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A Practical Method for Stability Analysis of Linear Fractional-order Sys-
tems with Distributed Delay
Mohammad Ali Pakzad �

Abstract: In this paper, an effective method using the cluster treatment of characteristic roots (CTCR) technique is
investigated for the stability analysis of a general class of fractional order systems (FOSs) with distributed delay. To
conclude this goal, the characteristic equation of a FOSs with distributed delay is transformed to the characteristic
equation of a FOSs with multiple delays; it is shown that the stability analyses of these two systems are equivalent.
The magnitude of both delays, are considered to have non-zero values so that a comprehensive analysis is performed
in the parametric space of delays. For obtaining stability switch curves also the procedure advanced clustering with
frequency sweeping (ACFS) method is used. The proposed method of this article determines the stability map of
such systems in the parametric space of delays accurately. The significance of this proposed method is in that, a
comprehensive and precise stability analysis of such systems is not presented in the literature yet and this article is
the first attempt to solve this challenging problem. The practicality and effectiveness of this method is shown here
with an illustrative example.
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1. INTRODUCTION

As the transfer of mass, energy and information in the
natural systems does not happen instantaneously; the exis-
tence of delay in systems is undeniable. This leads also to
delay in engineering systems like hydraulic systems, pro-
duction processes and other systems quite often. The ex-
istence of delay in systems can cause instability and weak
performances, and hence a great attention has been paid to
time-delay systems (TDSs) [1–4]. A correct understand-
ing of delay effects on stability of a system is essential for
both modeling and control of this type of systems [5, 6].

Time-delayed systems (TDSs) can be subdivided
to single-delay systems, multiple time-delay systems
(MTDSs) and distributed time-delay systems (DTDSs).
Stability analysis of MTDSs is usually much simpler than
that of DTDSs. Using a theory that is described in the
next section, a given DTDSs is transformed into an equiv-
alent MTDSs and then we will analyze its stability. Study
of time-delay systems can be performed in two major
branches, i.e., in time-domain-based (TDB) or in fre-
quency domain based (FDB) approaches. Time-domain
based methods use Lyapunov-Krasovskii or Lyapunov-
Razumikhin functions in general, and express the stability
criteria in the form of linear matrix inequalities (LMIs)
[7–9]. Frequency domain methods have better perfor-
mances in stability analysis of linear time-invariant (LTI)

systems and can determine the stability map of this class
of systems precisely [10]. Frequency based methods de-
termine all stability regions, number of unstable roots in
each delay interval and tendency of roots as well. FDB
technique is for example proposed in [11] for analysis of
TDSs and is developed in [12] for fractional order delay
systems. In [13, 14], another FDB technique is proposed
for precise stability analysis of a class of MTDSS sys-
tems that is capable of determining stable and unstable
regions in parametric space of delays. In the LTI integer
order systems (IOSs) with distributed delay, some useful
time-domain methods as well as frequency-domain meth-
ods have been presented with the purpose of evaluating
the stability of these dynamics [15, 16]. Regarding the
fractional-order systems (FOSs) with distributed delay,
due to the involvement of fractional mathematics in these
problems, the stability analysis of these systems will be
much more complicated than the integer order systems
[17].

One of the most important methods for analysis in the
frequency domain is the CTCR method, which is intro-
duced for stability analysis of LTI-TDSs [18]. The CTCR
method is based on two important facts about LTI sys-
tems [19]. First is that, roots of a characteristic equation
changes continuously with delay and the second fact says
that if a system is going toward instability, some poles of
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the system must move from the left side of the imaginary
axis to the right, therefore the roots must cross the general
axis inevitably [20]. This method can extract the stability
regions of single delay systems in the parametric space of
delays and these stability regions are called stability win-
dows or stability pockets [21]. For multiple delay systems,
stability regions can be determined and presented in 2D
and 3D spaces. This method is used for determination of
stability map of DTDSs in [15].

