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Proportional Plus Derivative State Feedback Control of Takagi-Sugeno
Fuzzy Singular Fractional Order Systems
Xuefeng Zhang* � and Kaijing Jin

Abstract: This paper investigates the fuzzy normalization and stabilization issues of a class of singular fractional
order nonlinear systems with order 0 < α < 1 based on a singular Takagi-Sugeno fuzzy model. First, we present the
admissibility theorem of Takagi-Sugeno fuzzy singular fractional order systems. Next, benefited by that the fuzzy
model and the state feedback controllers do not share the same membership functions, a proportional plus derivative
state feedback controller is designed, which guarantees the closed-loop system normalized and admissible. Finally,
a numerical simulation example is given to illustrate the effectiveness of the proposed method.
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1. INTRODUCTION

In the past several decades, a growing number of works
deal with dynamical systems described by fractional order
equations. Fractional order systems (FOS) have become a
popular hot research area and attract great concerns from
control community [1–3]. Benefited to the unremitting ef-
forts of researchers, a lot of research results on stability
and stabilization of FOS have been reported. Matignon
stability theorem [4], a well-known method, establishes
a judgement condition in eigenvalue form. However, it
is still difficult to analyse stability by the pole location.
There are some stability results about FOS based on ma-
trix inequalities as well. For the FOS with fractional or-
der 0 < α < 1, the asymptotical stability conditions with
complex variables are presented in [5], which are extended
to the linear matrix inequality (LMI) formulation in [6,7].
Since the result in [7] contains four variables, it is incon-
venient to calculate. It is worth mentioning that the result
in [8] overcomes this shortcoming and reduces the com-
plexity of the theorem since the result in [8] only contains
two variables. And [9–11] extend the stability criterion in
[8] to the case of the singular FOS.

As we all known, most of the physical systems in real
world are nonlinear [12–15]. The robust H∞ sliding mode
controller design [16], filtering [17] of discrete-time non-
linear systems are studied. In [18], the asymptotic stabil-
ity and state feedback controller design of discrete-time
switched nonlinear systems are investigated under dwell-
time constraints. And in [19], the quasi-synchronization of
discrete-time switched systems is studied. However, it is
difficult to analyze nonlinear systems directly. Fuzzy con-

trol design techniques [20,21] especially for the Takagi-
Sugeno (T-S) fuzzy model [22–24], have been rapidly
and successfully developed in nonlinear control frame-
works such as thermal systems, batteries and neurons.
This means that those nonlinear systems can be described
by some linear models. In [25–27], some new criteria for
the stability and stabilization of fuzzy singular systems are
given since T-S fuzzy model and controller attach differ-
ent membership functions. Taniguchi et al. [28–31] define
a fuzzy singular model that expends the T-S fuzzy model
in [22]. The T-S fuzzy normal system is a special case
of the fuzzy singular systems where derivative matrix E
in the fuzzy singular systems is nonlinear. Based on the
T-S fuzzy model and suitable membership functions, non-
linear matrix E can be described by an average weighted
sum of a set of constant El .

Singular systems, fractional order systems and T-S
fuzzy systems play important roles in control theory and
engineering, therefore, great efforts have been put into the
research of T-S fuzzy singular FOS, such as the results
shown in [32–34]. Since the admissibility issue of T-S
fuzzy singular FOS is more complicated comparing with
the case of T-S fuzzy systems or FOS, there are still more
values to study T-S fuzzy singular FOS.

Inspired by all the above mentioned results, the main
constructions are summarized as follows:

• Firstly, we extend the fuzzy singular integer order
model defined in [28–31] to fuzzy singular fractional or-
der model, which has more widespread application since
integer order system is a special case of fractional order
system. To the best of our knowledge, so far, there is no
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work reported for the admissibility and stabilization issues
of such a T-S fuzzy singular FOS with order 0 < α < 1.
• Secondly, based on this T-S fuzzy singular fractional

order model, and letting that the fuzzy singular FOS and
the feedback controllers share different membership func-
tions, we propose the methods about designing a propor-
tional plus derivative state feedback (PDSF) controller,
which guarantees the asymptotical stability of closed-loop
systems.
• What is more, applying a system augmentation ap-

proach, the equation constraint of admissibility condi-
tion existing most work of singular systems is eliminated,
which guarantees the results are obtained in terms of strict
LMIs.

