-delay system with unknown time-varying delay
based on proportional-differential (PD) learning observer
studied in this paper has strong theoretical and practical
significance. At present, the author has not seen the use
of PD learning observer to realize the fault estimation re-

sult of linear system with unkown state time-varying de-
lay. Compared with the P learning observer, the PD learn-
ing observer introduces the differential term of the out-
put estimation error, so it is better than the P learning ob-
server in the problem of fast-changing fault estimation.
The main contributions of this article are as follows: 1)
A novel PD learning observer is proposed for the system
with unkown time-varying delay and the simultaneous es-
timation of actuator fault and system states is realized. 2)
A design criterion of the PD learning observer is given,
and the conditions of solving the gain matrices of the ob-
server is given by the linear matrix inequalities (LMIs)
technique. 3) Through the method of augmented system,
the observer mentioned in the article is used to estimate
the sensor fault.

Throughout the article, A > 0(A < 0) signifies that A
is a positive (negative) definite matrix. λmax(λmin) is the
maximum (minimum) eigenvalues of A. ∗ represents the
symmetric term of the symmetric matrix. || · || and || · ||∞
signify euclidean norm and infinity norm of the vector or
matrix, respectively. In represents the identity matrix and
its dimension is n.

2. SYSTEM DESCRIPTION

Consider the following linear system with unknown
state time-varying delay and actuator fault{

ẋ(t) = Ax(t)+Aτ x(t− τ(t))+Bu(t)+E fa(t),

y(t) =Cx(t),
(1)

where x(t) ∈ Rn , u(t) ∈ Rm, y(t) ∈ Rp are system state,
control input and measurement output vectors, respec-
tively. fa(t)∈Rm denotes actuator fault, which can be con-
stant or time-varying. Herein, A,Aτ ,B,E, and C are known
constant real matrices of appropriate dimensions. Suppose
the matrix E is of full column rank, i.e. rank(E) = m and
(A,C) is observable. τ(t) is the unkown state time-varying
delay satisfying 0≤ τ(t)≤ τ, τ̇(t)≤ τm, here τ and τm rep-
resent the upper limit of the time delay and the derivative
of time delay, respectively.

Remark 1: In this article, we assume that delay τ(t) is
differentiable, and we can know the maximum value of the
delay and the maximum value of its reciprocal. The above
assumptions are hold in many practical systems.

Three lemmas are introduced for the research behind
this article:

Lemma 1: X and Y are matrices with appropriate di-
mensions. If the P is a positive-definite symmetric matrix,
then the following inequality holds [26].

2XTY ≤ XT PX +Y T P−1Y. (2)

Lemma 2: Integral inequality (3) holds when the fol-
lowing integral terms with respect to the vector func-
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tion x(s) are meaningful, where M is a arbitrary positive-
definite symmetric constant matrix and γ > 0 [27].(∫

γ

0
x(s)ds

)T

M
(∫

γ

0
x(s)ds

)
≤ γ

∫
γ

0
xT (s)Mx(s)ds.

(3)

Lemma 3: Given a matrix X with appropriate dimen-
sions satisfying XT ΠX < 0, there is a λ > 0 such that the
following inequality holds [28].

XT
ΠX <−2λX−λ

2
Π
−1, (4)

where Π is a negative matrix.

3. ACTUATOR FAULT ESTIMATION

3.1. Design of the PD learning observer
In order to estimate the system states and fault de-

scribed by (1) at the same time, a PD learning observer
is proposed as follows:

˙̂x(t) = Ax̂(t)+Aτ x̄(t)+Bu(t)+E f̂a(t)
+L(y(t)− ŷ(t)),

ŷ(t) =Cx̂(t),
f̂a(t) = f̂a(t−d)+K(σey(t)+ ėy(t−d)),

(5)

where x̂(t) ∈ Rn and ŷ(t) ∈ Rp represent estimation of sys-
tem state and output, respectively. x̄(t) is to be designed
later. f̂a(t) is the estimation of fault fa(t), which is decided
by the (t−d) moment f̂a(t) , current output estimation er-
rors vector and its differential at the (t−d) moment. The
parameter d is called the learning interval. K and L are the
observer gain matrices to be determined. δ is a positive
number to be determined

According to [12], it can be known that the following
assumptions are sufficient conditions for the existence of
the proposed observer.

Assumption 1: From the observer expression (5), it can
be seen that the differential term of output estimating error
of the system is used. So we assume that the output of
system (1) is differentiable.

Assumption 2: rank(CE) = rank(E) = m.

Assumption 3: rank
[

A− sI E
C 0

]
= n+ rank(E).

Assumption 4: The invariant zero point of (A,E,C) is
in the left half plane of the open loop.

The state, measurable output and fault estimation error
are defined as follows:

ex(t) = x(t)− x̂(t),
ey(t) = y(t)− ŷ(t),
e f (t) = fa(t)− f̂a(t),

(6)

then the error system are described by

ėx(t) = (A−LC)ex(t)+Aτ(x(t− τ(t))− x̄(t))

+E( fa(t)− f̂a(t)),

ey(t) =Cex(t). (7)

Remark 2: Because the time delay τ(t) is unknowable,
it is not available in the observer (5). This leads to the
appearance of the mismatch term x(t− τ(t))− x̄(t) in the
error system (7). The existence of x(t−τ(t))− x̄(t) brings
challenges to the fault estimation of unknown time-delay
systems. This motivates us to conduct research in this ar-
ticle.

To deal with x(t−τ(t))− x̄(t), the error system (7) will
be rewritten. Here are the following definitions:

ω(t) = x̂(t− τ(t))− x̄(t). (8)

According to (8), the error system (7) can be rewritten
as follows:

ėx(t) = (A−LC)ex(t)+Aτ ex(t− τ(t))

+E( fa(t)− f̂ (t))+Aτ ω(t),

ey(t) =Cex(t), (9)

where ω(t) will be treated as an unknown bounded exter-
nal disturbance.

In order to reduce the impact of ω(t) on fault estima-
tion, the H∞ performance index is introduced.

J =
∫

∞

0
(eT

y (t)ey(t)− (η1ϑ(t))T (η1ϑ(t))

− (η2ϑ(t))T (η2ϑ(t)))dt, (10)

where η1 =(γ1 0), η2 =(0 γ2) and ϑ(t)= (ωT (t) ωT (t−
d))T . γ1 > 0 and γ2 > 0 are constants indicating the degree
of ω(t) attenuation level.

