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Finite-time Event-triggered Extended Dissipative Control for a Class of
Switched Linear Systems
Hui Gao* � , Kaibo Shi, Hongbin Zhang, and Jianwei Xia

Abstract: This paper investigates the problem of event-triggered finite-time extended dissipative control for a class
of switched linear systems. We propose a novel event-triggered method that allows frequent system switching over
an event-triggered interval, which is different from the previous work that only one switching happened over the
event-triggered interval. By average dwell time and a novel controller-mode-dependent Lyapunov function method,
we give sufficient conditions for finite-time extended dissipative analysis of the closed-loop switched linear system.
LMIs are used for the design of the controller. Finally, numerical examples are given to illustrate the effectiveness
of the proposed method.
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1. INTRODUCTION

Switched system belongs to a special class of hybrid
systems, which can be modeled by a class of discrete or
continuous-time subsystems and a logical rule that orches-
trates the switching among the subsystems. It has attracted
remarkable attention for its practical applications in traffic
control, electrical systems and so on [1–5]. For example,
switched model predictive control of switched linear sys-
tems:Feasibility, stability and robustness is investigated
in [3], improved results on stability of continuous-time
switched positive linear systems is researched in [4], re-
spectively.

In many real world situations, especially in missile sys-
tems, chemical reaction process and robot control sys-
tems. The system behavior over a short time interval
is very important, which required that the system state
should not exceed a bounded domain over finite time.
Compared with Lyapunov asymptotic stability, finite-time
stability is more realistic and theoretical. Thus we are in-
terested analysing finite-time stability of the switched sys-
tems and many results have been proposed for the re-
lated issues [6–9]. Specially, reliable finite-time filtering
for impulsive switched linear systems with sensor failures
is researched in [8], asynchronously switched control of a
class of slowly switched linear systems is investigated in
[9] and so on.

The problem of sampled-data control has been exces-

sively studied over the past decades, the periodic sam-
pling or time-triggered sampling mechanism is the tradi-
tional method. However, this method may lead to unnec-
essary data transmission, which is undesired in practical
engineering, especially in some networked control sys-
tems with limited communication bandwidth. On the other
hand, event-triggered control is a hot topic in recent years,
which can reduce the transmission resource efficiently
compared with the periodic sampling. The event-triggered
control method has been developed rapidly, especially for
switched systems, for example, adaptive event-triggered
control, observer based event-triggered control and so on.
There are so many results occured [10–12]. However, the
switching feather mixed event-triggered sampling makes
it difficult to the analysis and synthesis of the switched
system. For the difficulty dealing with asynchronism be-
tween subsystem and event-triggered controller, many
works assume that at most one switching happens during
an inter-event interval, which is unrealistic and not prac-
tical. Inspired by the work [5], which firstly searched the
system switch more than once during the event-triggered
period. We extended the method of [5] for switched linear
systems with frequent switching over an inter-event inter-
val, which motivates our current study.

The concept of extended dissipative was proposed
by Zhang in [13], which unifies H∞ performance, L2 −
L∞ performance, Passivity performance and (Q, S, R)-
dissipativity performance together. It provids an efficient
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method for system performance analysis and has at-
tracted remarkable attention [13–15]. So we are inter-
ested analysing the extended dissipative performance for
switched linear systems.

The contributions of this paper are listed as follows: 1)
A novel event-triggered method with frequent switching
over an inter-event interval is proposed; 2) Finite-time ex-
tended dissipative performance is analysed for switched
linear systems; 3) The novel controller-mode dependent
Lyapunov functional is used for system analysis; 4) Matrix
transformation technique is used for the controller design.

This paper is organized as follows: In Section 2, system
descriptions and preliminaries are formulated. In Section
3, sufficient conditions of event-triggered finite-time ex-
tended dissipative control for switched linear systems are
established. The design method of the state feedback con-
trollers is proposed. In Section 4, numerical examples are
presented. In Section 5, conclusion is given.

Notation: MT represents the transpose of the matrix M;
X > 0 denotes a positive-definite matrix. λmin(P), λmax(P)
denote the minimum and maximum eigenvalue of matrix
P respectively.