The rest of paper is organized as follows: in Section
2, some preliminaries are introduced, and a more gen-
eralized T-S fuzzy fractional order model is introduced,
whose derivative matrix E attaches membership function.
The main results are derived in Section 3. Numerical sim-
ulation is used to demonstrate the effectiveness of our pro-
posed results in Section 4. Finally the paper ends with the
conclusion in Section 5.

Notation: Throughout this paper, Rn denotes the n-
dimensional Euclidean space, Rn×m is the set of all n×m
real matrices, X > 0 (< 0) indicates that the matrix X is
positive (negative) definite, and sym{Y} denotes the ex-
pression Y +Y T . We denote a= sin(α π

2 ) and b= cos(α π

2 )
in the sequel. The symbol ? is used to denote the trans-
posed element in the symmetric position of a matrix. Ma-
trices, if not explicitly stated, are assumed to have appro-
priate dimensions.

2. PRELIMINARIES

To obtain the main results, we first give the following
necessary definitions and lemmas, which are used in the
proofs of our results.

Definition 1 [1]: The Caputo derivative of f (t) with
order α is defined by

Dα f (t) =
1

Γ(m−α)

∫ t

0

f (m)(τ)

(t− τ)α+1−m dτ,

where m−1 < α ≤ m, Γ(·) is the Euler Gamma function
defined by

Γ(s) =
∫

∞

0
ts−1e−tdt.

The Caputo definition for fractional order derivative is
adopted throughout this paper since this definition incor-
porates initial values of classical integer order derivatives
with clear physical interpretations.

Consider the following unforced singular FOS or the
pair (E,A),

EDα x(t) = Ax(t), 0 < α < 1. (1)

Definition 2 [9]: (i) The pair (E,A) is said to be regular
if det(sE−A) is not identically zero.

(ii) The pair (E,A) is said to be impulse free if
deg(det(sE−A)) = rank(E).

(iii) The pair (E,A) is said to be stable if all the roots of
det(sE−A) = 0 satisfy |arg(spec(E,A))|> α

π

2 .
(iv) The pair (E,A) is said to be admissible if it is regu-

lar, impulse free and stable.

Lemma 1 [9]: The singular FOS described by (1) is
admissible, iff there exist two matrices X , Y satisfying[

EX EY
−EY EX

]
=

[
XT ET −Y T ET

Y T ET XT ET

]
≥ 0, (2)

and

sym{A(aX−bY )}< 0. (3)

2.1. Takagi-Sugeno fuzzy model
A T-S fuzzy singular fractional order model is described

by the followings.
Plant rule il: If z1(t) is Hb1 and · · · and zp(t) is Hbp, then

ElDα x(t) = Aix(t)+Biu(t),

y(t) =Cix(t),

where i = 1, 2, · · · , r, l = 1, 2, · · · , re, Hbg (b = 1, 2, · · · ,
r× re, g = 1, 2, · · · , p) is a fuzzy set, and r× re is the
number of IF-THEN rules. Furthermore, z(t) = [z1(t), · · · ,
zp(t)] is a vector of the premise variables. All the premise
variables are measurable throughout this paper. The sym-
bol Dα denotes the fractional order derivative of function
x(t). x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,
y(t)∈Rs is the measured output and Ai ∈Rn×n, Bi ∈Rn×m,
Ci ∈Rs×n are known real constant matrices. Generally, the
matrix El ∈ Rn×n is not always nonsingular.

Then the overall fuzzy singular FOS is inferred as fol-
lows:

re

∑
l=1

νl(z(t))ElDα x(t) =
r

∑
i=1

hi(z(t))(Aix(t)+Biu(t)),

(4)

y(t) =
r

∑
i=1

hi(z(t))Cix(t), (5)

where

hi(z(t))≥ 0,
r

∑
i=1

hi(z(t)) = 1, i = 1, 2, · · · , r,

νl(z(t))≥ 0,
re

∑
l=1

νl(z(t)) = 1, l = 1, 2, · · · , re.

hi(z(t)) and νi(z(t)) denote the normalized membership
functions. To simplify notations, νi(z(t)) and hi(z(t)) are
denoted as νi and hi in the following analysis, respectively.
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3. MAIN RESULTS

The admissibility conditions of fuzzy singular FOS are
addressed in this section.