The objective of H∞ fault estimation:
1) The error system expressed by (9) is progressively

stable when ϑ(t) = 0.
2) The given H∞ performance index J < 0 holds when

ϑ(t) ∈ L2[0,∞).
Next we discuss x̄(t) in Observer (5). Because we are

interested in bounded systems, there are [23]

||x̂(t1)− x̂(t2)|| ≤ ρ, |t1− t2| ≤ ρt . (11)

In reality, many systems change slowly. This means that
when ρt is small, ρ is a small constant. Therefore, for a
slowly varying system with a time-varying delay τ(t) with
a small upper limit τ , we have

||x̂(t− τ(t))− x̂(t− t̄)|| ≤ ρ, ∀t̄ ∈ [0,τ]. (12)

Therefore, we can design x̄(t) into the following form:

x̄(t) = x̂(t− τ/2). (13)

The ω(t) in (9) can be written as follows:

ω(t) = x̂(t− τ(t))− x̂(t− τ/2). (14)
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Consider a linear system with unknown time delay
τ(t) ∈ [0,τ], where τ is a small value. Because the sys-
tem works in a bounded situation, the design of x̄(t) =
x̂(t− τ/2) can make ω(t) = x̂(t− τ(t))− x̂(t− τ/2) sat-
isfy ||ω(t)|| ≤ ρ , where ρ is a small value.

We define

ωmax(t) = max||x̂(t− t̄)− x̂(t− τ/2)|| t̄ ∈ [0,τ].
(15)

From the definition of ω(t), ||ω(t)|| ≤ ωmax ∀t ≥ 0 can
be obtained.

In order to estimate the states and fault simultaneously
of the system (1), The following assumption hold.

Assumption 5: Suppose that
∥∥ f̃a(t)

∥∥
∞
≤ k f , where

f̃a(t) = fa(t)− fa(t−d) and k f is a sufficiently small pos-
itive constant. f̃a(t) represents the difference of fault fa(t)
within d time interval. Time interval d can be regarded as
an unknown and adjustable number. The size of f̃a(t) can
be controlled by choosing different d. The rules for select-
ing d are as follows: when the system fault fa(t) changes
slowly, the larger d can be selected; when the system fault
fa(t) changes quickly, the smaller d should be selected.

Remark 3: In [29], The author uses a adaptive fault es-
timation algorithm (FAFE) to implement fault estimation
for time delay system. The requirement for fault in [29] is
|| ḟa(t)|| ≤ fmax where 0≤ fmax ≤ ∞. Compared with [29],
this paper has fewer constraints on faults because there is
no requirement on the derivative of faults in this paper.
Under Assumption 5, the proposed learning observer can
realize the estimation of time-varying faults, especially for
fast time-varying faults.

3.2. Stability analysis of the learning observer
In this part, refer to [30–33] on stability analysis of

time-delay systems, the stability and convergence of the
aforementioned learning observer will be demonstrated.
The following theorem serves this purpose.

Theorem 1: For the given parameters γ1, γ2, τ , τm, ε , α ,
δ , µ if there are suitable positive definite symmetric ma-
trices P > 0, Q > 0, Q1 > 0, Q2 > 0. Q3 > 0, Q4 > 0,
Q5 > 0, R > 0 and matrices Y = PL, K make the fol-
lowing equations (16), (17) and linear matrix inequalities
(18), (19), (20), (21) and (22) are established, then when
ϑ(t) = 0, the error system (9) is progressively stable, and
when ϑ(t)∈ L2[0,∞), the error system (9) meets the given
H∞ performance index.

ET P = KC, (16)

KCE− I3 = 0, (17)[
−Q (AT P−CTY T )E
∗ −I3

]
< 0, (18)[

−Q3 AT
τ CT KT

∗ −I3

]
< 0, (19)

[
−Q4 (AT P−CTY T )E
∗ −2αI +α2ET RE

]
< 0, (20)[

−Q5 AT
τ CT KT

∗ −2αI +α2ET RE

]
< 0, (21)

Ω11 Ω12 0 PAτ Ω15 Ω16 Ω17

∗ Ω22 R 0 0 Ω26 0
∗ ∗ Ω33 0 0 0 0
∗ ∗ ∗ −γ2

1 I 0 Ω46 0
∗ ∗ ∗ ∗ −γ2

2 I 0 0
∗ ∗ ∗ ∗ ∗ Ω66 0
∗ ∗ ∗ ∗ ∗ ∗ Ω77

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 Ω110 0
Ω28 0 0 0

0 0 0 0
0 Ω49 0 0
0 0 0 Ω511

0 0 0 0
0 0 0 0

Ω88 0 0 0
∗ Ω99 0 0
∗ ∗ Ω1010 0
∗ ∗ ∗ Ω1111


< 0, (22)

where

Ω11 = PA+AT P−CTY T −YC+Q+ εQ1 +Q2

−R+ τ
2(16+4δ )Q4 +CTC,

Ω12 = PAτ +R,

Ω15 =−PEKCAτ ,

Ω16 = Ω17 = τ(AT P−CTY T ),

Ω110 =
√

16δ +4δ 2CT KT ET ,

Ω22 =−ε(1− τm)Q1−2R+
1

(1− τm)
Q3 +

τ2(16+δ )

1− τm
Q5,

Ω26 = Ω28 = τAT
τ P,

Ω33 =−Q2−R,

Ω46 = Ω49 = τAT
τ P,

Ω511 =
√

16+4δAT
τ CT KT ET ,

Ω66 = Ω77 = Ω88 = Ω99 =−2αP+α
2R,

Ω1010 = Ω1111 =−2αI +α
2R.

Then the gain matrix L of the learning observer can be
obtained by the following formula (23).

L = P−1Y. (23)

Proof: The proof of Theorem 1 can be divide into the
following three parts
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Part 1: Construct a suitable Lyapunov-Krasovskii func-
tion.

Part 2: When ϑ(t) = 0, the asymptotic stability of the
error system (9) is proved.

Part 3: The observer gain matrices L, K are calculated
so that the error system (9) meets the proposed H∞ perfor-
mance index when ϑ(t) ∈ L2[0,∞).

