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Stability Analysis of a Nonlinear PID Controller
Yung-Deug Son, Sang-Do Bin, and Gang-Gyoo Jin*

Abstract: In our previous work, the authors presented an effective nonlinear proportional-integral-derivative (PID)
controller by incorporating a nonlinear function. The proposed controller is based on a conventional PID control
architecture, wherein a nonlinear gain is coupled in series with the integral action to scale the error. Three new
tuning rules for processes represented as the first-order plus time delay (FOPTD) model were obtained by solving
an optimization problem formulated to minimize three performance indices. The main feature of the proposed
controller is that it preserves the numbers of tuning gains even though nonlinearity is introduced and remains easy
implementation in real applications. However, due to the introduction of a nonlinear element, the stability problem
of the proposed controller may be raised. This paper presents one sufficient condition in the frequency domain for
the absolute stability of the nonlinear PID controller, based on circle stability theory. It is proved that the nonlinear
gain used is in the sector [0, 1]. The condition of the linear block F(s) is derived for the overall feedback system to
be stable. Checking the stability and the effectiveness and robustness of the feedback system for setpoint tracking
are demonstrated through a set of simulation works on three processes with uncertainty.

Keywords: Circle stability theory, FOPTD model, nonlinear PID controller, nonlinear gain, tuning rule.

1. INTRODUCTION

For over 70 years, the proportional-integral-derivative
(PID) controller has been the most commonly used tech-
nique in the control field of both industry and academia.
Due to its simple structure and good performance, the PID
controller is by far dominating more than 90% of all con-
trol loops in process industries. Although the PID con-
troller has relatively smaller parameters than other con-
trollers do, the optimum tuning of its parameters is not
a trivial task in the absence of a systematic approach. A
variety of setting methods based on different PID con-
troller structures including the well-known tuning meth-
ods of Ziegler and Nichols [1] have been proposed and
most of them are summarized in the literature [2]. How-
ever, as industrial processes become more and more com-
plex, time-varying, highly nonlinear or significant time
delay characteristics inherited in processes lead to great
difficulty in keeping the desired control performance of
the PID controller. Many approaches have been suggested
to improve the adaptability and robustness by employing
the concepts of auto-tuning, self-tuning, adaptive or intel-
ligent schemes. Some applications of these concepts, such

as relay feedback, self-tuning using pattern recognition,
real-time adaptive tuning and intelligent methods combin-
ing with fuzzy logic, neural networks and evolutionary al-
gorithms to PID controllers have been suggested in the
literature [3–8]. Inspired by these, an attractive approach
adopting nonlinearities within the framework of the PID
controller and tuning parameters by using an evolutionary
algorithm has been proposed in previous literature [9–19].
This approach can be roughly divided into employing non-
linearities to controller gains and scaling the error nonlin-
early. The former nonlinear PID controllers achieve per-
formance by gradually changing their gains based on er-
ror and/or error rate [9–15]. The latter nonlinear PID con-
trollers, the other hand, achieve performance by scaling
the error through a nonlinear gain in cascade with a linear
PID controller [16–19]. However, due to the use of nonlin-
earities, most of them have the increased numbers of tun-
ing parameters and it will impose a burden on industrial
operators for their tuning. Through a previous work [17],
the authors proposed a nonlinear PID controller which
adopts a nonlinear gain in cascade with the integral term
of the standard PID controller. Three new tuning rules for
processes represented as the FOPTD model were then ob-
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tained by solving an optimization problem formulated to
minimize three performance indices. The main advantages
of the proposed controller lie in its easy implementation
due to the use of a simple nonlinear gain and mitigation
of the integrator windup due to scaling down a large in-
put error of the integrator. As a succeeding study, it is of
great significance to handle the stability problem of the
proposed NPID controller under the uncertainties of pro-
cess parameters. The useful tools for analysing the abso-
lute stability of nonlinear systems include Popov criterion
and circle criterion. Seraji derived simple expressions that
relate the PI and PID controller gains and system param-
eters to the maximum allowable nonlinear gain using the
Popov stability criterion [13]. The Popov stability crite-
rion was used to determine the nonlinear gain to retain the
stability of an enhanced PID control system [18]. The con-
troller parameters were designed under assumptions of a
sector bounded nonlinear gain, to a proper choice that sat-
isfies the inequality of Popov [19]. As another method,
Rezaei and Hashemzade [20] studied the absolute stabil-
ity of nonlinear systems with generalized sector condition
based on circle theorem.