Noting
r
∑

i=1
hiAi =

r
∑

i=1

re

∑
l=1

hiνlAi,
re

∑
l=1

νlEl =
r
∑

i=1

re

∑
l=1

hiνlEl ,

fuzzy singular FOS (4) can be rewritten as

E∗Dα x∗(t) =
r

∑
i=1

re

∑
l=1

hiνl(A∗ilx
∗(t)+B∗i u(t)), (6)

y(t) =
r

∑
i=1

hiC∗i x∗(t), (7)

where

x∗(t) =
[

x(t)
Dα x(t)

]
, E∗ =

[
I 0
0 0

]
,

A∗il =
[

0 I
Ai −El

]
, B∗i =

[
0
Bi

]
, C∗i =

[
Ci 0

]
.

Therefore, this paper discusses the admissibility for fuzzy
singular FOSs (6) and (7).

Theorem 1: The fuzzy singular FOS in (6) is admis-
sible, if there exist symmetric matrix X1, skew-symmetric
matrix Y1, and matrices X3, X4, Y3 and Y4 such that the fol-
lowing LMIs hold:[

X1 Y1

−Y1 X1

]
> 0, (8)

sym


 aX3−bY3 aX4−bY4

Ai(aX1−bY1)
−El(aX3−bY3) −El(aX4−bY4)

< 0.

(9)

Proof: First, denoting X =

[
X1 0
X3 X4

]
, Y =

[
Y1 0
Y3 Y4

]
, we

have

[
E∗X E∗Y
−E∗Y E∗X

]
=


X1 0 Y1 0
0 0 0 0
−Y1 0 X1 0

0 0 0 0

≥ 0,

[
E∗X E∗Y
−E∗Y E∗X

]T

=


XT

1 0 −Y T
1 0

0 0 0 0
Y T

1 0 XT
1 0

0 0 0 0

≥ 0.

And from inequality (8), one has[
E∗X E∗Y
−E∗Y E∗X

]
=

[
E∗X E∗Y
−E∗Y E∗X

]T

≥ 0.

From inequality (9), it can be obtained

sym{A∗il(aX−bY )}

= sym
{[

0 I
Ai −El

][
aX1−bY1 0
aX3−bY3 aX4−bY4

]}

= sym


 aX3−bY3 aX4−bY4

Ai(aX1−bY1)
−El(aX3−bY3) −El(aX4−bY4)

< 0.

Applying Lemma 1, we can obtain that system (6) with
u(t) = 0 is admissible. This completes the proof. �

Remark 1: The admissibility conditions in Theorem
1 are conservative because they require every subsystems
are admissible. And from LMIs presented in Theorems 1,
we can obtain that El , l = 1, 2, · · · , re, are required to be
nonsingular. And it is infeasible when matrices El is sin-
gular.

Next, we propose a PDSF controller as follows to nor-
malize and stabilize fuzzy singular FOS (6).

Controller rule jl: If q1 is Hb1 and · · · and qp is Hbp,

then u(t) = K∗jlx
∗(t),

where j = 1, 2, · · · , r, l = 1, 2, · · · , re. Then the overall
controller is obtained as

u(t) =
r

∑
j=1

re

∑
l=1

µ jνlK∗jlx
∗(t), (10)

where K∗jl =
[

K jl Fjl
]
. µ jνl is the membership func-

tion of the controller. Inspired by [25–27], the member-
ship functions of controller are different from those of the
fuzzy plant. It can be seen that when h j = µ j, the designed
controller (10) is the classical parallel distributed compen-
sation controller. By substituting (10) into (6), fuzzy sin-
gular FOS (6) is represented as

E∗Dα x∗(t) =
r

∑
i=1

r

∑
j=1

re

∑
l=1

hiµ jνl(A∗il +B∗i K∗jl)x
∗(t),

(11)

where A∗il + B∗i K∗jl =
[

0 I
Ai +BiK jl −El +BiFjl

]
. The ad-

missibility conditions for closed-loop system (11) are pre-
sented as follows.

Theorem 2: The fuzzy singular FOS in (11) is admis-
sible, if there exist symmetric matrix X1, skew-symmetric
matrix Y1, and matrices X3, X4, Y3, Y4 and Zil , i = 1, 2, · · · ,
r, l = 1, 2, · · · ,re, such that (8) and the following LMIs
hold:

sym{A∗il(aX−bY )+B∗i Z∗jl}< 0, (12)

where X =

[
X1 0
X3 X4

]
, Y =

[
Y1 0
Y3 Y4

]
. The matrix gains are

given as

K∗il = Z∗il(aX−bY )−1, i = 1,2, · · · ,r, l = 1,2, · · · ,re.

