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Flocking of Multi-agent Systems with Unknown Nonlinear Dynamics and
Heterogeneous Virtual Leader
Tingruo Yan, Xu Xu* � , Zongying Li, and Eric Li

Abstract: This paper investigates the flocking control of multi-agent systems with unknown nonlinear dynamics
while the virtual leader information is heterogeneous. The uncertain nonlinearity in the virtual leader information is
considered, and the weaker constraint on the velocity information measurements is assumed. In addition, a bounded
assumption on the unknown nonlinear dynamics is also considered. It is weaker than the Lipschitz condition adopted
in the most flocking control methods. To avoid fragmentation, we construct a new potential function based on the
penalty idea when the initial network is disconnected. A dynamical control law including a adjust parameter is
designed to achieve the stable flocking. It is proven that the velocities of all agents approach to consensus and no
collision happens between the mobile agents. Finally, several simulations verify the effectiveness of the new design,
and indicate that the proposed method has high convergence and the broader applicability in practical applications
with more stringent restrictions.
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1. INTRODUCTION

In the past decades, the flocking control of multiple
agents has become a major concern in many fields of sci-
ence and engineering. Researchers paid much more efforts
to understand how the crowds of people, swarming of bac-
teria and a group of birds can cluster in formations [1–3].
In the real-world problems, learning the mechanism of co-
operative motion in biological groups can be helpful to de-
velop many artificial autonomous problems such as crowd
evacuation, transport management, and formation control
of the intelligent vehicles. Recently, many flocking control
approaches on how to use the local information to ensure
the global behaviors have been proposed [4–6].

Reynolds first defined the flocking model with three ba-
sic rules: Separation, Alignment and Cohesion [7]. After
that, many flocking models had been proposed. A poten-
tial function was proposed in [8], and its gradient can be
acted as the repulsive force or attractive force to satisfy the
above rules. To avoid the nonsmooth analysis, Olfati [9]
constructed a smooth potential function that guarantees
the continuity of energy at the time of switching topol-
ogy. Then, the results of [10–12] focused on problems of
the multi-agents with fixed and switching topology. The
concept of the infinite potential function was employed

in [13], which designs the infinite force to avoid splitting
when two agents are about to leave their sensing ranges.
Su et al. [14] addressed a connectivity-preserving flock-
ing algorithm without velocity measurements, where a de-
layed edge-adding method was presented to ensure the fi-
nite energy at the time of switching topology. Under the
assumption of the joint connection, Su and Lin [15] pro-
posed a connectivity enhancing coordinated control with
the piecewise potential energy function. Gao et al. [16]
considered a more flexible distributed pinning topology
control to avoid the fragmentation of the whole network.

Most existing results on the flocking considered the
constraints of the nonlinear dynamics satisfying the Lips-
chitz condition [3,17,18]. However, the control protocols
may fail to work when the systems include the more com-
plicated unknown nonlinear dynamics [19,20].

In addition, there is a common assumption on the flock-
ing with a virtual leader that some agents can receive
the accurate velocity measurements of the virtual leader
[3,15,18,21,22]. However, in the real-world problems, ac-
curate velocity information from the virtual leader may be
difficult to get because of the external disturbances or the
measurement errors coming from the speed sensors or the
virtual leader itself. For example, Unmanned Aerial Vehi-
cles (UAVs) may be affected by the electromagnetic signal
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from the enemy and thus the information or operational in-
structions from the ground may be disturbed. Thus, a more
reasonable assumption is that the velocities of some agents
may be nonlinear with external disturbances [23–25]. In
[25], Wen et al. proposed a pinning flocking algorithm by
considering the nonlinear relative velocities between the
agents and the virtual leader. Their results assumed that
the nonlinear velocity must keep the same direction with
desired direction in order to achieve the flocking. How-
ever, such assumption cannot be satisfied when the infor-
mation of the virtual leader exists uncertain nonlinearity
and become heterogeneous.

On the other hand, in the flocking problems, some re-
sults strongly rely on the assumption that the underlying
network is connected at all time [8,13,25,26]. Some re-
searchers employed the infinite potential energy function
at both end to ensure the connectivity when the initial
network is connected [3,14]. However, in the real-world
problems, the network topology is generally not fixed or
connected all the time but time-varying and disconnected
[16,27,28]. For example, UAVs [29,30] sometimes have to
be disconnected to avoid obstacles, and thus the network
encounters disconnectivity in the neighbor graph. There-
fore, it should consider the cases that the initial topology
of the agent network is disconnected. In this case, the co-
ordinated control would become more challenging.