The stability analysis of FOSs is more complicated than
that of integer-order systems [22], especially when they
are concerned with delays. To the best of our knowledge,
evaluation of CTCR method for stability analysis of frac-
tional order distributed delay systems has not already been
presented in the literature, and this study is the first ef-
fort to develop such a method for this class of systems.
This work aims to present a practical method analyzing
the stability of fractional LTI systems with distributed de-
lays. The introduced method determines stable and unsta-
ble regions in a delay parametric space, and unstable roots
are determined in each unstable region. Differently from
present literature, both limits of the delay are taken as non-
zero, which brings an interesting new perspective to the
problem. Most of these earlier investigations have recog-
nized an equivalence of distributed-delay systems to some
form of discrete (lumped) delay structures. The delay dis-
tribution in these reports is almost exclusively in the in-
terval of [0,τmax]. In this paper, we introduce another free-
dom by considering the non-zero lower bound, τ1, of the
delays. The stability question of this class of distributed-
delay systems is shown to be equivalent to determining the
stable regions in the domain of the two delays involved.

2. PRELIMINARIES AND DEFINITIONS

The most common definition of the fractional derivative
is given in the sense of Caputo [23], and when the lower
terminal is set to zero, it is defined as

Dα

t x(t) =
1

Γ(m−α)

∫ t

0

x(m)(τ)

(t− τ)α+1−m dτ,

m−1≤ α ≤ m, (1)

where m is the first integer that is larger than α , and Γ(·)
is the gamma function

Γ(α) =
∫ t

0
tα−1 e−tdt. (2)

The Laplace transform of the Caputo fractional derivative
is

L
{

Dα

t x(t)
}
= sα L{x(t)}−

m−1

∑
k=0

sα−k−1x(k)(0). (3)

Consider the following LTI fractional distributed time-
delay system (FDTDS) with a single delay:

Dα

t x(t) = Ax(t)+B
∫

τ2

τ1

x(t−η)dη , (4)

where x(t) ∈ Rn×1 is the state vector, A ∈ Rn×n and B ∈
Rn×n are constant system matrices, Parameters τ1 and τ2

are non-negative, such that (τ1,τ2) ∈ R2
+. Taking Laplace

transform of the system (4) yields

sα X−AX−B
∫

τ2

τ1

Xe−ηsdη = 0. (5)

Since the integral linear operator and Laplace transform
are commutative, we have

[sα I−A−B
∫

τ2

τ1

e−ηsdη ]X = 0. (6)

Thus, the system’s CE is obtained as

CE0(s,τ1,τ2)=det[sα I−A+
1
s

B(e−τ2s− e−τ1s)] = 0.

(7)

Theorem 1: The stability analysis of the FDTDS (4) is
analogous to that of the following FOS with two discrete
independent delays:

Dα+1
t x−Aẋ+B[x(t− τ2)− x(t− τ1)] = 0. (8)

Proof: Taking the Laplace transform of (8) yields its
CE as

CE1(s,τ1,τ2)=det[sα+1I−As+B(e−τ2s−e−τ1s)] = 0.
(9)

Using the determinant properties, one can show

CE0(s,τ1,τ2) = snCE1(s,τ1,τ2).

Consequently, (9) contains all the roots of (7) along with n
more roots at the origin, which can be disregarded for the
stability analysis. �

Although the new form (9) resembles a simpler form
of (5), it is challenging to solve because of the two in-
dependent delays. The stability analysis of (4) in delay
parameter space requires to detect τ1 and τ2 that places
the eigenvalues of (4) on the imaginary axis, i.e., when
s = ± jω satisfies the corresponding CE for some appro-
priate delay values τ∗ = (τ∗1 ,τ

∗
2 ). Some roots may cross

the imaginary axis and cause stability switches at those
delays. Hence, the delay parameter space is decomposed
into stable and unstable regions. The parametric space of
(4) is defined (τ1,τ2) space, and the CTCR and ACSF
methods are used to determine the stability regions. The
advanced clustering with the frequency sweeping method
[24] serves as the first step to the umbrella paradigm called
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“CTCR” to determine stability switching boundaries. To
find stability switch curves we can use ACFS method by
sweeping the frequency between the bounds of crossing
frequency to the imaginary axis. Then, we deploy the clus-
ter treatment of characteristic roots (CTCR) paradigm to
reveal the exact and complete stability map. It is impor-
tant to note that we completely adhere to the underlying
guidelines of the CTCR paradigm. CTCR is constructed
over two fundamental propositions. The first proposition
claims the existence of a finite number of stability switch-
ing, where the only imaginary characteristic roots occur.
The second proposition is on an interesting directional
invariance property of the crossing tendencies of these
imaginary roots [25].