Proof: From Theorem 1, fuzzy singular FOS (11) is
admissible if (8) and the following inequalities hold

sym{(A∗il +B∗i K∗jl)(aX−bY )}
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= sym{A∗il(aX−bY )+B∗i K∗jl(aX−bY )}
< 0.

Then denoting Z∗jl = K∗jl(aX − bY ), inequality (12) is ob-
tained. This completes the proof. �

Noting that above Theorem 2 requires every subsystem
admissible, it is conservative and harsh. In order to reduce
the conservatism, the next theorem is addressed.

Theorem 3: The fuzzy singular FOS in (11) is admis-
sible, if the membership functions satisfy µ j − ρ jh j ≥ 0
for all j with 0 < ρ j < 1, and there exist matrices Q < 0,
X1, X3, X4, Y1, Y3, Y4, ∆i = ∆T

i , Zil , i = 1, 2, · · · , r, l = 1, 2,
· · · , re, such that (8) and the following LMIs hold:

sym{A∗il(aX−bY )+B∗i Z∗jl}−∆i < 0, (13)

ρisym{A∗il(aX−bY )+B∗i Z∗il}+(1−ρi)∆i−Qii < 0,
(14)

ρ jsym{A∗il(aX−bY )+B∗i Z∗jl}+(1−ρ j)∆i

+ρisym{A∗jl(aX−bY )+B∗jZ
∗
il}+(1−ρi)∆ j

−Qi j−QT
i j < 0, i < j, (15)

where X and Y are defined in Theorem 2, and

Q =


Q11 Q12 · · · Q1r

? Q22 · · · Q2r
...

...
. . .

...
? ? · · · Qrr

 .
Then, the gain matrices are solved as

K∗il =Z∗il(aX1−bY1)
−1, i=1,2, · · · ,r, l=1,2, · · · ,re.

Proof: Applying Lemma 1, we just need to prove

sym{
r

∑
i=1

r

∑
j=1

re

∑
l=1

hiµ jνl(A∗il +B∗i K∗jl)(aX−bY )}< 0.

Denoting

Z∗jl = K∗jl(aX−bY ), j = 1,2, · · · ,r, l = 1,2, · · · ,re,

we have
r

∑
i=1

r

∑
j=1

re

∑
l=1

hiµ jνlsym{A∗il(aX−bY )+B∗i Z∗jl}< 0.

(16)

To reduce the complexity, we consider the following in-
equalities,

r

∑
i=1

r

∑
j=1

hiµ jsym{A∗il(aX−bY )+B∗i Z∗jl}< 0, (17)

for l = 1, 2, · · · , re. For the purpose of reducing the con-
servatism further, the following equalities are introduced:

r

∑
i=1

r

∑
j=1

hi(h j−µ j)∆i = 0, (18)

where ∆i = ∆T
i is an arbitrary matrix. From (17) and (18),

we obtain
r

∑
i=1

r

∑
j=1

hiµ jsym{A∗il(aX−bY )+B∗i Z∗jl}

=
r

∑
i=1

r

∑
j=1

hi(µ j +ρ jh j−ρ jh j)

× sym{A∗il(aX−bY )+B∗i Z∗jl}

+
r

∑
i=1

r

∑
j=1

hi(h j−ρ jh j)∆i−
r

∑
i=1

r

∑
j=1

hi(µ j−ρ jh j)∆i

=
r

∑
i=1

r

∑
j=1

hih j

× (sym{ρ j(A∗il(aX−bY )+B∗i Z∗jl)}+(1−ρ j)∆i)

+
r

∑
i=1

r

∑
j=1

hi(µ j−ρ jh j)

× (sym{A∗il(aX−bY )+B∗i Z∗jl}−∆i). (19)

Considering µ j − ρ jh j > 0, and sym{(A∗il(aX − bY ) +
B∗i Z∗jl}−∆i < 0, we obtain

r

∑
i=1

r

∑
j=1

hiµ jsym{A∗il(aX−bY )+B∗i Z∗jl}

≤
r

∑
i=1

r

∑
j=1

hih j

× (sym{ρ j(A∗il(aX−bY )+B∗i Z∗jl)}+(1−ρ j)∆i)