Motivated by the above analysis, we develop a flock-
ing algorithm with the unknown nonlinear dynamics and
a heterogeneous virtual leader. A novel flocking control
with a dynamical parameter is proposed to guarantee the
flocking of the whole group. The advantages of this algo-
rithm compared with the existing results are as follows.
1) The uncertainty of the velocity measurements of the
virtual leader is only bounded; 2) The unknown nonlin-
ear dynamics of the agents do not require to satisfy the
Lipschitz condition, which is only needed to be bounded;
3) A new potential function including a penalty term is
constructed to guarantee the connectivity regardless of the
connectivity of the initial network.

The outline of this paper is organized as follows: Sec-
tion 2 gives the preliminaries of the flocking problems. In
Section 3, the idea of the proposed algorithm and main re-
sults are presented. The theoretical analysis of the stable
flocking is investigated in Section 4. Numerical experi-
ments are shown in Section 5 to demonstrate the stability
and the higher efficiency of the proposed method. Finally,
Section 6 concludes this work.

2. PRELIMINARIES

The agent network can be represented by an undirected
graph G(t)= {v,e(t)}, whose vertices v= {1,2, ...,n} rep-
resent the agents in the network, and a time-varying set of
edges e(t) = {(i, j) ∈ v× v} represents neighboring rela-
tions among agents at time t. Vertex i and j are said to be

adjacent if (i, j) ∈ e. If the neighboring set of any agents
changes dynamically with time, then the system has dy-
namic topological structure; otherwise the system has a
fixed topology. An alternating sequence of distinct ver-
tices and edges in the graph is called a path, and a graph
G(t) is connected if there is a path between any pair of
distinct nodes.

Matrix D = {dik} ∈ Rn×|e| represents the incidence ma-
trix associated with graph G, where dik = 1 if the edge
ek enters node i, dik = −1 if the edge ek leaves node
i, and dik = 0 otherwise. The adjacent matrix A(G) =
{ai j(t)}n

i, j=1 associated with graph G is defined as

ai j(t) =

{
1, if (i, j) ∈ e,
0, else.

(1)

The degree matrix is expressed as M(G), where the
ith diagonal element is the degree of the node i. Define
the Laplacian matrix as L(G) = M(G)−A(G), which is
a symmetric and positive semi-definite matrix and L =
DDT . The eigenvalues of L can be written as λ1(L) ≤
λ2(L) ≤ · · · ≤ λn(L). It is obvious that λ1 = 0 and its
corresponding eigenvector is [1,1, ...,1]T ∈ Rn, then G
is connected if and only if λ2 > 0. The corresponding
m−dimensional Laplacian is defined as L̂(t) = L(t)⊗ Im,
where Im is the identity matrix of order m, and ⊗ stands
for the Kronecker product.

3. PROBLEMS FORMULATION AND MAIN
RESULTS

We consider n agents moving in a m−dimensional Eu-
clidean space. The dynamic equation for each agent is de-
scribed by{

q̇i = pi

ṗi = ui + f (pi), i = 1,2, ...,n,
(2)

where qi, pi, ui ∈ Rm are the position, velocity and control
input of agent i respectively. f (pi) ∈ Rm is the unknown
dynamic vector of agent i.

Most existing works required that the dynamics f (·)
satisfy the Lipschitz condition [3,17,18]. However, the
motion dynamics of real agents in the real-world prob-
lems often include the unknown nonlinearity or unknown
disturbances which cannot satisfy Lipschitz conditions. In
this paper, we consider the unknown dynamics with the
following bounded assumption.

Assumption 1: The unknown dynamics f (·) in (2) are
bounded and satisfied

‖ f (x)− f (y)‖2 ≤ κ, ∀x,y ∈ Rm, (3)

with the positive constant κ .
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Assumption 1 is not equivalent to the Lipschitz condi-
tion. In a strictly mathematical way, the Lipschitz condi-
tion shows that the function needs to be continuous and
has finite derivatives. The unknown dynamics f (·) in As-
sumption 1 do not require continuity and finite derivatives,
and only need to be bounded.