2. SYSTEM DESCRIPTIONS AND
PRELIMINARIES

Consider the following switched linear system:

ẋ(t) = Aσ(t)x(t)+Bσ(t)u(t)+Cσ(t)w(t),

y(t) = Dσ(t)x(t),

x(t0 +θ) = ϕ(θ),∀θ ∈ [−τ,0], (1)

where x(t) ∈ Rn is the state vector, u(t) is the control in-
put, w(t) is the exogenous disturbance which belongs to
L2[0,∞), L2[0,∞) denote something is bounded, y(t)∈ Rn

is the output of the system, ϕ(θ) is the initial condition of
the system on [−τ,0]. The switching signal σ(t) : [0,∞) 7→
M = {1,2...l} is a piecewise continuous function and for
each σ(t) = i, Ai,Bi,Ci,Di are known constant matrices.
Let tq,q ∈ N, be the switching instant, where N ∈ N+

stands for the positive integer.
Given the event-triggered scheme:
tk+1 =min{tk +T < t < tk +G | [x(t)−x(tk)]T Φσ(tk)[x(t)
−x(tk)] ≥ εx(tk)T Φσ(tk)x(tk)}, tk denotes the sampling in-
stants for any integer k ≥ 0. Φσ(tk) is positive definite
matrices to be determined, ε > 0 and 0 < T < τa are given
event-triggered parameters. Note that the parameter T in
the event-triggered mechanism limits the lower bound
of inter-event intervals and meanwhile avoids the Zeno
behavior.The parameter G in the event-triggered mecha-
nism limits the upper bound of inter-event intervals and
meanwhile restricts the total asynchronous time, which
not only facilitates the analysis and synthesis problems
but also avoids the controller not updated for too long a
time.

The state feedback control law is given as u(t) =
Kσ(tk)x(tk), t ∈ [tk, tk+1). Denote e(t) = x(t)− x(tk), then
u(t) = Kσ(tk)(x(t)− e(t)), t ∈ [tk, tk+1).

Then the closed-loop system can be obtained.

ẋ(t) = Aσ(t),σ(tk)x(t)−Bσ(t),σ(tk)e(t)+Cσ(t)w(t),

y(t) = Dσ(t)x(t),

x(t0 +θ) = ϕ(θ),∀θ ∈ [−τ,0], t ∈ [tq, tq+1). (2)

where

Aσ(t),σ(tk) = (Aσ(t)+Bσ(t)Kσ(tk)),

Bσ(t),σ(tk) = Bσ(t)Kσ(tk).

Assume σ(tk) = i,σ(tq) = j, with tk < tq and σ(t) = j
for all t ∈ [tq, tq+1).

We discuss the following two cases:
Case 1: If no event trigger happened in [tq, tq+1), i.e.,

tk < tq < tq+1 ≤ tk+1, then the system is the form:

ẋ(t) = A j,ix(t)−B j,ie(t)+C jw(t),

y(t) = D jx(t),

x(t0 +θ) = ϕ(θ),∀θ ∈ [−τ,0], t ∈ [tq, tq+1),

where e(t) = x(t)− x(tk), t ∈ [tq, tq+1).
Case 2: If there are m(∈ N+) triggered instants in

[tq, tq+1), i.e., tk < tq < tk+1 < · · · < tk+m ≤ tq+1 < tk+m+1,
then the system is the form

ẋ(t) =



A j,ix(t)−B j,ie(t)+C jw(t), t ∈ [tq, tk+1),

A j, jx(t)−B j, je(t)+C jw(t), t ∈ [tk+1, tk+2),

...

A j, jx(t)−B j, je(t)+C jw(t), t ∈ [tk+m, tq+1),

y(t) = D jx(t),

x(t0 +θ) = ϕ(θ), ∀θ ∈ [−τ,0], t ∈ [tq, tq+1),

where

e(t) =



x(t)− x(tk), t ∈ [tq, tk+1),

x(t)− x(tk+1), t ∈ [tk+1, tk+2),

...

x(t)− x(tk+m), t ∈ [tk+m, tq+1).