The system’s stability is initiated by determining the
CE’s pure imaginary roots and then calculating their root
tendency. Let us rewrite CE (9) as

CE(s,τ1,τ2) = p0(sα)+
m

∑
`=1

p`(sα) (e−τ2s− e−τ1s)`,

(10)

where p0 and p` are real polynomials in the complex vari-
able sα with arbitrary order α . It is worthy to note identi-
fying the pure imaginary roots of the dynamic system (10)
is challenging, unless τ1 and τ2 delay terms are removed.
Page length is mesured in two-coloumn format in this tem-
plate. Over-length paper can be considered, but justifica-
tion needs to be provided when the initial submission is
made. Over-length charge will be applied for publication
if accepted.

3. METHODOLOGY

As briefly explained in the previous section, one needs
to determine all the imaginary axis crossings of (10) along
with the time delays corresponding to these crossings. In
this section, we obtain delays that cause crossing the roots
from the imaginary axis. Then, the stability analysis is per-
formed using the D-Subdivision method.

3.1. Pure imaginary roots
The following structured steps are performed to detect

the imaginary axis crossing and their corresponding time
delays:

1) The crossing are detected by Rekasius transformation
[26]

e−τ`s =
1−λ`s
1+λ`s

, λ` ∈ R, `= 1,2, (11)

which is an exact expression of e−τl s for the purely
imaginary roots s =± jω . That is,

e−τ`s
∣∣
s= jω =

1− jT`
1+ jT`

, T` ∈ R, `= 1,2. (12)

Furthermore, when s = ± jω , the magnitudes of both
sides of (12) is unique. Thus, it is necessitated that the
phase condition be equal. In other words, the transfor-
mation is exactly held if and only if

τ` =
2
ω

(
tan−1(T`)+ kπ

)
, k = 0,1, ..., (13)

which describes an asymmetric mapping in which T` is
distinct in general and is mapped into τ` sets.

2) Eliminate e−τ1s and e−τ2s from (10) with regard to the
relation (12), forming a new CE, CE(s,τ1,τ2), which
is an equation only in T1 and T2

(e−τ2s− e−τ1s) =
j2(T1−T2)

(1+ jT1)(1+ jT2)
.

Then, we have

CE(s,T1,T2) = p0(sα)

+
m

∑
`=1

p`(sα)
( j2(T1−T2)

(1+ jT1)(1+ jT2)

)`
. (14)

3) Multiplying (14) by (1+ jT1)
m(1+ jT2)

m, results in a
new form

h(s,T1,T2) =((1+ jT1)(1+ jT2))
mCE(s,T1,T2)

=(1+ jT1)
m(1+ jT2)

m p0(sα)

+
m

∑
`=1

p`(sα)( j2)`(T1−T2)
`

× (1+ jT1)
m−`(1+ jT2)

m−`. (15)

This expression is a polynomial in sα of which the co-
efficients are functions of T1 and T2. As a result, CE
(10) with transcendental term is converted into the al-
gebraic equation (15). To determine the crossing fre-
quencies from the imaginary axis in (10), we substitute
s = jω into (15), and then the real and imaginary parts
are separated as

h(s,T1,T2 )|s= jω

= hℜ(ω,T1,T2)+ jhℑ(ω,T1,T2) = 0, (16)

where hℜ and hℑ are the real and imaginary parts of h,
respectively. Equation (16) is zero for a value of s= jω
if and only if

hℜ =
n

∑
i=0

ai(ω,T1)T i
2 = 0,

hℑ =
n

∑
i=0

bi(ω,T1)T i
2 = 0. (17)

We utilize the resultant theory to eliminate T2 from the
two multivariate polynomials hℜ and hℑ.
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Definition 1: Consider the two multivariate polyno-
mials in (17) in terms of ω , T1 and T2 with real coeffi-
cients, where hℜ and hℑ have positive degrees in terms
of T2, and n > 0. The resultant of hℜ and hℑ with re-
spect to T2 is defined by

RT2(hℜ,hℑ)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an−1 . . . . . . a0 0 0 0
...