Suppose all agents have the same sensing radius r > 0.
The initial edges are generated by e(t0) = {(i, j) | ‖qi(t0)−
q j(t0)‖ < r, i, j ∈ v}, and the new edges generated during
the evolution are based on the hysteresis method [14]. Us-
ing σ(i, j)[t] to describe whether there is an edge between
agent i and agent j at time t, and its definition is expressed
as follows:

σ(i, j)[t]

=


0, if ((σ(i, j)[t−] = 0)∩ (‖qi−q j‖ ≥ r− ε))

∪((σ(i, j)[t−] = 1)∩ (‖qi−q j‖ ≥ r)),
1, if ((σ(i, j)[t−] = 1)∩ (‖qi−q j‖< r))
∪((σ(i, j)[t−] = 0)∩ (‖qi−q j‖< r− ε)),

(4)

where ε ∈ (0,r) is a constant. Hence, the edges are gener-
ated by e(t)= {(i, j) |σ(i, j)= 1, i, j∈ v}. Then the neigh-
bor set of the agent i at time t is defined as Ni(t) = { j |
(i, j) ∈ e, j 6= i, j = 1,2, ...,n}.

Most existing works generally investigate the flocking
under the assumption of the connectivity, initial connec-
tivity or the joint connectivity. When the initial network
is connected, some existing methods [3,14] adopted the
artificial potential function (5) to guarantee the network
connectivity.

ψ(‖qi j‖) =
r

‖qi j‖(r−‖qi j‖)
, ‖qi j‖ ∈ (0,r), (5)

However, in the real-world problems, the initial net-
work may usually be disconnected, and therefore, the con-
trol methods based on the artificial potential function (5)
is limited.

In this paper, a new potential function with a penalty
term is constructed in (6) to avoid this weakness of poten-
tial function (5).

ψ(‖qi j‖) = σ
r

‖qi j‖(r−‖qi j‖)
+(1−σ)(‖qi j‖− r)2,

(6)

where r is the sensing radius, σ is defined in (4). Obvi-
ously, by the symmetry of function ψ(‖qi j‖), we have fol-
lowing equation:

∇qi ψ(‖qi j‖) =−∇q j ψ(‖qi j‖) = ∇qi j ψ(‖qi j‖). (7)

It is noted that ψ(‖qi j‖)→∞ when ‖qi j‖→ r− or ‖qi j‖→
0. In addition, ψ(‖qi j‖) attains its unique minimum when
‖qi j‖ is equal to the desired distance. On the one hand,
when the node j is out of the sensing radius of node

i, we have σ = 0. Thus ψ(‖qi j‖) = (‖qi j‖ − r)2 and
−∂ψ/∂q j > 0 which indicates that interaction force be-
tween nodes j and i is attractive force, and thus node j
will move to the node i. On the other hand, if the node
j is within the sensing radius of node i, then σ = 1 and
ψ(‖qi j‖) becomes (5). This indicates that node j will
never move out of the sensing radius of node i because
ψ(‖qi j‖)→ ∞ when ‖qi j‖→ r.

Remark 1: The first term in the right hand of (6) pro-
vides the infinite repulsive force to avoid collision and
fragmentation. However, the second term in the right hand
of (6) will provide the attractive force to make two agents
be closer. The design of potential function can make the
whole network be connected even the initial network is
disconnected.

In (2), the control input is ui = f α
i + f β

i + f γ

i , where f α
i

is the local attractive or repulsive force to cope with the
separation and cohesion; f β

i regulates its velocity with its
neighbor; f γ

i is a navigational feedback term to drive the
agents to track the virtual leader.

The motion of the virtual leader is described by

q̇γ = pγ , ṗγ = f (pγ), (8)

where qγ , pγ , f ∈ Rm are the position, velocity and accel-
eration of the virtual leader, respectively.

The aim of flocking control with a virtual leader is to
design the control input such that

0 < ‖qi(t)−q j(t)‖< ∞, limt→∞‖pi(t)− pγ(t)‖= 0,

for each agent i = 1, 2, ..., n.
Consider the unknown nonlinear dynamics of the

agents, nonlinear measurements or uncertain of the virtual
leader, the control input in (2) is specified as

ui =−
n

∑
j=1

∇qi ψ(‖qi j‖)︸ ︷︷ ︸
f α
i

−ρ ∑
j∈Ni(t)

ai jsgn(pi− p j)︸ ︷︷ ︸
f β

i

− c1hi(qi−qγ)− c2hiφ(pi− pγ)︸ ︷︷ ︸
f γ

i

,

(9)

where hi = 1 if agent i is an informed agent, else hi = 0;
Function sgn(·) is the signum function; ρ is a parameter to
be determined later, c1 and c2 are positive constants. φ(·)
is the uncertain nonlinear feedback of the virtual leader,
which is caused by the external disturbances or the errors
of the measurements due to the failures or restrictions of
speed sensors.