In this paper, we present a method to analyse the abso-
lute stability of the nonlinear PID controller for processes.
By using circle theorem, we characterize a nonlinear func-
tion, and it provides explicit conditions to ensure the sta-
bility. The stability for uncertainties of the process model
are also checked through the Nyquist band of the linear
part transfer function. The effectiveness and robustness
of the proposed controller for setpoint tracking is demon-
strated through simulation on three processes. This paper
is organized as follows: Section 2 gives a brief overview
regarding the proposed nonlinear PID controller. Section
3 analyses the stability of the closed-loop system using
circle theorem. Section 4 illustrates simulation results per-
formed on three processes and discussion. Finally, conclu-
sions are presented in Section 5.

2. NONLINEAR PID CONTROL SYSYEM

2.1. The nonlinear PID controller

Through the previous work [17], the authors proposed a
nonlinear PID (NPID) controller which employs a simple
nonlinear gain in cascade with the integral action of the
standard PID controller. The closed-loop system including
the NPID controller is shown in Fig. 1.

The NPID controller in the dotted box composes a lin-
ear proportional-derivative term and a nonlinear integral
term; Gp(s) the process transfer function; ys, y and u the
setpoint (SP) signal, the process variable (PV) and the
control signal, respectively; e the error (e = SP−PV).

The time-domain equation of the NPID controller is
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given by

u(t) = Kp

[
e(t)+

1
Ti

∫
v(t)dt +Td

de(t)
dt

]
, (1)

where Kp, Ti and Td denote the proportional gain, the in-
tegral time and the derivative time, respectively. v(t) is a
scaled error defined as

v(t) = Φ(e) = k(e)e(t), (2)

where Φ(e) is a nonlinear function of e(t) that is intro-
duced to improve the performance of the closed-loop sys-
tem. k(e) is a nonlinear gain defined as follows:

k(e) = exp(− e2

2∆y2
s
), (3)

where ∆ys (6= 0) denotes the difference between the cur-
rent SP and the previous SP. The typical plots of Φ(e) for
∆ys = 1, 2, and 3 are shown in Fig. 2. Note that the place to
which this nonlinearity is applied is the integral term. The
main advantages of this formulation is that the large error
is scaled down near to zero by adopting k(e) as the condi-
tional integration anti-windup technique [22] sets the in-
tegrator off when the error exceeds a pre-set level. Conse-
quently, with this NPID controller, integrator windup can
be mitigated to some extent.
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Table 1. Tuning rules for step setpoint tracking based on ISE, IAE and ITAE (0.01≤ L/τ < 1).

Performance
Index

Dimensionless parameters
KKp Ti/τ Td/τ

ISE 1.2886( L
τ
)−0.9182 0.9217+0.2375 L

τ
0.4302( L

τ
)0.9645

IAE 1.0350( L
τ
)−0.9327 0.9465+0.1398 L

τ
0.3527( L

τ
)0.9406

ITAE 1.0019( L
τ
)−0.9457 0.8723+0.1848 L

τ
0.3401( L

τ
)0.9799

Table 2. Tuning rules for step setpoint tracking based on ISE, IAE and ITAE (1≤ L/τ ≤ 3).