Part 1: The Lyapunov-Krasovskii function is selected
as follows:

V (t) =V1(t)+V2(t)+V3(t)+V4(t)+V5(t)+V6(t),
(24)

where

V1(t) = ex
T (t)Pex(t)+

∫ t

t−d
ex

T (s)Qex(s)ds, (25)

V2(t)=ε

∫ t

t−τ(t)
ex

T (s)Q1ex(s)ds

+
∫ t

t−τ

ex
T (s)Q2ex(s)ds, (26)

V3(t) = τ

∫ 0

−τ

∫ t

t+θ

ėT
x (s)Rėx(s)dsdθ , (27)

V4(t) =
1

1− τm

∫ t−τ(t)

t−τ(t)−d
ex

T (s)Q3ex(s)ds, (28)

V5(t) = τ
2(16+4δ )

∫ t

t−d
ex

T (s)Q4ex(s)ds, (29)

V6(t) =
1

1−τm
τ

2(16+4δ )
∫ t−τ(t)

t−τ(t)−d
ex

T (s)Q5ex(s)ds.

(30)

Then, the derivative of V (t) = V1(t) +V2(t) +V3(t) +
V4(t)+V5(t)+V6(t) respect time t is as follows:

V̇1(t) = ex
T (t)[P(A−LC)+(A−LC)T P+Q]ex(t)

+2ex
T (t)PAτ ex(t− τ(t))

+2ex
T (t)PE fa(t)−2ex

T PE f̂a(t)

+2ex(t)T PAτ ω(t)− ex
T (t−d)Qex(t−d),

(31)

V̇2(t) =−ε (1− τ̇(t))ex
T (t− τ(t))Q1ex (t− τ(t))

+ εex
T (t)Q1ex(t)

+ ex
T (t)Q2ex(t)− ex

T (t− τ)Q2ex (t− τ)

≤−ε (1− τm)ex
T (t− τ(t))Q1ex (t− τ(t))

+ εex
T (t)Q1ex(t)

+ ex
T (t)Q2ex(t)− ex

T (t− τ)Q2ex (t− τ) ,
(32)

V̇3(t) = τ
2ėT

x (t)Rėx(t)− τ

∫ t

t−τ

ėT
x (s)Rėx(s)ds, (33)

V̇4(t) =
1− τ(t)
1− τm

ex
T (t− τ(t))Q3ex(t− τ(t))

−1−τ̇(t)
1−τm

ex
T (t−τ(t)−d)Q3ex(t−τ(t)−d)

≤ 1
1− τm

ex
T (t− τ(t))Q3ex(t− τ(t))

− ex
T (t− τ(t)−d)Q3ex(t− τ(t)−d), (34)

V̇5(t) = τ
2(16+4δ )[ex

T (t)Q4ex(t)

− ex
T (t−d)Q4ex(t−d)], (35)

V̇6(t) =
1− ˙τ(t)
1− τm

τ
2(16+4δ )ex

T (t− τ(t))

×Q5ex(t− τ(t))

− 1− ˙τ(t)
1− τm

τ
2(16+4δ )ex

T (t− τ(t)−d)

×Q5ex(t− τ(t)−d)

≤ τ2(16+4δ )

1− τm
ex

T (t− τ(t))Q5ex(t− τ(t))

− τ
2(16+4δ )ex

T (t− τ(t)−d)

×Q5ex(t− τ(t)−d). (36)

Bring the expression of f̂a(t) in formula (5) and the ex-
pression of f̃a(t) in Assumption 5 into V̇1(t), the following
formula can be obtained:

V̇1(t) = ex
T (t)[P(A−LC)+(A−LC)T P

+Q−2δPEKC]ex(t)

+2ex
T (t)PAτ ex(t− τ(t))

+2ex
T (t)PE(I3−KCE) fa(t−d)

+2ex
T (t)PE(KCE− I3) f̂a(t−d)

−2ex
T (t)PEKC(A−LC)ex(t−d)

−2ex
T (t)PEKCAτ ex(t− τ(t)−d)

−2ex
T (t)PEKCAτ ω(t−d)

+2ex
T (t)PE f̃a(t)

− ex
T (t−d)Qex(t−d)

+2ex
T (t)PAτ ω(t). (37)

Since (17) holds, (37) can be further simplified into the
following form:

V̇1(t) = ex
T (t)[P(A−LC)+(A−LC)T P

+Q−2δPEKC]ex(t)

+2ex
T (t)PAτ ex(t− τ(t))

−2ex
T (t)PEKC(A−LC)ex(t−d)

−2ex
T (t)PEKCAτ ex(t− τ(t)−d)

−2ex
T (t)PEKCAτ ω(t−d)

+2ex
T (t)PE f̃a(t)

− ex
T (t−d)Qex(t−d)

+2ex
T (t)PAτ ω(t). (38)

According to Lemma 1, the following inequality can be
obtained

v̇1(t)≤ex
T (t)[P(A−LC)+(A−LC)T P+Q
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−2δPEKC+3PEET P]ex(t)

+2ex
T (t)PAτ ex(t− τ(t))

+ ex
T (t−d)[(A−LC)TCT KT KC(A−LC)

−Q]ex(t−d)

+ ex
T(t−τ(t)−d)AT

τCTKTKCAτ ex(t−τ(t)−d)

+ f̃ T
a (t) f̃a(t)

−2ex
T (t)PAτ ω(t)

+2ex
T (t)PEKCAτ ω(t−d). (39)

Next, we deal with the item ėT
x (t)Rėx(t). According to the

definition of formula (6), the error system (9) can be writ-
ten in the following form.

ėx(t) = (A−LC)ex(t)+Aτ ex(t− τ(t))
+Ee f (t)+Aτ ω(t),

ey(t) =Cex(t).

(40)

We bring the error system (40) into term ėT
x (t)Rėx(t), and

the following formula (41) can be obtained:

ėT
x (t)Rėx(t)

= ex
T (t)(A−LC)T R(A−LC)ex(t)

+ ex
T (t)(A−LC)T RAτ ex(t− τ(t))

+ ex
T (t)(A−LC)T REe f (t)

+ ex
T (t)(A−LC)T RAτ ω(t)

+ ex
T (t− τ(t))AT

τ R(A−LC)ex(t)

+ ex
T (t− τ(t))AT

τ RAτ ex
T (t− τ(t))

+ ex
T (t− τ(t))AT

τ REe f (t)

+ ex
T (t− τ(t))AT

τ RAτ ω(t)

+ e f
T (t)ET R(A−LC)ex(t)

+ e f
T (t)ET R(A−LC)ex(t)

+ e f
T (t)ET RAτ ex(t− τ(t))

+ e f
T (t)ET REe f (t)

+ e f
T (t)ET RAτ ω(t)

+ω
T (t)AT

τ R(A−LC)ex(t)