Assumption 2: Suppose φ(·) is a bounded function
satisfying

‖φ(x− y)‖2 ≤ α, ∀x,y ∈ Rm, (10)

where α is a positive constant.
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Compared with the existing results [23–25], Assump-
tion 2 indicates that nonlinear velocity measurements of
the virtual leader are only needed to be bounded.

In next section, we will present a theoretical analysis to
prove the effectiveness of the proposed control protocol.
The following results are used for the analysis.

Lemma 1 (Barbalat lemma) [31]: Let f : Rm→ Rm be
a uniformly continuous function on [0,∞). Suppose that
limt→∞

∫ t
0 f (τ)dτ exists and is finite, then limt→∞ f (t) = 0.

4. STABILITY ANALYSIS

Define the total energy of the system as follows:

Q(q, p) =
n

∑
i=1

[Ui(q)+(pi− pγ)
T(pi− pγ)], (11)

where q = [qT
1 ,q

T
2 , ...,q

T
n ]

T ≡ col(q1,q2, ...,qn) ∈ Rnm, p =
col(p1, p2, ..., pn) and

Ui(q) =
n

∑
j=1

ψ(‖qi j‖)+hic1(qi−qγ)
T(qi−qγ).

Clearly, Q is a positive semi-definite function.

Theorem 1: Consider a system of n agents with motion
(2) steered by the control protocol (9), Assumptions 1 and
2 holds, and the initial energy Q0 := Q(t0) is finite. If the
parameter ρ in control protocol (9) satisfies −ρ

√
λ0(t)+

(2c2α + 2κ)
√

nm ≤ 0 with λ0(t) = min{λi(L(t)) | λi >
0, i = 1,2, ...,n}, then we have

(i) All agents will keep the same velocity with the vir-
tual leader asymptotically.

(ii) The system asymptotically approaches to a configu-
ration that is the local minimum of the artificial potentials
energy.

(iii) No collision happens between the mobile agents
during the evolution.

Proof: Assume that G(t) switches at time tl for l =
0,1,2, .... The instants t1, t2, ... are denoted as a series
of switching instants such that the topology is invari-
ance within each of the nonempty, bounded, and non-
overlapping time-intervals [tl , tl+1) for l = 0,1, .... Further-
more, one has L(t) = L(tl), t ∈ [tl , tl+1).

(a) We now proof part (i)
We first consider the motion of agents in the interval

[t0, t1). Denote q̃i = qi−qγ , p̃i = pi− pγ and q̃i j = q̃i− q̃ j,
the motion of each agent satisfies

˙̃qi = p̃i, ˙̃pi = ũi (12)

where the control input (9) is rewritten as

ũi =−
n

∑
j=1

∇q̃i ψ(‖q̃i j‖)−ρ ∑
j∈Ni(t)

ai jsgn(p̃i− p̃ j)

− c1hiq̃i− c2hiφ(p̃i)+ f (pi)− f (pγ). (13)

Simultaneously, the energy function (11) becomes

Q(q̃, p̃) =
n

∑
i=1

[Ui(q̃)+ p̃T
i p̃i], (14)

where q̃ = [q̃T
1 , q̃

T
2 , ..., q̃

T
n ]

T, p̃ = [p̃T
1 , p̃T

2 , ..., p̃T
n ]

T and

Ui(q̃) =
n

∑
j=1

ψ(‖q̃i j‖)+hic1q̃T
i q̃i. (15)

Because of the symmetry of ψ and A(G), the time
derivative of Q along the trajectories of the agents is given
by

Q̇(q̃, p̃) =
n

∑
i=1

2p̃T
i ũi +

n

∑
i=1

n

∑
j=1

ψ̇(‖q̃i j‖)+
n

∑
i=1

2hic1 p̃T
i q̃i.