Performance
Index

Dimensionless parameters
KKp Ti/τ Td/τ

ISE 1.3362( L
τ
)−0.5488 0.8419+0.3190 L

τ
0.4137( L

τ
)0.75

IAE 1.0822( L
τ
)−0.5495 0.8237+0.2692 L

τ
0.3331( L

τ
)0.6831

ITAE 1.0093( L
τ
)−0.5198 0.7813+0.2781 L

τ
0.2878( L

τ
)0.7317

2.2. Tuning rules of the NPID controller
Many industrial processes can be represented by the

FOPTD model as

Gp(s) =
Ke−Ls

τs+1
, (4)

where K denotes the steady-state gain, τ the time constant,
and L the dead time of the process. Three parameters may
change within the upper and lower bounds as

Klower ≤ K ≤ Kupper,

τlower ≤ τ ≤ τupper,

Llower ≤ L≤ Lupper. (5)

By using dimensionless analysis, a genetic algorithm
(GA) and the least squares method, the authors proposed
three tuning rules. The tuning rules were obtained such
that the overall closed-loop response minimizes one of
the following performance indices: integral of the square
value of the error (ISE), integral of the absolute value of
the error (IAE), and integral of the time weighted absolute
value of the error (ITAE). The results are listed in Tables
1-2.

3. STABILITY ANALYSIS OF THE NPID
CONTROL SYSTEM

Since adopting a nonlinear gain in the structure of the
proposed controller, stability analysis of the overall con-
trol system is necessary.

For this purpose, circle stability theory is applied. Let
us consider a nonlinear closed-loop system which can de-
compose a linear block F(s) and a nonlinear block Φ as
shown in Fig. 3. Here, ys is assumed to be zero or a con-
stant without loss of generality.

Definition 1: A memoryless function Φ : ℜ→ℜ is said
to belong to the sector [k1, k2], if there are constsnts α , β ,
k1 and k2 (with 0≤ k1 < k2 and α < 0 < β ) such that

k1e2 ≤Φ(e)e≤ k2e2 for ∀e ∈ [α, β ]. (6)

Definition 1 implies Φ(0) = 0 and Φ(e)e≥ 0. This means
that Φ(e) lies in between two straight lines k1e and k2e,
that is, in the first and third quadrants as shown in Fig. 4.
If (6) holds for all e ∈ (−∞, ∞), it is said that the sector
condition holds globally.

Theorem 1: Consider the system in Fig. 3 where F(s)
is stable (i.e., it has all its poles in the left half-plane with
one pole at the origin) and Φ satisfies the sector condition
(6) globally.

Then, the system is absolutely stable if the following
condition is satisfied:

Re
[

1+ k2F(iω)

1+ k1F(iω)

]
> 0, ω ∈ℜ. (7)

Proof: Theorem 1 can be proved by using loop
transformation, a Lyapunov function and the Kalman-
Yakubovich-Popov equations. See [23].

Lemma 1: Consider the system shown in Fig. 3. Then,
it is absolutely stable if the following condition is satisfied:

If 0 = k1 < k2, F(s) is stable and the Nyquist plot of
F(iω) lies in the plane {s ∈C | Re(s)>−1/k2}.

Proof: Suppose that F(iω)=α+ iβ . Then, with k1 = 0,
(7) can be rewritten as

Re [1+ k2F(iω)] =Re [1+ k2(α + iβ )]

=1+ k2α > 0.
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=
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Fig. 3. A nonlinear feedback system.
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Rearranging the above inequality yields

ReF(iω) = α >−1/k2. (8)

This inequality implies that the Nyquist plot of F(iω)
is located on the right of a vertical line defined by
ReF(iω) =−1/k2. Fig. 5 shows the Nyquist plot of F(iω)
along with its forbidden region.

Let us now consider the NPID control system shown in
Fig. 1. After some manipulation of the block diagram, it
can be decomposed into the linear and nonlinear blocks
as in Fig. 3. Then, the linear-part transfer function F(s) is
written by

F(s) =
KpGp(s)

Tis[1+Kp(1+Tds)Gp(s)]
. (9)

If Gp(s) possesses time delay, time delay can be approx-
imated by a rational transfer function using the second-
order Padé approximation as

e−Ls =
s2− 6

L s+ 12
L2

s2 + 6
L s+ 12

L2

. (10)

Theorem 2: Consider the nonlinear function in (2).
Φ(e) belongs to the sector [0,1].