We use T↑[tq, tq+1) and T↓[tq, tq+1) to denote the asyn-
chronous and synchronous interval of [tq, tq+1), respec-
tively, the system can be rewritten as

ẋ(t) =

{
A j,ix(t)−B j,ie(t)+C jw(t), t ∈ T↑[tq, tq+1).

A j, jx(t)−B j, je(t)+C jw(t), t ∈ T↓[tq, tq+1)

y(t) = D jx(t),

x(t0 +θ) = ϕ(θ), ∀θ ∈ [−τ,0], t ∈ [tq, tq+1).



Finite-time Event-triggered Extended Dissipative Control for a Class of Switched Linear Systems 2689

Proposition 1 [1]: The external disturbance satisfies∫ t

0
wT (s)w(s)ds≤ d, d ≥ 0.

Proposition 2 [13]: Matrices ψ1, ψ2, ψ3, ψ4 satisfy the
following conditions:

1) ψ1 = ψ
T
1 ≤ 0, ψ3 = ψ

T
3 > 0, ψ4 = ψ

T
4 ≥ 0;

2) (‖ψ1‖+‖ψ2‖)ψ4 = 0.

Definition 1 [13]: Given matrices ψ1, ψ2, ψ3 and ψ4

satisfying Proposition 2, and for any Tf ≥ 0 and all w(t) ∈
L2[0,∞), system (2) is said to be extended dissipative if:∫ Tf

0
J(t)dt− sup

0≤t≤Tf

yT (t)ψ4y(t)≥ 0, (3)

where

J(t) = yT (t)ψ1y(t)+2yT (t)ψ2w(t)+wT (t)ψ3w(t).
(4)

Remark 1: By setting the weighting matrices, we have
1) L2−L∞ performance: ψ1 = 0, ψ2 = 0, ψ3 = γ2I, ψ4 =

I;
2) H∞ performance: ψ1 =−I, ψ2 = 0, ψ3 = γ2I, ψ4 = 0;
3) Passivity performance: ψ1 = 0, ψ2 = I, ψ3 = γI, ψ4 =

0;
4) (Q, S, R)-dissipativity performance: ψ1 = Q, ψ2 = S,

ψ3 = R−β I, ψ4 = 0.

Definition 2 [1]: Given positive constants c1,c2,Tf with
c1 < c2, a positive definite matrix R and a switching sig-
nal σ(t), ∀t ∈ [0,Tf ], switched system (2) is said to be
finite-time bounded with respect to (c1,c2,R,Tf ,σ), if
∀t ∈ [0,Tf ],

sup
−τ≤θ≤0

{xT (θ)Rx(θ), ẋT (θ)Rẋ(θ)} ≤ c1

⇒ xT (t)Rx(t)≤ c2. (5)

Definition 3 [1]: For any T2 > T1 ≥ 0, let Nσ (T1,T2)
denotes the switching number of σ(t) over (T1,T2). If

Nσ (T1,T2)≤ N0 +
T2−T1

τa
(6)

holds for τa > 0 and an integer N0 ≥ 0, then τa is called an
average dwell-time and N0 is the chatter bound.

3. MAIN RESULTS

3.1. Finite-time boundedness and extended dissipa-
tive performance analysis

Theorem 1: If there exist positive scalars b,α,β and
µ ≥ 1, positive definite matrices Pi, Qi, Φi, such that the
following matrix inequalities hold for all i, j ∈ N.

Pi ≤ µPj, ∀i 6= j, (7)

1
b

Pi−DT
i ψ4Di > 0, (8)

−βPi +PiA ji +A
T
jiPi −PiB ji PiC j Φi

∗ −Φi 0 −Φi

∗ ∗ −Qi 0
∗ ∗ ∗ −Φi

< 0,

(9)
αPj +PjA j j +A

T
j jPj −PjB j j PjC j Φ j

∗ −Φ j 0 −Φ j

∗ ∗ −Q j 0
∗ ∗ ∗ −Φ j

< 0,

(10)
Θ11 −PiB ji PiC j−DT

j ψ2 Φi

∗ −Φi 0 −Φi

∗ ∗ −ψ3 0
∗ ∗ ∗ −Φi

< 0, (11)