+ω
T (t)AT

τ RAτ ex(t− τ(t))

+ω
T (t)AT

τ REe f (t)

+ω
T (t)AT

τ RAτ ω(t). (41)

From Lemma 1, the following inequality (42) can be ob-
tained:

ėT
x (t)Rėx(t)≤ex

T (t)(A−LC)T R(A−LC)ex(t)

+2ex
T (t)(A−LC)T RAτ ex(t− τ(t))

+2ex
T (t)(A−LC)T RAτ ω(t)

+ ex
T (t− τ(t))AT

τ RAτ ex(t− τ(t))

+2ex
T (t− τ(t))AT

τ RAτ ω(t)

+ω
T (t)AT

τ RAτ ω(t)

+ ex
T (A−LC)T R(A−LC)ex(t)

+ ex
T (t− τ(t))AT

τ RAτ ex(t− τ(t))

+ω
T (t)AT

τ RAτ ω(t)

+4e f
T (t)ET REe f (t). (42)

According to (16), e f (t) can be written as e f (t) = f̃a(t)+
δKCex(t) − KC(A − LC)ex(t − d) − KCAτ ex(t − τ(t) −
d)−KCAτ ω(t−d). Further formula (43) can be obtained.

e f
T (t)ET Ee f (t)

= f̃ T
a (t)E

T RE f̃a(t)

−2δex
T (t)CT KT ET RE f̃a(t)

−2 f̃ T
a (t)E

T REKC(A−LC)ex(t−d)

−2 f̃ T
a (t)E

T REKCAτ ex(t− τ(t)−d)

−2 f̃ T
a (t)E

T REKCAτ ω(t−d)

+δ
2ex

T (t)CT KT ET REKCex(t)

+2δex
T (t)CT KT ET REKC(A−LC)ex(t−d)

+2δex
T (t)CT KT ET REKCAτ ex(t− τ(t)−d)

+2δex
T (t)CT KT ET REKCAτ ω(t−d)

+ ex
T (t−d)(A−LC)TCT KT ET REKC(A−LC)

× ex(t−d)

+2ex
T (t−d)(A−LC)TCT KT ET REKCAτ

× ex(t− τ(t)−d)

+2ex
T (t−d)(A−LC)TCT KT ET REKCDω(t−d)

+ ex
T (t− τ(t)−d)Aτ

TCT KT ET REKCAτ

× ex(t− τ(t)−d)

+2ex
T (t−τ(t)−d)Aτ

TCT KT ET REKCAτ ω(t−d)

+ω
T (t−d)AT

τ CT ET REKCAτ ω(t−d). (43)

According to Lemma 1, formula (44) can be obtained.

e f
T (t)ET REe f (t)

≤ (4+δ ) f̃ T
a (t)E

T RE f̃a(t)

+(4δ +δ
2)ex

T (t)CT KT ET REKCex(t)

+(4+δ )ex
T (t−d)(A−LC)T

×CT KT ET REKC(A−LC)ex(t−d)

+(4+δ )ex
T (t− τ(t)−d)

×Aτ
TCT KT ET REKCAτ ex(t− τ(t)−d)

+(4+δ )ωT (t−d)DTCT KT ET REKCDω(t−d).
(44)

Further formula (45) can be obtained.

ėT
x (t)Rėx(t)

≤ ex
T (t)(A−LC)T R(A−LC)ex(t)

+2ex
T (t)(A−LC)T RAτ ex(t− τ(t))
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+2ex
T (t)(A−LC)T RDω(t)

+ ex
T (t− τ(t))Aτ RAτ ex(t− τ(t))

+2ex
T (t− τ(t))Aτ RDω(t)

+ω
T (t)DT RDω(t)

+ ex
T (t)(A−LC)T R(A−LC)ex(t)

+ ex
T (t− τ(t))Aτ RAτ ex(t− τ(t))

+ω
T (t)DT RDω(t)

+(16δ +4δ
2)ex

T (t)CT ET KT ET REKCex(t)

+(16+4δ )ex
T (t−d)(A−LC)T

×CT KT ET REKC(A−LC)ex(t−d)

+(16+4δ )ex
T (t− τ(t)−d)

×Aτ
TCT KT ET REKCAτ ex(t− τ(t)−d)

+(16+4δ )ωT (t−d)

×DTCT KT ET REKCDω(t−d)

+(16+4δ ) f̃ T
a (t)E

T RE f̃a(t). (45)

According to Lemma 2, formula (46) can be obtained.

−τ

∫ t

−τ

ėT
x (s)Rėx(s)ds≤− ex

T (t)Rex(t)

+2ex
T (t)Rex(t− τ(t))

−2ex
T (t−τ(t))Rex(t−τ(t))

+2ex
T (t− τ(t))Rex(t− τ)

− ex
T (t− τ)Rex(t− τ). (46)

According to Shure complement lemma: ex
T (t−d) [(A−

LC)TCT KT KC(A−LC)−Q]ex(t−d)< 0 is equivalent to[
−Q (AT P−CTY T )E
∗ −I3

]
< 0. (47)

ex
T (t−τ(t)−d)[Aτ

TCT KT KCAτ−Q3]ex(t−τ(t)−d)< 0
is equivalent to[

−Q3 AT
τ CT KT

∗ −I3

]
< 0. (48)

Here, it is assumed that δ ≥ 1.5 is satisfied, then formula
(49) can be obtained.

V̇ (t)≤ex
T (t)[P(A−LC)+(A−LC)T P+Q

+ εQ1 +Q2−R+ τ
2(16+4δ )Q4]ex(t)

+2ex
T (t)[PAτ +R]ex(t− τ(t))

+2ex
T (t)PAτ ω(t)

− ex
T (t− τ(t))[ε(1− τm)Q1 +2R

− 1
1− τm

Q3−
τ2(16+4δ )

1− τm
Q5]ex(t− τ(t))

+2ex
T (t− τ(t))Rex(t− τ)

− ex
T (t− τ)[Q2 +R]ex(t− τ)

−2ex
T (t)PEKCAτ ω(t−d)

+ f̃ T
a (t) f̃a(t)+Ξ, (49)

where Ξ= τ2ėT
x (t)Rėx(t)−τ2(16+4δ )ex

T (t−d)Q4ex(t−
d)− τ2(16+4δ )ex

T (t− τ(t)−d)Q5ex(t− τ(t)−d).
According to Shure complement lemma, we can get:
τ2(16 + 4δ )ex

T (t − d)[(A − LC)TCT KT ET REKC(A −
LC)−Q4]ex(t−d)< 0 is equivalent to[

−Q (AT P−CTY T )E
∗ −(ET RE)−1

]
< 0. (50)

τ2(16 + 4δ )ex
T (t − τ(t) − d)[AT

τ CT KT ET REKCAτ −
Q5]ex(t− τ(t)−d)< 0 is equivalent to[

−Q3 AT
τ CT KT

∗ −(ET RE)−1

]
< 0. (51)

Further the formula (52) can be obtaine.