Proof: From the fact that the nonlinear gain (3) is an
even function, clearly we have

k(e) = k1 = 0 as e→ ∞ or e→−∞,

and also

k(e) = k2 = 1 as e = 0.

Since we have 0 ≤ Φ(e)e ≤ e2 for ∀e ∈ ℜ, Φ(e) belongs
to the sector [0, 1].

Consequently, according to Lemma 1, the system in
Fig. 1 becomes absolutely stable if F(s) is stable since
Φ is in the sector [0, 1]. In other words, the NPID con-
trol system is absolutely stable if F(s) has all its poles in
the left half-plane with one pole at the origin. Therefore,
we will examine this condition in detail through example
processes in the next section.

4. SIMULATION RESULTS

This section illustrates the effectiveness of the proposed
controller setting for minimizing the IAE performance in-
dex and assesses the absolute stability of the closed-loop
system over three processes taken from the literature. The
responses of the NPID controller are compared with those
of the linear PID controller tuned by the ASP method
[24], the SL method [25], the YXC method [26], and the
IMC method [27]. The abbreviations of ‘ASP’ for Anwar,
Shamsuzzoha and Pan, ‘SL’ for Shamsuzzoha and Lee,
and ‘YXC’ for Yang, Xu and Chiu are used, respectively.

4.1. Process 1
A FOPTD process is considered from [24] as given by

Gp(s) =
K0e−L0s

τ0s+1
. (11)

The nominal parameter values of this process are K0 = 1,
τ0 = 1, and L0 = 0.5 but in this work each parameter is
considered to vary within the 20% range from its nominal
value. The ranges of variation result in 0.8 ≤ K0 ≤ 1.2,
0.8 ≤ τ0 ≤ 1.2, and 0.4 ≤ L0 ≤ 0.6. Table 3 lists the set-
tings of the PID controller and the NPID controller for the
nominal process.

In order to check the absolute stability of the NPID con-
trol system, F(s) is obtained through (9) to (11) as

F(s) =
b1s2 +b2s+b3

s(a0s3 +a1s2 +a2s+a3)
, (12)

where

b1 =
KKp

Ti
, b2 =−

6KKp

LTi
, b3 =

12KKp

L2Ti
,

a0 = τ +KKpTd ,

Table 3. Controller settings for Process 1.

Method Gains
Kp Ki Kd

NPID 1.976 1.944 0.363
PID-ASP 1.12 1.0 0.12
PID-SL 1.08 1.02 0.11

PID-IMC 1.11 0.88 0.11
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Fig. 6. Nyquist diagram and Nyquist band of F(iω) for
Process 1.

Fig. 7. Responses for the unit step input on Process 1.

a1 = 1+KKp +
6τ

L
− 6KKpTd

L
,

a2 =
6
L
+

12τ

L2 −
6KKp

L
+

12KKpTd

L2 ,

a3 =
12
L2 +

12KKp

L2 .

With the nominal parameter values and the NPID con-
troller settings, the denominator equation of F(s), s(s3 +
7.7906s2 + 39.4106s+ 104.788) = 0, gives 4 poles of 0,
−2.5940, −3± 1.7321i. Therefore, the closed-loop sys-
tem becomes absolutely stable according to Lemma 1.
In order to examine this fact graphically, we plotted the
Nyquist diagram (red color) as well as the Nyquist band
(green color) in the variation range of the process param-
eters. It can be seen in Fig. 6 that as well as the Nyquist
diagram, the Nyquist band lies to the right of a vertical
line of ReF(iω) =−1/k2 =−1.