Θ11 =−βPi +PiA ji +A
T
jiPi−DT

j ψ1D j,
Ξ11 −PjB j j PjC j−DT

j ψ2 Φ j

∗ −Φ j 0 −Φ j

∗ ∗ −ψ3 0
∗ ∗ ∗ −Φ j

< 0, (12)

Ξ11 = αPj +PjA j j +A
T
j jPj−DT

j ψ1D j

hold, the average dwell-time satisfies

τa ≥
lnµ +(α +β )T

α
, (13)

and

(µe(α+β )T )N0 e(
lnµ+(α+β )T

τa
−α)t(λ2c1 +λ3d)<λ1c2, (14)

(µe(α+β )T )N0 e(
lnµ+(α+β )T

τa
−α)t < b, (15)

we define

λmin(R−
1
2 PiR−

1
2 ) = λ1,λmax(R−

1
2 PiR−

1
2 ) = λ2,

λmax(R−
1
2 QiR−

1
2 ) = λ3. (16)

Then the switched system (2) is finite-time bounded-
ness with extended dissipative performance.

Proof: Choose the following Lyapunov functional as

V (t) = xT (t)Pσ(tk)x(t). (17)

Case 1: If no triggered instant happened in [tq, tq+1), the
closed-loop system is the same as the above Case 1 with
V (t) = xT (t)Pix(t). Then we have

V̇ (t)−βV (t)−wT (t)Qiw(t)

= 2xT (t)Piẋ(t)−βxT (t)Pix(t)−wT (t)Qiw(t)

≤ 2xT (t)Pi(A jix(t)−B jie(t)+C jw(t))

−βxT (t)Pix(t)−wT (t)Qiw(t)

+ [x(t)− e(t)]T Φi[x(t)− e(t)]− e(t)T
Φie(t)
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≤ XT (t)Ω jiX(t), (18)

where

X(t) =
[

xT (t) eT (t) wT (t)
]T

,

and

Ω ji =

 −βPi +PiA ji +A
T
jiPi −PiB ji PiC j

∗ −Φi 0
∗ ∗ −Qi


+ET

ΦiE,

E =
[

I −I
]
.

From (9) , we have

V̇ (t)≤ βV (t)+wT (t)Qiw(t), t ∈ [tq, tq+1). (19)

It can be concluded that

V (tq+1) =V (t−1
q+1)≤ eβ (tq+1−tq)V (tq)

+ eβ (tq+1−tq)
∫ tq+1

tq
wT (s)Qiw(s)ds,

t ∈ [tq, tq+1). (20)

Case 2: When there are m(∈ N+) triggered instants in
[tq, tq+1), the closed-loop system is the same as the above
Case 2 with

V (t) =

{
xT (t)Pix(t), t ∈ [tq, tk+1);

xT (t)Pjx(t), t ∈ [tk+1, tq+1),

similar to Case 1 and considering (7), we have

V (tk+1)≤µV (t−1
k+1)≤ µeβ (tk+1−tq)V (tq)

+µeβ (tk+1−tq)
∫ tk+1

tq
wT (s)Qiw(s)ds,

t ∈ [tq, tk+1). (21)

For t ∈ [tk+1, tq+1), it holds that

V̇ (t)+αV (t)−wT (t)Q jw(t)

= 2xT (t)Pj ẋ(t)+αxT (t)Pjx(t)−wT (t)Q jw(t)

≤ 2xT (t)Pj(A j jx(t)−B j je(t)+C jw(t))

+αxT (t)Pjx(t)−wT (t)Q jw(t)

+ [x(t)− e(t)]T Φ j[x(t)− e(t)]− e(t)T
Φ je(t)

≤ XT (t)Ω j jX(t), (22)

which implies

V̇ (t)≤−αV (t)+wT (t)Q jw(t).