...
...

...
...

...
...

...

0 . . . . . .
...

...
... a1 a0

bn bn−1 . . . . . . b0 0 0 0
...

...
...

...
...

...
...

...

0 . . . . . .
...

...
... b1 b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(18)

which is the determinant of the well-known Sylvester
matrix [27, 28].

Definition 2: The resultant of RT2 and ∂RT2/∂T1

with respect to ω is called the discriminant of RT2 by
eliminating T1.

Theorem 2 [24]: Minimum and maximum positive
real roots of the discriminant of ressultant of hℜ and hℑ

with respect to ω , that correspond to (T1,T2) ∈ R2 so-
lutions in (16) yield the exact lower and upper bounds
of the crossing frequency set. This requires to study the
zeros of the resultant of RT2 and ∂RT2/∂T1, particularly
by eliminating T1. The resultant of RT2 and ∂RT2/∂T1

becomes only a function of ω .

Z(ω) = RT1(RT2 ,∂RT2/∂T1) (19)

which is the discriminant by Definition 2. The mini-
mum and maximum positive real zeros of Z(ω) corre-
sponding to the (T1,T2) solutions of (16) are the exact
lower bound ω and upper bound ω̄ of the crossing fre-
quency set, respectively.

4) In the following, the proposed step-by-step approach
is described. Notice that this method only requires fre-
quency sweeping from the precise lower bound ω to
the precise upper bound ω determining by the use of
Theorem 1. For each ω ∈ [ω,ω] with an appropriately
chosen step size, the following steps

(a) Solving the equation RT2(hℜ,hℑ) for T1.
(b) For each T1, if T2 ∈ R exists and satisfies hℜ = 0

and hℑ = 0 then we proceed to the next step, oth-
erwise, increase ω incrementally and the previ-
ous step is repeated.

(c) The delay values (τ1,τ2) corresponding to
(T1,T2) pairs are calculated using (13). Then,
ω is incremented with the same step size used in
Step (a).

If there exists an imaginary root for (10) at s =± jωc ,
wherein “c” subscription denotes crossing, for a given
set of the time delays {τ} = (τ1,τ2), the same imag-
inary root also exist at all the countably infinite grid
points of

{τ}= (τ1l ,τ2k) = (τ10 +
2π

ωc
l,τ20 +

2π

ωc
k),

l = 0,1,2, ... , k = 0,1,2, .... (20)

Definition 3 (kernel curves): Assume that the set of
(τ10,τ20 )|ωc

is determined exhaustively in the (τ1,τ2)
space for all possible ωc values satisfying (10) and
(13). This set of curves is called the kernel curve set
of the system described by the CE (10), and it is de-
noted by ℘0(τ1,τ2).

Definition 4 (offspring curves): The trajectories of
(τ1,τ2) grid points in (14) for l = 1, 2, ..., k = 1, 2,
... corresponding to the kernel curve set are called the
“offspring curves” or “offspring” in short. They are
represented by ℘lk(τ1,τ2) where l and k identify the
lth and kth generation offspring of the kernel τ10 and
τ20, respectively. Let denote the complete set of kernel
and offspring by

℘(τ1,τ2) =℘0(τ1,τ2)+
n

∑
l=0

+
n

∑
k=0

l+k>0

℘lk(τ1,τ2). (21)

The kernel and the offspring constitute the complete
(and exhaustive) distribution of (τ1,τ2) points for
which the CE CE(s,τ1,τ2) has root sets with at least
one imaginary pair. Outside the set of curves℘(τ1,τ2),
there cannot exist a point resulting in an imaginary
characteristic root for (10). These are the only loca-
tions in the (τ1,τ2) space where the system (10) could
transit from stable to unstable posture (or vice versa).
Since ℘(τ1,τ2) is completely generated from the ker-
nel using (13) and (21), they are sufficient to determine
the kernel and offspring themselves exhaustively.