To evaluate the SP tracking performance of the NPID
controller, the responses for a unit step SP change were
obtained with those of the ASP method, the SL method,
and the IMC method. The responses in Fig. 7 clearly
shows that the NPID controller provides moderately larger
overshoot but it produces good transient responses.

For a quantitative comparison of the responses, the per-

Table 4. Performance indices of the SP tracking responses
for Process 1.

Method tr Mp ts IAE
NPID 0.515 6.540 2.185 0.818

PID-ASP 1.201 1.609 1.925 1.051
PID-SL 1.185 3.050 3.537 1.084

PID-IMC 1.577 - 3.147 1.126

formance indices such as rise time tr (= t95−t5), overshoot
Mp, 2% settling time ts, and IAE were obtained. They are
summarized in Table 4.

It is observed that the NPID controller offers relatively
larger Mp but not too big at the expense of enhancing the
swiftness of response than the others.

4.2. Process 2
A fifth-order plus dead-time process is considered [24]

where the process has transfer function as

Gp(s) =
K0e−L0s

(τ0s+1)3(s+1)2 . (13)

The nominal parameter values of this process are K0 = 1,
τ0 = 2, and L0 = 8. It is assumed that each parameter
varies within the ranges of 0.8≤K0 ≤ 1.2, 1.6≤ τ0 ≤ 2.4,
and 6.4 ≤ L0 ≤ 9.6. The FOPTD model of Process 2 was
determined by using a GA-based model reduction tech-
nique. An input was simultaneously applied to both the
process and the parallel-connected FOPTD model. The
model parameters K, τ , and L were adjusted by a GA
to minimize a performance index of the difference be-
tween the process output and the model output. This tech-
nique results in K = 1, τ = 4.119, and L = 12.230 and
L/τ ≈ 2.97 in this process. The settings of the PID con-
troller tuned by the ASP method [24], the YXC method
[26] and the IMC method [27] and the NPID controller
are listed in Table 5.

As the previous example, in order to examine the abso-
lute stability of the closed-loop system, F(s) can be writ-
ten as follows:

F(s)

=
b5s2 +b6s+b7

s(a0s7+a1s6+a2s5+a3s4+a4s3+a5s2+a6s+a7)
,

(14)

Table 5. Controller settings for Process 2.

Method Gains
Kp Ki Kd

NPID 0.595 0.089 1.717
PID-ASP 0.543 0.055 2.30
PID-SL 0.63 0.060 1.745

PID-IMC 0.56 0.063 1.316
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Table 6. Performance indices of the SP tracking responses
for Process 2.

Method tr Mp ts IAE
NPID 12.018 4.239 34.281 17.618

PID-ASP 13.531 1.913 43.589 18.647
PID-SL 10.638 10.779 50.593 18.489

PID-IMC 11.227 13.723 52.776 18.936

where

b5 =
KKp

Ti
, b6 =−

6KKp

LTi
, b7 =

12KKp

L2Ti
,

a0 = τ
3,

a1 =
6τ3

L
+2τ

3 +3τ
2,

a2 =
12τ3

L2 +
6
L
(2τ

3 +3τ
2)+ τ

3 +6τ
2 +3τ,

a3 =
12
L2 (2τ

3 +3τ
2)+

6
L
(τ3 +6τ

2 +3τ)+3τ
2

+6τ +1,

a4 =
12
L2 (τ

3 +6τ
2 +3τ)+

6
L
(3τ

2 +6τ +1)+3τ

+2+KpTd ,

a5 =
12
L2 (3τ

2 +6τ +1)+
6
L
(3τ +2)+1+KKp

− 6KKd

L
,

a6 =
12
L2 (3τ +2)+

6
L
− 6KKp

L
+

12KKd

L2 ,

a7 =
12
L2 +

12KKp

L2 .