Ξ≤τ
2[ex

T (t)(A−LC)T R(A−LC)ex(t)

+2ex
T (t)(A−LC)T RAτ ex(t− τ(t))

+2ex
T (t)(A−LC)T RAτ ω(t)

+ ex
T (t− τ(t))AT

τ RAτ ex(t− τ(t))

+2ex
T (t− τ(t))AT

τ RAτ ω(t)+ω
T (t)AT

τ RAτ ω(t)

+ ex
T (t)(A−LC)T R(A−LC)ex(t)

+ ex
T (t− τ(t))AT

τ RAτ ex(t− τ(t))

+ω
T (t)AT

τ RAτ ω(t)+(16δ

+4δ
2)ex

T (t)CT KT ET REKCex(t)

+(16+4δ )ωT(t−d)AT
τ CTKTETREKCAτ ω(t−d)

+(16+4δ ) f̃ T
a (t)E

T RE f̃a(t)]. (52)

Part 2: If ϑ(t) = 0 and fa(t) = 0 are established, (49)
can be simplified to:

V̇ (t)≤ex
T (t)[P(A−LC)+(A−LC)T P+Q

+ εQ1 +Q2−R+ τ
2(16+4δ )Q4]ex(t)

+2ex
T (t)[PAτ +R]ex(t− τ(t))

− ex
T (t−τ(t))

[
ε(1−τm)Q1+2R− 1

1−τm
Q3

− τ2(16+4δ )

1− τm
Q5

]
ex(t− τ(t))

+2ex
T (t− τ(t))Rex(t− τ)

− ex
T (t− τ)[Q2 +R]ex(t− τ)+Ξ

′
, (53)

where

Ξ
′ ≤τ

2[ex
T (t)(A−LC)T R(A−LC)ex(t)

+2ex
T (t)(A−LC)T RAτ ex(t− τ(t))

+ ex
T (t− τ(t))Aτ RAτ ex(t− τ(t))

+ ex
T (t)(A−LC)T R(A−LC)ex(t)
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+ ex
T (t− τ(t))Aτ RAτ ex(t− τ(t))

+(16δ +4δ
2)ex

T (t)CT KT ET REKCex(t)]. (54)

Let ξ ′
T (t) = [ex

T (t) ex
T (t − τ(t)) ex

T (t − τ)], further
formula (53) can be written as

V̇ (t)≤ξ
′T (t){Ω′

1 + τ
2[Γ′1

T RΓ
′
1 +Γ

′
2

T RΓ
′
2 +Γ

′
3

T RΓ
′
3

+(16δ +4δ
2)Γ′4

T RΓ
′
4]}ξ ′(t), (55)

where

Γ1
′ = [A−LC Aτ 0],

Γ2
′ = [A−LC 0 0],

Γ3
′ = [0 Aτ 0],

Γ4
′ = [EKC 0 0],

Ω
′
1 =

Ω′11 PAτ +R 0
∗ Ω′22 R
∗ ∗ −Q2−R

 ,
Ω
′
11 = PA+AT P−CTY T −YC+Q+ εQ1 +Q2−R

+ τ
2(16+4δ )Q4,

Ω
′
22 =−ε(1− τm)Q1−2R+

1
(1− τm)

Q3

+
τ2(16+δ )

1− τm
Q5.

If there is a suitable solution to inequality (55), then
V̇ (t)< 0 holds when ϑ(t) = 0 and fa(t) = 0. According to
the Lyapunov stability theory, the error system is asymp-
totically stable.

Part 3: When fa(t) 6= 0 and ϑ(t) ∈ L2[0,∞), in order to
suppress the influence of ω(t) on the fault estimation, we
consider the following new Lyapunov-Krasovskii function
V0(t).

V0(t) =V (t)+ eT
y (t)ey(t)

− (η1ϑ(t))T (η1ϑ(t))− (η2ϑ(t))T (η2ϑ(t)).
(56)

Let ξ T (t)= [ex
T (t) ex

T (t−τ(t)) ex
T (t−τ) ω(t) ω(t−

d)] and λ = λmax(ET RE), (57) can be obtained.

Ξ≤ξ
T (t)τ2(Γ1

T RΓ1 +Γ2
T RΓ2 +Γ3

T RΓ3

+Γ4
T RΓ4 +(16δ +4δ

2)Γ5
T RΓ5

+(16+4δ )Γ6
T RΓ6)ξ (t)

+ τ
2(16+4δ )λ f̃ T

a (t) f̃a(t), (57)

where

Γ1 = [A−LC Aτ 0 Aτ 0],

Γ2 = [A−LC 0 0 0 0],

Γ3 = [0 Aτ 0 0 0],

Γ4 = [0 0 0 Aτ 0],

Γ5 = [EKC 0 0 0 0],

Γ2 = [0 0 0 0 EKCAτ ],

then

V̇0(t) =V̇ (t)+ eT
y (t)ey(t)

− (η1ϑ(t))T (η1ϑ(t))− (η2ϑ(t))T (η2ϑ(t))

≤ξ
T (t)[Ω1 + τ

2(Γ1
T RΓ1 +Γ2

T RΓ2

+Γ3
T RΓ3 +Γ4

T RΓ4

+(16δ +4δ
2)Γ5

T RΓ5

+(16+4δ )Γ6
T RΓ6)]ξ (t)

+ [1+ τ
2(16+4δ )]λ f̃ T

a (t) f̃a(t)

=ξ
T (t)Ωξ (t)+ [1+ τ

2(16+4δ )]λ f̃ T
a (t) f̃a(t),

(58)

where

Ω = Ω1 + τ
2(Γ1

T RΓ1 +Γ2
T RΓ2 +Γ3

T RΓ3

+Γ4
T RΓ4 +(16δ +4δ

2)Γ5
T RΓ5

+(16+4δ )Γ6
T RΓ6), (59)

Ω1 =


Ω11 PAτ +R 0 PAτ −PEKCAτ

∗ Ω22 R 0 0
∗ ∗ −Q2−R 0 0
∗ ∗ ∗ −γ2

1 I 0
∗ ∗ ∗ ∗ −γ2

2 I

,
Ω11 = PA+AT P−CTY T −YC+Q+ εQ1

+Q2−R+ τ
2(16+4δ )Q4 +CTC,

Ω22 =−ε(1− τm)Q1−2R+
1

(1− τm)
Q3

+
τ2(16+4δ )

1− τm
Q5.