It should be mentioned that this method has limitations for
application to time-delay systems with high order roots on
the imaginary axis. To overcome this problem, it is nec-
essary to divide the main system into several subsystems
with simpler roots on the imaginary axis and then apply
the CTCR method to it.

3.2. Direction of crossing
The invariance property of the root tendency, along any

one of the independent time delays while the other inde-
pendent time delay is fixed. The root tendency property
has been used to determine the number of unstable roots in
the delay parametric spaces through measuring the num-
ber of imported and exported roots from any region sepa-
rated by stability switch curves [23]. The root tendency is
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always independent from the delays τ1 and τ2. It is worthy
to note that the root tendency describes the root transfer
orientation in s = jω as τ increases from τ`− ε to τ`+ ε ,
0 < ε ≤ 1 .

The root sensitivities associated with each purely imag-
inary characteristic root crossing jω with respect to one
of the time delay τ` is defined as

Ss
τ`

∣∣
s= jωc

=
ds
dτ`

∣∣∣∣
s= jωc

= −
∂CE/∂τ`

∂CE/∂ s

∣∣∣∣
s= jωc

, `= 1,2,

(22)

the corresponding root tendency with respect to one of the
delays is given by

Root Tendency = RT |τ`s= jωc
= sign

(
ℜ

(
Ss

τ`

∣∣
s= jωc

))
= sign

(
ℜ
(
−

∂CE/∂τ`

∂CE/∂ s

) )∣∣∣s= jωc
τ=τ`

. (23)

Thus, it can be used as a criterion in assessing the stability
outlook of the characteristic equation (10).

4. ILLUSTRATIVE EXAMPLE

In this section, the proposed method’s effectiveness is
studied by determining the stability of a FDTDS.

4.1. Example
Consider a FDTDS

D0.5
t x(t) =

d0.5x(t)
dt0.5 =

[
0 1
−0.4 −1

]
x(t)

+

[
−0.3 −0.1
−0.2 −0.4

]∫
τ2

τ1

x(t−η)dη +

[
0
1

]
u(t),

y(t) =
[
1 0

]
x(t), (24)

whose characteristic equation is

CE(s,τ1,τ2) = s2(s+ s0.5 +0.4)

+s(−0.7s0.5−0.46) (e−τ2s−e−τ1s)+0.1(e−τ2s−e−τ1s)2,
(25)

and also its closed loop transfer function is

H(s,τ1,τ2) =
s(s+0.1(e−τ2s− e−τ1s))

CE(s,τ1,τ2)
. (26)

It is note that the delay free system (τ1 = τ2 = 0) is asymp-
totically stable. Applying the criterion expressed the expo-
nential term in (25) is eliminated, so we have

h(s,T1,T2) = s2(s+ s0.5 +0.4)(1+ jT1)
2(1+ jT2)

2

+ j2s(−0.7s0.5−0.46)

× (T1−T2)(1+ jT1)(1+ jT2)

−0.4(T1−T2)
2. (27)

Substituting s = ωe
jπ
2 = jω , s2 = −ω2 and s0.5 =

ω0.5e
jπ
4 = ω0.5(

√
2

2 + j
√

2
2 ) into (27) and equating the real

and imaginary parts of the obtained relation to zero, we
obtain

hℜ =
(
ω

2(0.4+0.5
√

2ω
0.5)T 2

1 +ω(0.7
√

2ω
0.5

−
√

2ω
1.5−2ω

2 +0.92)T1 +0.7
√

2ω
1.5

+0.4ω
2 +0.5

√
2ω

2.5−0.4
)
T 2

2

+
(
−ω(

√
2ω

1.5 +0.7
√

2ω
0.5 +2ω

2 +0.92)T 2
1

+(1.6ω
2 +0.8+2

√
2ω

2.5)T1

+ω(2ω
2 +
√

2ω
1.5−0.7

√
2ω

0.5−0.92)
)
T2

+(−0.7
√

2ω
1.5 +0.5

√
2ω

2.5 +0.4ω
2−0.4)T 2

1

+ω(0.92+2ω
2 +0.7

√
2ω

0.5 +
√

2ω
1.5)T1

−ω
2(0.5

√
2ω

0.5 +0.4)