From (10), we have

V (tq+1) =V (t−1
q+1)

≤e−α(tq+1−tk+1)V (tk+1)

+ e−α(tq+1−tk+1)
∫ tq+1

tk+1

wT (s)Q jw(s)ds

≤µe−α(tq+1−tk+1)(V (t−1
k+1)

+
∫ tq+1

tk+1

wT (s)Q jw(s)ds)

≤µe−α(tq+1−tk+1)+β (tk+1−tq)(V (tq)

+
∫ tq+1

tq
wT (s)Q jw(s)ds). (23)

Therefore, it can be concluded from (20) and (23) that

V (tq+1)≤µe−αT↓[tq,tq+1)eβT↑[tq,tq+1)(V (tq)

+
∫ tq+1

tq
wT (s)Qiw(s)ds). (24)

The controller switching Ñσ (0, t) is smaller than system
switching Nσ (0, t). Then for any t > 0,

V (t)≤µ
Ñσ (0,t)e−αT↓[0,t)+βT↑[0,t)

×
(

V (0)+
∫ t

0
wT (s)Qiw(s)ds

)
≤µ

Nσ (0,t)e−αte(α+β )T Nσ (0,t)

×
(

V (0)+
∫ t

0
wT (s)Qiw(s)ds

)
≤(µe(α+β )T )N0 e(

lnµ+(α+β )T
τa

−α)t

×
(

V (0)+
∫ t

0
wT (s)Qiw(s)ds

)
.

(25)

On the other hand,

V (0) =xT (0)Pix(0) = xT (0)R
1
2 (R−

1
2 PiR−

1
2 )R

1
2 x(0)

≤λ2c1. (26)

We have

V (t) =xT (t)Pix(t) = xT (t)R
1
2 (R−

1
2 PiR−

1
2 )R

1
2 x(t)

≥λ1xT (t)Rx(t). (27)

From (25)-(27) we have that

xT(t)Rx(t)<
(µe(α+β )T )N0 e(

ln µ+(α+β )T
τa

−α)t(λ2c1+λ3d)
λ1

.

Using (14), one obtains

xT (t)Rx(t)< c2.

Similar to the above proof, we have

V̇ (t)+λV (t)− J(t)≤ XT (t)Φσ(t)σ(tk)X(t),

where
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λ =

{
α, t ∈ Ts[tq, tq+1);

−β , t ∈ Tas[tq, tq+1),

X(t) =
[

xT (t) eT (t) wT (t)
]T

,

by virtue of (11) and (12) we have that

V̇ (t)+λV (t)− J(t)< 0.

Similar to above proof, we have

V (t)≤(µe(α+β )T )N0 e(
lnµ+(α+β )T

τa
−α)t

×
(

V (0)+
∫ t

0
J(s)ds

)
, (28)

under zero initial condition V (0) = 0, we have

V (t)≤ (µe(α+β )T )N0 e(
lnµ+(α+β )T

τa
−α)t

∫ t

0
J(s)ds, (29)

and it is equivalent to

V (t)

(µe(α+β )T )N0 e(
lnµ+(α+β )T

τa
−α)t

<
∫ t

0
J(s)ds,

by (15), we have

V (t)
b

<
∫ t

0
J(s)ds,

so we have∫ t

0
J(s)ds >

V (t)
b

>
1
b

xT (t)Pix(t)> 0,

considering inequality∫ Tf

0
J(t)dt− sup

0≤t≤Tf

yT (t)ψ4y(t)≥ 0,

when ψ4 = 0, one obtains∫ Tf

0
J(t)dt ≥ 0,

when ψ4 > 0, by Proposition 2 we have ψ1 = 0, ψ2 = 0,
ψ3 > 0, then we have∫ t

0
J(s)ds =

∫ t

0
wT (s)ψ3w(s)ds,

thus, for ∀t ∈ [0, Tf ], we have∫ Tf

0
J(s)ds >

∫ t

0
J(s)ds≥ 1

b
xT (t)Pix(t)> 0,

it follows from (8) that∫ Tf

0
J(s)ds≥1

b
xT (t)Pix(t)≥ xT (t)DT

i ψ4Dix(t)

=yT (t)ψ4y(t),

so we get∫ Tf

0
J(t)dt− sup

0≤t≤Tf

yT (t)ψ4y(t)≥ 0.

The proof is completed. �
Remark 2: This work focuses on achieving the finite-

time boundedness and extended dissipative performance
of switched linear systems and meanwhile save limited
transmission resource. The event-triggered mechanism is
adopted to determine the data sending, which effectively
reduces the data transmission compared with periodic
sampling. Frequent system switching is allowed over an
event-triggered interval, which is different from the previ-
ous work [16] and [17] that only one switching happened
over the event-triggered interval.