(16)

By (7), we have

n

∑
i=1

n

∑
j=1

ψ̇(‖q̃i j‖)

=
n

∑
i=1

n

∑
j=1

˙̃qT
i ∇q̃i j ψ(‖q̃i j‖)−

n

∑
j=1

n

∑
i=1

˙̃qT
j ∇q̃i j ψ(‖q̃i j‖)

=
n

∑
i=1

n

∑
j=1

˙̃qT
i ∇q̃i ψ(‖q̃i j‖)+

n

∑
j=1

n

∑
i=1

˙̃qT
j ∇q̃ j ψ(‖q̃i j‖)

= 2
n

∑
i=1

n

∑
j=1

p̃T
i ∇q̃i ψ(‖q̃i j‖). (17)

Substituting (13) and (17) into (16), the following equa-
tion can be obtained

Q̇(q̃, p̃) =−ρ

n

∑
i=1

2p̃T
i [ ∑

j∈Ni(t)

ai jsgn(p̃i− p̃ j)]

+
n

∑
i=1

2p̃T
i [−c2hiφ(p̃i)+ f (pi)− f (pγ)].

(18)

Due to the symmetry of A(G), one can obtain

n

∑
i=1

2 p̃T
i [ ∑

j∈Ni(t)

ai jsgn(p̃i− p̃ j)]

=
n

∑
i=1

n

∑
j=1

ai j p̃T
i sgn(p̃i− p̃ j)+

n

∑
i=1

n

∑
j=1

ai j p̃T
i sgn(p̃i− p̃ j)

=
n

∑
i=1

n

∑
j=1

ai j p̃T
i sgn(p̃i− p̃ j)+

n

∑
i=1

n

∑
j=1

a ji p̃T
j sgn(p̃ j− p̃i)

=
n

∑
i=1

n

∑
j=1

ai j p̃T
i sgn(p̃i− p̃ j)−

n

∑
i=1

n

∑
j=1

a ji p̃T
j sgn(p̃i− p̃ j)

=
n

∑
i=1

∑
j∈Ni(t)

ai j(p̃i− p̃ j)
Tsgn(p̃i− p̃ j). (19)
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Hence, the derivative of energy function (18) can be writ-
ten as

Q̇(q̃, p̃) =−ρ

n

∑
i=1

∑
j∈Ni(t)

ai j(p̃i− p̃ j)
Tsgn(p̃i− p̃ j)

−
n

∑
i=1

2c2hi p̃T
iφ(p̃i)+

n

∑
i=1

2 p̃T
i( f (pi)− f (pγ)).

(20)

It is obvious that the signs of f (pi)− f (pγ) and φ(p̃i)
are uncertain. But we can conclude that

Q̇(q̃, p̃)

≤−ρ

n

∑
i=1

∑
j∈Ni(t)

ai j(p̃i− p̃ j)
Tsgn(p̃i− p̃ j)

+2c2

n

∑
i=1
|hi p̃T

i φ(p̃i)|+2
n

∑
i=1
|p̃T

i ( f (pi)− f (pγ))|

≤−ρ

n

∑
i=1

∑
j∈Ni(t)

ai j(p̃i− p̃ j)
Tsgn(p̃i− p̃ j)

+2c2

n

∑
i=1
|p̃T

i φ(p̃i)|+2
n

∑
i=1
|p̃T

i ( f (pi)− f (pγ))|

≤−ρ‖DT⊗ Im p̃‖1 +2c2

n

∑
i=1
‖ p̃i‖2‖φ(p̃i)‖2

+2
n

∑
i=1
‖ p̃i‖2‖ f (pi)− f (pγ)‖2.

It follows from Assumption 1, Assumption 2 and the
properties of Laplacian matrix that

Q̇(q̃, p̃)

≤−ρ
√

p̃T(DDT⊗ Im)p̃

+2c2α

n

∑
i=1
‖ p̃i‖2 +2κ

n

∑
i=1
‖ p̃i‖2

≤−ρ
√

λ0(L(t0))p̃T p̃+(2c2α +2κ)
n

∑
i=1
‖p̃i‖1

=−ρ
√

λ0(L(t0))‖p̃‖2 +(2c2α +2κ)‖p̃‖1

≤(−ρ
√

λ0(L(t0))+(2c2α +2κ)
√

nm)‖ p̃‖2, (21)

where λ0(L(t0)) = min{λi(L(t0)) | λi > 0, i = 1,2, ..., n}.
If the parameter ρ is chosen such that