If Ω < 0 holds, then

V̇0(t) =V̇ (t)+ eT
y (t)ey(t)− (η1ϑ(t))T (η1ϑ(t))

− (η2ϑ(t))T (η2ϑ(t))

≤−ϕ||ξ (t)||22 +β , (60)

where ϕ = λmin(−Ω), β = [1+ τ2(16+4δ )λ ]K f
2.

Therefore, when ϕ||ξ (t)||22 > β , V̇ (t) + eT
y (t)ey(t) −

(η1ϑ(t))T (η1ϑ(t))− (η2ϑ(t))T (η2ϑ(t)) < 0 holds. Ac-
cording to Lyapunov stability theory, any trajectory in
ξ (t) outside the stable region

Ψ = {ξ (t) | ||ξ (t)|||22 ≤
β

ϕ
}

will converge to Ψ. Further according to the LaSalle in-
variant set principle [34], the system state estimation er-
rors ex(t) and the fault estimation errors e f (t) are finally
uniformly bounded.
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After applying Schur complements lemma to (59), equa-
tion (61) can be obtained.

Ω1 ρ12 ρ13 ρ14 ρ15 ρ16 ρ17

∗ ρ22 0 0 0 0 0
∗ ∗ ρ33 0 0 0 0
∗ ∗ ∗ ρ44 0 0 0
∗ ∗ ∗ ∗ ρ55 0 0
∗ ∗ ∗ ∗ ∗ −R−1 0
∗ ∗ ∗ ∗ ∗ ∗ −R−1


< 0,

(61)

where

ρ12 = τΓ
T
1 P,

ρ13 = τΓ
T
2 P,

ρ14 = τΓ
T
3 P,

ρ15 = τΓ
T
4 P,

ρ16 = (16δ +4δ
2)τΓ

T
5 ,

ρ17 = (16+4δ )τΓ
T
6 ,

ρ22 = ρ33 = ρ44 = ρ55 =−PRP−1.

According to Lemma 3, these inequalities can be obtained
as follows:

−PR−1P≤−2αP+α
2R, (62)

−R−1 ≤−2αI +α
2R, (63)

− (ET RE)−1 ≤−2αI +α
2ET RE. (64)

Then, (50) is equivalent to[
−Q (AT P−CTY T )E
∗ −2αI +α2ET RE

]
< 0, (65)

equation (51) is equivalent to[
−Q3 AT

τ CT KT

∗ −2αI +α2ET RE

]
< 0, (66)

equation (61) is equivalent to

Ω1 Λ12 Λ13 Λ14 Λ15 Λ16 Λ17

∗ Λ22 0 0 0 0 0
∗ ∗ Λ33 0 0 0 0
∗ ∗ ∗ Λ44 0 0 0
∗ ∗ ∗ ∗ Λ55 0 0
∗ ∗ ∗ ∗ ∗ Λ66 0
∗ ∗ ∗ ∗ ∗ ∗ Λ77


< 0, (67)

where

Λ12 = τΓ
T
1 P,

Λ13 = τΓ
T
2 P,

Λ14 = τΓ
T
3 P,

Λ15 = τΓ
T
4 P,

Λ16 = (16δ +4δ
2)τΓ

T
5 ,

Λ17 = (16+4δ )τΓ
T
6 ,

Λ22 = Λ33 = Λ44 = Λ55 =−2αP+α
2R,

Λ66 = Λ77 =−2αI +α
2R.

The proof is completed. �
Remark 4: Because of the existence of (16), it is dif-

ficult to solve Theorem 1 in matlab. Here we transform
equation (16) into the following optimization problem.

min

s.t.
[

µI ET P−KC
∗ µI

]
> 0. (68)

In order to make ET P approximate to KC with a satisfac-
tory precision, a sufficiently small positive scalar µ should
be selected to meet (16).

Based on Theorem 1, the design steps of the PD learn-
ing observer are given as follows:

1) According to equation (17), the observer gain matrix
K is calculated.

2) Select the appropriate parameters µ and δ .
3) solve (18), (19), (20), (21), (22), and (68) using MAT-

LAB LMI toolbox; then, matrices P, Q, Q1, Q2, Q3, Q4,
Q5 and Y can be obtained.

4) Calculate the observer gain matrix L by L = P−1Y .
5) Choose an appropriate learning interval d, and then

construct the PD learning observer shown in (5) according
to the obtained observer gain matrices.

Based on Theorem 1, the following corollary can be ob-
tained.

Corollary 1: For the given parameters γ1, γ2, τ , τm, ε ,
α , δ , µ , if there are suitable positive definite symmetric
matrices P > 0, Q > 0, Q1 > 0, Q2 > 0. Q3 > 0, Q4 > 0,
Q5 > 0, R> 0 and matrices Y =PL, K make (16), (17) and
linear matrix inequalities (18), (19), (20), (21), and (22)
are established, then, the designed PD learning observer
can reconstruct constant faults.

4. SENSOR FAULT ESTIMATION

As far as the author knows, there is no result of using
PD learning observer to realize sensor faults estimation of
systems with unkown state time-varying delay. This moti-
vates us to extend the PD learning observer proposed in
Section 3 to achieve the reconstruction of sensor faults
in continuous-time systems. Consider the following linear
system with sensor fault and unkown state time-varying
delay.{

ẋ(t) = Ax(t)+Aτ x(t− τ(t))+Bu(t),
y(t) =Cx(t)+G fs(t),

(69)

where G ∈ Rp×r and fs(t) ∈ Rr representing fault distribu-
tion matrix and sensor fault, respectively. The definitions



Robust Fault Estimation Based on Proportional Differential (PD) Learning Observer for Linear Continuous-time ... 67

of the remaining matrices and vectors are the same as in
(1).

In [35], by constructing an augmented system, the prob-
lem of sensor fault estimation is transformed into the form
of actuator fault estimation. With [35], we construct an
augmented system and then designed an augmented PD
learning observer for the augmented system to realize sen-
sor fault estimation. To this end, consider a new state
xx(t) ∈ Rp that is a filtered version of y(t).