Since the denominator of F(s) has 8 stable poles of
−1.457± 0.536i, −0.439± 0.754i, −0.347, −0.055±
0.236i and 0, it is also absolutely stable according to
Lemma 1. We plotted the Nyquist band in the variation
range of the process parameters as well as the Nyquist di-
agram with changing ω . It can be seen in Fig. 8 that they
lies to the right of a vertical line of ReF(iω) =−1.

Fig. 9 depicts the unit step responses of the four meth-
ods. As shown in Fig. 9, the ASP method exhibits a slug-
gish response whereas the YXC method does an oscilla-
tory response. The response obtained using the proposed
method shows smaller overshoot, remarkably reduced set-
tling time and IAE than the other methods.

Comparison of the PID and NPID controller settings in
Table 6 shows that the proposed method provides more
improved quantitative performance indices.

Fig. 8. Nyquist diagram and Nyquist band of F(iω) for
Process 2.

Fig. 9. Responses for the unit step input on Process 2.

4.3. Process 3
Consider a twentieth-order process model without time

delay as follows [24]:

Gp(s) =
K0

(τ0s+1)20 . (15)

The nominal parameter values of this process are K0 = 1,
and τ0 = 1 and two parameters can vary within the ranges
of 0.8 ≤ K0 and τ0 ≤ 1.2. In the case of Process 3, con-
sequently K = 1.0, τ = 7.389, L = 13.598 were estimated
as the FOPDT model and L/τ≈ 1.84. The settings of the
PID controllers and the NPID controller are summarized
in Table 7.

Since the denominator of F(s) has stable 21 poles of

Table 7. Controller settings for Process 3.

Method Gains
Kp Ki Kd

NPID 0.615 0.074 2.598
PID-ASP 0.525 0.055 1.66
PID-SL 0.62 0.052 2.21

PID-IMC 0.55 0.05 1.87
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Fig. 10. Nyquist diagram and Nyquist band of F(iω) for
Process 3.

Fig. 11. Responses for the unit step input on Process 3.

Table 8. Performance indices of the SP tracking responses
for Process 2.

Method tr Mp ts IAE
NPID 14.679 7.311 43.688 22.283

PID-ASP 14.246 21.091 69.432 25.541
PID-SL 13.376 17.183 63.409 23.774

PID-IMC 13.914 20.508 55.020 24.852

−2.082, −2.025± 0.344i, −1.860± 0.651i, −1.607±
0.887i, −1.291 ± 1.029i, −0.238, −0.948 ± 1.061i,
−0.616 ± 0.979i, −0.331 ± 0.793i, −0.128 ± 0.522i,
−0.035± 0.191i and 0, it also becomes absolutely sta-
ble according to Lemma 1. It can be seen in Fig. 10 that
both the Nyquist diagram and the Nyquist band lie to the
right of a vertical line of ReF(iω) = −1. The unit step
responses obtained using the four methods were com-
pared in Fig. 11 and the performance indices are listed
in Table 8. A clear enhancement in the responses is ob-
served from Fig. 11. The response of the NPID controller
exhibits relatively smaller overshoot, shorter settling time
and smaller IAE than those using the PID controller.

5. CONCLUSION

The authors proposed a NPID controller comprised of
a simple nonlinear gain in cascade with the integral term
of the conventional PID controller. The three model-based
tuning rules for processes represented by a FOPTD model
were introduced. In this paper, the stability of the closed-
loop system incorporating the NPID controller was inves-
tigated using the circle criterion. Since the nonlinear gain
k(e) used in this paper belongs to the sector [0, 1], a suf-
ficient condition for the closed-loop system to be abso-
lutely stable is that the linear block F(s) has all its poles
in the left half-plane with one pole at the origin. Three
numerical examples were provided to demonstrate the ef-
ficiency of the proposed method. The simulation results
have shown that each linear block F(s) with the associ-
ated NPID controller settings is stable. An IAE compar-
ison results clearly indicated that the proposed method
gives consistently better performances than the linear PID
controllers tuned by the other three methods. In the future
work, we will further conduct a comparative study with
other nonlinear PID control methods.
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