−ρ
√

λ0(L(t0))+(2c2α +2κ)
√

nm≤ 0, (22)

we can get Q̇ ≤ 0 in the interval [t0, t1) from (21), which
indicates that

Q(t)≤ Q(t0)< ∞, ∀t ∈ [t0, t1). (23)

From (23) and the definition of potential function, it is
clear that no collision happens and the existing edges will
not lost in the interval. Hence, new edges may be added

to the network at the switching constant t1. The switch-
ing of potential function (6) causes the discontinuities in
energy function. For the boundedness of energy function,
we only need to consider the gain for the change of en-
ergy function. Based on the hysteresis method, when mk

new edges added at switching time t1, one has Q(t1) =
Q(t−1 )+mkψ(‖r−ε‖). Since there are at most n(n−1)/2
new edges that can be connected in graph G, the upper
bound of Q(t1) is finite and Q(t1)< ∞. Applying the simi-
lar discussions to tl for l = 2,3, ..., it can be concluded that
Q(tl) is bounded for any tl , l = 2,3, ....

Applying the similar discussions to the interval t ∈
[tl , tl+1), l = 1,2, ..., the derivative of energy function at
each t ∈ [tl , tl+1) is given by

Q̇(t)≤(−ρ
√

λ0(L(tl))+(2c2α +2κ)
√

nm)‖ p̃‖2

≤0. (24)

Consequently, it follows from the assumption of the pa-
rameter ρ and (24) that

Q(t)≤ Q(tl)< ∞, for t ∈ [tl , tl+1), l = 1,2, .... (25)

At each interval [tl , tl+1), Q(t) decreases with an in-
crease of time, which implies that all agents gradually ad-
just their position to the desired distance and their velocity
to that of the virtual leader. After a finite time, the topol-
ogy is fixed when all edges are connected.

The above analysis shows that Q(t) is bounded all the
time. Therefore, for t ≥ 0, there must be a set

Ω = {[q̃T, p̃T]T ∈ R2nm | Q(q̃, p̃)≤ υ ,υ > 0}. (26)

It follows from (14) and (26) that p̃ and q̃ are bounded.
Define Γ = ‖ p̃‖2, and it is obvious that Γ̇(t) is also
bounded. Note that

limt→∞(Q(t)−Q(0)) =
∫

∞

0
Q̇(t)dt

=
∞

∑
l=0

∫ tl+1

tl
Q̇(τ)dτ. (27)

Define ∆(l) =
∫ tl+1

tl Q̇(τ)dτ . It is clearly that ∆(l) ≤ 0 due
to Q̇(t) ≤ 0. In (27), the left side of equation is bounded,
which indicates that

liml→∞∆(l) = 0. (28)

Based on (22) and (24), there exists a positive constant ω

such that Q̇(t)≤−ω‖p̃‖2, and it will have

∆(l) =
∫ tl+1

tl
Q̇(τ)dτ ≤−ω

∫ tl+1

tl
‖ p̃(τ)‖2dτ, (29)

and there is further

0≤
∫ tl+1

tl
Γ(τ)dτ ≤− 1

ω
∆(l), (30)
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which indicates that

liml→∞

∫ tl+1

tl
Γ(τ)dτ = 0. (31)

Since∫
∞

0
Γ(τ)dτ =

∞

∑
l=0

∫ tl+1

tl
Γ(τ)dτ, (32)

limt→∞

∫ t
0 Γ(τ)dτ exists and is bounded. By Lemma 1, we

can get limt→∞Γ(t) = limt→∞‖ p̃‖2 = 0, which is

p1 = p2 = · · ·= pn = pγ . (33)

(b) We now proceed to prove part (ii).
From the proof of part (i), we see that, in the steady

state, ṗ1 = ṗ2 = · · · = ṗn = f (pγ), which implies ui = 0.
It thus follows from (13) and (15) that

∇q̃[
n

∑
i=1

Ui(q̃)] = 0,

which indicates that the configuration converges asymp-
totically to a fixed configuration which is an extreme of
all agent global potentials.

(c) The proof of part (iii).
Assume any two agents b and s collide at time tc ∈

[tl , tl+1), that is qb(tc) = qs(tc). Then

V (q) =
1
2

n

∑
j=1

ψ(‖qi j‖)

= ψ(‖qb−qs‖)+
1
2

n

∑
j=1

i, j 6=b,s

ψ(‖qi j‖)

> ψ(‖qb−qs‖).