ẋx(t) =−Axxx(t)+Axy(t), (70)

where −Ax is a Hurwitz matrix.
The following augmented system can be obtained by com-
bining (69) and (70):{

˙̄x(t) = Āx̄(t)+ Āτ x̄(t− τ(t))+ B̄u(t)+ Ḡ fs(t),
ȳ(t) = C̄x̄(t),

(71)

x̄(t) =
[

x(t)
xx(t)

]
, Ā =

[
A 0

AxC −Ax

]
, B̄ =

[
B
0

]
,

Ḡ =

[
0

AxG

]
, x̄(t− τ(t)) =

[
x(t− τ(t))

0

]
,

Āτ =

[
Aτ 0
0 0

]
, C̄ =

[
0 Ip

]
.

It is easy to verify that (Ā,C̄) is observable when (A,C) is
observable.
In order to estimate the states and fault of the system (71),
an augmented learning observer design is as follows:

˙̄̂x(t) = Ā ˆ̄x(t)+ Āτ x̄1(t)+ B̄u(t)+ Ḡ f̂s(t)
+ L̄(ȳ(t)− ˆ̄y(t)),

ˆ̄y(t) = C̄ ˆ̄x(t),
f̂s(t) = f̂s(t−d)+ K̄(δ̄ ēy(t)+ ˙̄ey(t−d)),

(72)

where ˆ̄x(t) ∈ Rn+p, ˆ̄y(t) ∈ Rp and f̂s(t) ∈ Rr are estimation
of the augmented states, output and sensor fault. K̄ and
L̄ are the observer gain matrices to be determined. δ̄ is a
constant to be confirmed. x̄1(t) has the same definition as
x̄(t) in (5).

To ensure the stability and convergence of the learning
observer the following Assumption 6 must be satisfied.

Assumption 6: Suppose that ‖ f̃s(t)‖∞ ≤ ks, where
f̃s(t) = fs(t)− fs(t−d) and ks is a sufficiently small pos-
itive constant.

Theorem 2: For the given parameters γ1, γ2, τ , τm, ε , α ,
δ̄ , µ if there are suitable positive definite symmetric matri-
ces P̄ > 0, Q̄ > 0, Q̄1 > 0, Q̄2 > 0. Q̄3 > 0, Q̄4 > 0, Q̄5 > 0,
R̄ > 0 and matrices Ȳ = P̄L̄, K̄ make the following equa-
tions (73), (74) and linear matrix inequalities (75), (76),
(77), (78), and (79) are established, then the PD learning
observer (72) can estimate sensor fault.

ḠT P̄ = K̄C̄, (73)

K̄C̄Ḡ− I = 0, (74)[
−Q̄ (ĀT P̄−C̄T Ȳ T )Ḡ
∗ −I

]
< 0, (75)[

−Q̄3 ĀT
τ C̄T K̄T

∗ −I

]
< 0, (76)[

−Q̄4 (ĀT P̄−C̄T Ȳ T )Ḡ
∗ −2αI +α2ḠT R̄Ḡ

]
< 0, (77)[

−Q̄5 ĀT
τ C̄T K̄T

∗ −2αI +α2ḠT R̄Ḡ

]
< 0, (78)

Ω̄11 Ω̄12 0 P̄Āτ Ω̄15 Ω̄16 Ω̄17

∗ Ω̄22 R̄ 0 0 Ω̄26 0
∗ ∗ Ω̄33 0 0 0 0
∗ ∗ ∗ −γ2

1 I 0 Ω̄46 0
∗ ∗ ∗ ∗ −γ2

2 I 0 0
∗ ∗ ∗ ∗ ∗ Ω̄66 0
∗ ∗ ∗ ∗ ∗ ∗ Ω̄77

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 Ω̄110 0
Ω̄28 0 0 0

0 0 0 0
0 Ω̄49 0 0
0 0 0 Ω̄511

0 0 0 0
0 0 0 0

Ω̄88 0 0 0
∗ Ω̄99 0 0
∗ ∗ Ω̄1010 0
∗ ∗ ∗ Ω̄1111


< 0, (79)

where

Ω̄11 = P̄Ā+ ĀT P̄−C̄T Ȳ T − ȲC̄+ Q̄+ εQ̄1 + Q̄2

− R̄+ τ
2(16+4δ̄ )Q̄4 +C̄TC̄,

Ω̄12 = P̄Āτ + R̄,

Ω̄15 =−P̄ḠK̄C̄Āτ ,

Ω̄16 = Ω̄17 = τ(ĀT P̄−C̄T Ȳ T ),

Ω̄110 =
√

16δ̄ +4δ̄ 2CT K̄T ḠT ,

Ω̄22 =−ε(1− τm)Q̄1−2R̄+
1

(1− τm)
Q̄3

+
τ2(16+4δ̄ )

1− τm
Q̄5,

Ω̄26 = Ω̄28 = τĀT
τ P̄,

Ω̄33 =−Q̄2− R̄,

Ω̄46 = Ω̄49 = τĀT
τ P̄,

Ω̄511 =
√

16+4δ̄ ĀT
τ C̄T K̄T ḠT ,

Ω̄66 = Ω̄77 = Ω̄88 = Ω̄99 =−2αP̄+α
2R̄,
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Ω̄1010 = Ω̄1111 =−2αI +α
2R̄.

Then the gain matrix L̄ of the learning observer can be
obtained as follows:

L̄ = P̄−1Ȳ . (80)

Proof: The proof of Theorem 2 is similar to the proof
of Theorem 1, so omitted here. �

Corollary 2: For the given parameters γ1, γ2, τ , τm, ε ,
α , δ̄ , µ if there are suitable positive definite symmetric
matrices P̄ > 0, Q̄ > 0, Q̄1 > 0, Q̄2 > 0. Q̄3 > 0, Q̄4 > 0,
Q̄5 > 0, R̄ > 0 and matrices Ȳ = P̄L̄, K̄ make (73), (74)
and linear matrix inequalities (75), (76), (77), (78), and
(79) are established, then the PD learning observer (81)
can estimate constant sensor fault.

5. SIMULATION RESULTS

In this section, three examples are presented to show the
effectiveness of the proposed method in this paper. The
three simulation examples are the actuator fault estima-
tion based on the PD learning observer, the sensor fault
estimation based on the augmented PD learning observer
and the sensor fault estimation based on the augmented P
learning observer.