=0, (28)

and

hℑ =
(
−ω

2(0.5
√

2ω
0.5 +ω)T 2

1 +2ω(0.35
√

2ω
0.5

+0.5
√

2ω
1.5 +0.4ω)T1 +ω(ω2−0.92

−0.7
√

2ω
0.5 +0.5

√
2ω

1.5)
)
T 2

2

+
(
2ω(−0.35

√
2ω

0.5 +0.5
√

2ω
1.5 +0.4ω)T 2

1

+4ω
2(ω +0.5

√
2ω

0.5)T1−2ω(0.4ω

+0.5
√

2ω
0.5(0.7+ω))

)
T2 +ω(0.7

√
2ω

0.5

+0.5
√

2ω
1.5 +ω

2 +0.92)T 2
1 +2ω(−0.4ω

+0.35
√

2ω
0.5−0.5

√
2ω

1.5)T1

−ω
2(0.5

√
2ω

0.5 +ω)

=0. (29)

Using homomorphism resultant algorithm (18) eliminate
T2 from hℜ and hℑ,

RT2(hℜ,hℑ) = 0. (30)

Discriminant of the resultant of hℜ and hℑ in Theorem 1
is the resultant of RT2 and ∂RT2/∂T1 with eliminating T1,

Z(ω) = RT1(RT2 ,
∂RT2

∂T1
) = 0. (31)

The minimum and maximum positive real amount of ω

are estimated as [ω,ω] is [0.1, 0.9]. One can now use this
ω range and the frequency sweeping method in previous
section, in order to extract the stability maps on τ1− τ2

domain by sweeping the frequency from 0.1 to 0.9. Fig. 1
shows stability switching curves in the 2D space of τ1 and
τ2. The red and blue stability switching curves are rep-
resenting the kernel and offspring sets, respectively. The
number of unstable roots in the both unstable and stable
regions are determined and shown by NU in Fig. 1. The
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Fig. 1. Stability map in the domain of the time delays τ1

and τ2. The shaded regions represent are stable.

−2

−1.5

−1

−0.5

Fig. 2. Step responses of (24) for A, B, C and D points
shown in Fig. 1.

gray region shows an stable region wherein the number of
unstable roots is zero. The straight line τ1 = τ2 is when the
feedback control is removed and the system is stable. For
small values of τ1 = τ2, which is basically the regions right
above the line τ1 = τ2, the system is still stable due to the
lack of the distributed integral’s destabilizing power. This
is also true for the narrow gray strip next to the straight
line τ1 = τ2 and right above that. Since the assumption is
τ2 ≥ τ1, the regions under the line τ1 = τ2 is unacceptable.
Arbitrary points A to D are selected in different stability
regions to study the stability of the system by integrat-
ing its response to the unit step input. Fig. 2, response of
the system results for various τ1 and τ2 to verify the ac-
curacy of stability map given in Fig. 1. In addition Fig. 3
shows, system’s root locus at the points A, B, C and D us-
ing a root approximation algorithm called Quasi Polyno-

−1 −0.8 −0.6 −0.4 −0.2
−10

−8

−6

−4

−2

Fig. 3. Root Locus of (25) in τ1 = 2 and τ2 = [3,5] for A,
B, C and D points shown in Fig. 1.

mial mapping-based Root-finder (QPmR) [29]. There is a
good agreement between the obtained stability regions in
Fig. 1 and the root locus shown in Fig. 3.

5. CONCLUSION

This paper proposes a method to study the stability
of fractional-order systems with distributed delays. This
work is one of the few first attempts for the stability anal-
ysis of linear fractional-order dynamic systems with dis-
tributed delays to the best authors’ knowledge. For this
purpose, an integration of two effective the CTCR and
ACSF methods was used, which effectively identifies sta-
ble and unstable areas in the delay space with a com-
prehensive image of the system stability. The proposed
method efficiency was verified through an example by de-
picting its complete stability map.
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