From the proof of part (a) and the definition of energy
function

ψ(‖qb−qs‖)<V (q)< Q < ∞. (34)

Note that ψ(‖qb− qs‖)→ ∞ as ‖qb− qs‖ → 0. Thus,
(34) contradicts the assumption that qb(tc)= qs(tc). There-
fore, no collision happens during the evolution. The proof
of the theorem is completed. �

5. NUMERICAL SIMULATIONS

In this section, a simulation is performed on 15 agents
moving in a 2− dimensional space. The initial position
and velocity of the agents are chosen randomly from
[0,15]× [0,15] and [0,1]× [0,1], respectively; the sens-
ing radius r = 4 with ε = 0.1; c1 = 1 and c2 = 1.5 for the
virtual leader. The initial position and velocity of the vir-
tual leader are set as qγ(0) = [9,9]T, pγ(0) = [0.5,0.5]T.
The unknown nonlinear dynamics for the agents and
virtual leader are described by f (px, py) = [2sin(ω1 px),

Fig. 1. The initial state and the flocking state of the net-
work.

2cos(ω2 py)]
T, where ω1 and ω2 are the unknown numbers

and set as ω1 = ω2 = 1 in this simulation. The nonlinear
function φ(·) in control (9) is chosen as follows:

φ(x) =


tanh(x)/tanh(1)−0.5, x > 1,
x2−0.5, 0 < x≤ 1,
0.5− exp(x), x≤ 0.

(35)

Clearly, (35) satisfies Assumption 2, but does not sat-
isfy the assumption in [25]. Fig. 1(a) shows the initial
state of all agents which are highly disconnected, and then
we choose the agents 1-4 as the informed agents. With an
increase of time, the number of connected sub-networks
decreases and achieves flocking as shown in Fig. 1(b).
Fig. 2(a) and Fig. 2(b) depict the velocity differences on
different axis between the agents and the virtual leader,
which clearly shows that all agents eventually move with
the same velocity as the virtual leader.

The trajectories of the agents and the virtual leader are
shown in Fig. 3(a), which indicates that all agents can
move ahead with the trajectory of the virtual leader even-
tually. Fig. 3(b) records the maximum distance and mini-
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Fig. 2. The velocity differences between the agents and
the virtual leader.

mum distance between the agents during the motion. It can
be proven from the results in Fig. 3 that there is no colli-
sion between any mobile agents. Furthermore, we make a
comparison in Fig. 4 for the convergence between the pro-
posed method, Wen’s method [25], Gao’s method [16] and
Su’s method [3], where the initial position and velocity of
the agents are regenerated randomly. For the unconnected
initial network, Su’s method fails to work for flocking. The
corresponding results are shown as the dash-dot lines in
Fig. 4, which indicates the divergence. In addition, the ve-
locity measurements φ(x) do not satisfy the convergent
condition xφ(x)> 0 in Wen’s method. Wen’s method fails
to work in the simulation, and the corresponding results
have the oscillation as shown in dash lines. Gao’s method
works and a comparison is made between the proposed
method and Gao’s method as shown in Fig. 4. Using the
proposed method, the velocity difference approaches to
zero after about 2000 iterations; while the system achieves
flocking after about 3800 iterations when Gao’s method
is used. It shows that the proposed method has high con-
vergence and broader applicability in the more complex
real-world problems.

Fig. 3. (a) The motion of the agents and the virtual leader;
(b) The maximum distance and the minimum dis-
tance between any two agents in the motion.

Fig. 4. The comparisons of convergence between the pro-
posed method and the existing methods.
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6. CONCLUSIONS

In this paper, the flocking control of nonlinear multi-
agent systems with heterogeneous virtual leader is inves-
tigated, where the uncertain nonlinearity of the virtual
leader information is only bounded. The nonlinear terms
of the unknown dynamics satisfy a weaker condition than
the Lipschitz condition. A dynamical parameter is em-
ployed in control protocol for each agent to achieve the
flocking. In addition, a new potential function includes a
penalty term is proposed in the design of the control in-
put to guarantee the connectivity when the initial network
is disconnected. The Barbalat lemma is employed for the
analysis of the flocking, where there is no need to get the
state of the minimum total energy. Theoretical analysis
demonstrates that all agents can avoid collision and con-
verge to the common velocity. Finally, the effectiveness of
the proposed algorithm is clearly verified through simula-
tion experiments. It shows that the proposed method has
broader applicability in some practical applications with
more stringent restrictions.
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