Theorem 2: If there exist positive scalars b, α , β and
µ ≥ 1, positive definite matrices Pi, Qi, Φi, such that the
following matrix inequalities hold for all i, j ∈ N.

Pi ≤ µPj, ∀i 6= j,
1
b

Pi−DT
i ψ4Di > 0,

Λ11 −B jYi C j Φ̂i

∗ −Φ̂i 0 −Φ̂i

∗ ∗ −Qi 0
∗ ∗ ∗ −Φ̂i

< 0, (30)

Λ11 =−βRi +A jRi +B jYi +RiAT
j +Y T

i BT
j ,

Γ11 −B jYj C j Φ̂ j

∗ −Φ̂ j 0 −Φ̂ j

∗ ∗ −Q j 0
∗ ∗ ∗ −Φ̂ j

< 0, (31)

Γ11 = αR j +A jR j +B jYj +R jAT
j +Y T

j BT
j ,

∆11 −B jYi C j−RiDT
j ψ2 Φ̂i RiDT

j
∗ −Φ̂i 0 −Φ̂i 0
∗ ∗ −ψ3 0 0
∗ ∗ ∗ −Φ̂i 0
∗ ∗ ∗ ∗ ψ

−1
1

< 0, (32)

∆11 =−βRi +A jRi +B jYi +RiAT
j +Y T

i BT
j ,

Π11 −B jYj C j−R jDT
j ψ2 Φ̂ j R jDT

j
∗ −Φ̂ j 0 −Φ̂ j 0
∗ ∗ −ψ3 0 0
∗ ∗ ∗ −Φ̂ j 0
∗ ∗ ∗ ∗ ψ

−1
1

<0, (33)

Π11 = αR j +A jR j +B jYj +R jAT
j +Y T

j BT
j

hold, the average dwell-time satisfies

τa ≥
lnµ +(α +β )T

α
,

and

(µe(α+β )T )N0 e(
lnµ+(α+β )T

τa
−α)t(λ2c1 +λ3d)< λ1c2,
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(µe(α+β )T )N0 e(
lnµ+(α+β )T

τa
−α)t < b,

we define

P−1
i = Ri,Φ̂i = RiΦiRi,KiRi = Yi,

and

λmin(R−
1
2 PiR−

1
2 ) = λ1,λmax(R−

1
2 PiR−

1
2 ) = λ2,

λmax(R−
1
2 QiR−

1
2 ) = λ3.

Then the switched system (2) is finite-time bounded-
ness with extended dissipative performance. The con-
troller gains can be given by Ki = YiR−1

i .
Proof: Similar to the proof of Theorem 1, we have

V̇ (t)−βV (t)−wT (t)Qiw(t)≤ XT (t)Ω jiX(t).

Pre- and post-multiplying (30) by diag{Pi, Pi, I, Pi}, by
Schur complement, we have Ω ji < 0, we can conclude that

V̇ (t)−βV (t)−wT (t)Qiw(t)< 0.

Similarly,

V̇ (t)−βV (t)− J(t)≤ XT (t)Φ jiX(t).

Pre- and post-multiplying (32) by diag{Pi, Pi, I, Pi}, by
Schur complement, we have Φ ji < 0, we can conclude that

V̇ (t)−βV (t)− J(t)< 0.

The following proof is similar to that of Theorem 1, it is
omitted here. �

4. NUMERICAL EXAMPLE

Consider the switched linear system (2) with two sub-
systems.

A1 =

[
2 −4
1 −3

]
, B1 =

[
1 −4
−1 1

]
, C1 =

[
3 2
0 −1

]
,

D1 =

[
0.02 0
0.02 0.02

]
;

A2 =

[
1 −6
3 −2

]
, B2 =

[
2 −5
−2 2

]
, C2 =

[
1 2
0 2

]
,

D2 =

[
0.02 0
0.01 0.01

]
.