5.1. Example 1
Here we refer to the simulation example in [36]:

ẋ(t) =

 −10 1 2
−48 −2 0

1 −1 −20

x(t)

+

 0.5 0 −1
−0.5 1 0.5
0.25 0 0.5

x(t− τ(t))

+

 1
1
1

u(t)+

 1
1
1

 fa(t),

y(t) =
[

0 0 1
]

x(t),

(81)

where the control input u(t) is the unit step function, It can
be checked that the pair (A,C) is observable, rank(CE) =
1, and the triple (A,E,C) does not possess any invariant
zeros in the right half plane. Therefore, the proposed PD
learning observer for actuator fault estimation exists. The
time-varying delay τ(t) = 0.1+0.1sint, so we can get τ =
0.2, τm = 0.1. We select parameters γ1 = γ2 = 1, α = 100,
δ = 1.5, ε = 1, µ = 10−5.

When the system suffers from a time-varying actuator
fault fa1(t) , we choose the learning interval d of observer
is 0.001.

fa1(t) =

{
0, 0≤ t ≤ 2,

5sin(2t)+4cos t, 2 < t ≤ 30.

By solving the Theorem 1, the following solutions and
Figs. 1-4 can be obtained:

K = 1, L =

 −9.1098
−52.0783
−22.0478

 .
When the system suffers from a constant fault fa2(t),

we choose the learning interval d = 0.05.

fa2(t) =

{
0, 0≤ t ≤ 2,
1, 2 < t ≤ 10.

By solving the conditions in Corollary 1, Figs. 5-8 can
be obtained.

Figs. 1-3 and Figs. 5-7, respectively, represent the states
and states estimation of the system when the system suffer
from unkown state time-varying delay and actuator fault.

Fig. 1. System state x1(t) and its estimation with time-
varying actuator fault.

Fig. 2. System state x2(t) and its estimation with time-
varying actuator fault.

Fig. 3. System state x3(t) and its estimation with time-
varying actuator fault.
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Fig. 4. Time-varying actuator fault fa1(t) and its estima-
tion.

Fig. 5. System state x1(t) and its estimation with constant
actuator fault.

Fig. 6. System state x2(t) and its estimation with constant
actuator fault.

Fig. 7. System state x3(t) and its estimation with constant
actuator fault.

Figs. 4 and 8 represent time-varying and constant actua-
tor fault and their estimation, respectively. It can be seen
from the Figures that the previously designed PD learning
observer can realize the simultaneous estimation of sys-
tem states and actuator fault. We can see that the observer

Fig. 8. Constant actuator fault fa2(t) and its estimation.

designed in this paper can realize the error-free estimation
of constant faults and has good tracking performance for
time-varying actuator faults.

5.2. Example 2
Here we refer to the simulation example in [37]:

ẋ(t) =

[
0 1
−2 −2

]
x(t)+

[
0.25 0
−0.5 0.5

]
x(t− τ(t))

+

[
1
0

]
u(t),

y(t) =

[
1 0

0.5 1

]
x(t)+

[
0
1

]
fs(t).

(82)

Let Ax = I2, the augmented system can be obtained:

˙̄x(t) =


0 1 0 0
−2 −2 0 0
1 0 −1 0

0.5 1 0 −1

 x̄(t)

+


0.25 0 0 0
−0.5 0.5 0 0

0 0 0 0
0 0 0 0

 x̄(t− τ(t))

+


1
0
0
0

u(t)+


0
0
0
1

 fs(t),

y(t) =

[
0 0 1 0
0 0 0 1

]
x̄(t),

where u(t) is the unit step signal. The remaining parame-
ters are the same as in Example 1.

When the sensor fault fs1(t) is a time-varying fault, we
choose the learning interval d = 0.001.

fs1(t) =

{
0, 0≤ t ≤ 2,

2sin(5t)+ cos(7t), 2 < t ≤ 10.
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Fig. 9. Time-varying sensor fault fs1(t) and its estimation.

Fig. 10. Constant sensor fault fs2(t) and its estimation.

By solving the conditions in Theorem 2, the following
solutions can be obtained:

K̄ =
[
0 1

]
, L̄ =


1.1023×104 0.0171
2.7935×104 0.0269

875.8503 8.3030×10−4

0.7952 −4.2938

 .
Using MATLAB simulation Fig. 9 can be obtained:
When the system suffers from a constant fault fs2(t), we

choose the learning interval d = 0.05.

fs2(t) =

{
0, 0≤ t ≤ 2,
1, 2 < t ≤ 20.

Through Corollary 2, Fig. 10 can be obtained.
It can be seen from Figs. 9 and 10 that the augmented

learning observer designed in the article can realize the
estimation of system sensor fault. And when the system
suffers from a constant value sensor fault, no difference
estimation can be achieved.

5.3. Example 3
Considering the influence of unkown state time-varying

delay, we use the P learning observer designed in [12] to
achieve system fault estimation for system model in Ex-
ample 2. When the system suffers from time-varying fault
fs1(t) and constant value fault fs2(t), we choose the learn-
ing interval d = 0.001 and 0.05 respectively. Using Matlab
simulation Figs. 11 and 12 can be obtained.

By comparing Figs. 9, 10, and Figs. 11, 12 we can know
that under the same learning interval d, the P learning

Fig. 11. fs1(t) and its estimation based on P learning ob-
server.

Fig. 12. fs2(t) and its estimation based on P learning ob-
server.

observer and PD learning observer have good results for
the estimation of constant faults. However, in the case of
fast time-varying faults estimation, PD learning observer
is better than P learning observer.

6. CONCLUSION

This paper designs a PD learning observer for linear
systems with unkown state time-varying delay and actu-
ator fault. The designed observer can realize the simulta-
neous estimation of system states and actuator fault. By
building an augmented system, the sensor fault estima-
tion can be converted into the form of actuator fault es-
timation form. Later, by constructing an augmented PD
learning observer, the system states and sensor fault can
be estimated simultaneously. The introduction of H∞ per-
formance index can effectively suppress the impact of
time-delay mismatch on state estimation and fault esti-
mation. The learning interval d can be selected according
to the speed of the fault change: for constant value and
slow-change faults, a larger d can be selected; for fast-
change faults, a smaller learning interval d should be se-
lected. In the estimation of constant faults or slowly vary-
ing faults, both the proportional learning observer and the
proportional differential learning observer have good per-
formance. However, In terms of fast-changing fault esti-
mation, the PD learning observer is better than the P learn-
ing observer.
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