The initial condition is x(0) =
[
−0.2 0.2

]T
, and

w(t) =
[

e−t ∗ sin(t) e−t ∗ cos(t)
]T

.
We choose c1 = 0.08, c2 = 1, Tf = 8, γ = 0.6, u = 1,

R = I2×2, b = 0.5, T = 0.2, G = 2, ε = 0.5, α = 0.3, β =
0.3, τa = 0.5. For (Q, S, R)-dissipativity performance,we
choose Q = I2×2, S = I2×2, R = I2×2.

Performance variable for each case is given in Table 1.
By solving the LMIs in Theorem 2, we can obtain the

Table 1. Performance variable for each case.

L2−L∞ performance,γ2 = 0.6
H∞ performance, γ2 = 0.6

Passivity, γ = 0.6
Dissipativity, β = 0.4

Table 2. Controller gain for each case.

Subsystem 1

L2−L∞ performance, K1 =

[
−0.4408 1.5744
0.8595 −0.6980

]

H∞ performance, K1 =

[
5.2523 4.1620
6.1586 1.4482

]

Passivity, K1 =

[
5.9603 3.9647
6.7264 1.4412

]

Dissipativity, K1 =

[
246.9201 258.1637
196.0458 116.9295

]

Table 3. Controller gain for each case.

Subsystem 2

L2−L∞ performance, K2 =

[
0.1064 0.3398
0.1673 0.0774

]

H∞ performance, K2 =

[
0.6618 1.2532
1.1050 0.1570

]

Passivity, K2 =

[
2.2579 2.5304
2.5768 0.7323

]

Dissipativity, K2 =

[
0.5085 1.0527
0.8948 0.1090

]

controller gains and event-triggered parameters listed in
Tables 2, 3 and 4, 5, respectively.

The switching signal of the system is given in Fig. 1.
From Fig. 2, we can see that when xT (0)Rx(0)≤ 0.08, the
trajectory satisfies xT (t)Rx(t)≤ 1, which demonstrates the
finite-time boundedness of the closed loop system. Fig. 3
shows the event-triggered release instants and the inter-
event intervals induced by the designed event-triggered
mechanism. To focus on the inter-event intervals [0.6, 0.9]
and [4.1, 4.4], it can be seen from Fig. 1 that frequent
switching occurs in these intervals. This is different from
the Fig.3 in the Reference [16] that at most one switching
occurs in the inter-event intervals. Also, different from the
Fig.4 in the Reference [5], we not only added the param-
eter G = 2 in the event-triggered mechanism which lim-
its the upper bound of inter-event intervals but also added
the parameter T = 0.2 in the event-triggered mechanism
which limits the lower bound of inter-event intervals and
meanwhile avoids the Zeno behavior.
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Table 4. Event-triggered parameters for subsystem 1.

Subsystem 1

L2−L∞ performance, Φ1 =

[
0.0010 −0.0013
−0.0013 0.0018

]

H∞ performance, Φ1 =

[
0.0034 0.0004
0.0004 0.0003

]

Passivity, Φ1 =

[
0.0053 0.0005
0.0005 0.0004

]

Dissipativity, Φ1 =

[
0.0068 0.0033
0.0033 0.0028

]

Table 5. Event-triggered parameters for subsystem 2.

Subsystem 2

L2−L∞ performance, Φ2 = 10−8 ∗

[
0.2297 −0.1481
−0.1689 0.4135

]

H∞ performance, Φ2 =

[
0.0011 −0.0006
−0.0006 0.0008

]

Passivity, Φ2 =

[
0.0022 −0.0005
−0.0005 0.0010

]

Dissipativity, Φ2 =

[
0.0026 −0.0016
−0.0016 0.0021

]

Fig. 1. The switching signal of the system.

5. CONCLUSION

In this paper, the problem of event-triggered finite time
extended dissipative control for a class of switched lin-
ear systems with frequent asynchronism has been inves-
tigated. A novel event triggered method has been intro-
duced. We can solve the H∞, L2−L∞, Passivity and (Q, S,

Fig. 2. The state trajectory under event triggered L2−L∞

control.

Fig. 3. Event triggered transmission interval.

R)-dissipativity performance in a unified framework based
on extended dissipative. LMIs are used to obtain the re-
sults, we give numerical examples to show the effective-
ness of the method.
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