=
r

∑
i=1

h2
i (sym{ρi(A∗il(aX−bY )+B∗i Z∗il)}+(1−ρi)∆i)

+
r

∑
j=1

∑
i< j

hih j

× (sym{ρ j(A∗il(aX−bY )+B∗i Z∗jl)}+(1−ρ j)∆i

+ sym{ρi(A∗il(aX−bY )+B∗i Z∗il)}+(1−ρi)∆ j).
(20)

Due to

sym{ρi(A∗il(aX−bY )+B∗i Z∗jl)}+(1−ρi)∆i < Qii,

and

sym{ρ j(A∗il(aX−bY )+B∗i Z∗jl)}+(1−ρ j)∆i

+ sym{ρi(A∗jl(aX−bY )+B∗jZ
∗
i jl)}+(1−ρi)∆ j

< Qi j +QT
i j,

it yields from (20) that
r

∑
i=1

r

∑
j=1

hiµ jxT (t)sym{(A∗il(aX−bY )+B∗i Z∗jl)}x(t)

≤ xT (t)Qx(t)< 0. (21)

Therefore,
r
∑

i=1

r
∑
j=1

hiµ jsym{((A∗il(aX − bY )+B∗i Z∗jl)} < 0,

which implies the admissibility of system (11). This com-
pletes the proof. �
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Remark 2: The admissibility conditions in Theorem 2
are a special case of Theorem 3. If there exist solutions
for the admissibility conditions in Theorem 2, choosing
∆i = 0, Qi j = 0 for i < j, the LMIs (13)-(15) are satisfied.
Thus, the admissibility conditions in Theorem 3 are more
relax than that in Theorem 2.

Theorem 4: Fuzzy singular FOS (11) with hi = νi and
r = re is admissible, if the membership functions satisfy
µ j − ρ jh j ≥ 0 for all j with 0 < ρ j < 1, and there exist
matrices Q < 0, X1, X3, X4, Y1, Y3, Y4, ∆i = ∆T

i , Zii, i = 1,
2, · · · , r, such that (8) and the following LMIs hold:

sym{A∗ii(aX−bY )+B∗i Z j j}−∆i < 0, (22)

ρisym{A∗ii(aX−bY )+B∗i Zii}+(1−ρi)∆i−Qii < 0,
(23)

ρ jsym{A∗ii(aX−bY )+B∗i Z j j}+(1−ρ j)∆i

+ρisym{A∗j j(aX−bY )+B∗jZii}+(1−ρi)∆ j

−Qi j−QT
i j < 0, i < j, (24)

where X , Y are defined in Theorem 2 and Q is defined in
Theorem 3. Then, the gain matrices are obtained as

K∗ii = Zii(aX−bY )−1, i = 1, 2, · · · , r.

4. AN EXAMPLE

In this section, a simulation example is provided to val-
idate the effectiveness of the proposed controller design
schemes.

Example 1: Consider a fractional order electrical cir-
cuit system shown in Fig. 1 with inductors L1, L2, resis-
tances R1, R2, and a source current iz, where L1 =

5−3sin(i1)
2

and R2 = sin(i2)+ 2 are nonlinear terms. i1 and i2 repre-
sent current passing through the inductor L1 and L2, re-
spectively.

As the statements in [35], let the voltage uL(t) on the
inductor L with its current iL(t) be related by the following
formula

uL(t) = L
dα iL(t)

dtα
, 0 < α < 1.

Using the Kirchhoffs laws, we can write the electrical cir-
cuit equations[

L1 −L2

0 0

]
dα

dtα

[
i1
i2

]

Fig. 1. Electrical circuit illustration.

=

[
−R1 R2

1 1

][
i1
i2

]
+

[
0
−1

][
iz
]
.

Denote the state of system as x(t) =
[
x1 x2

]T
=
[
i1 i2

]T ,
and x1 ∈ [0, 2], x2 ∈ [0, 4]. Choosing α = 0.8, L2 = 1,
R1 = 1, and considering there exist two nonlinear terms
5−3sin(x1)

2 and sin(x2)+2, the following T-S fuzzy model is
obtained:

IF 5−3sin(x1)
2 is ‘small’ and sin(x2)+2 is ‘small’, THEN

E1Dα x(t) = A1x(t)+Bu(t);

IF 5−3sin(x1)
2 is ‘small’ and sin(x2)+2 is ‘big’, THEN

E1Dα x(t) = A2x(t)+Bu(t);

IF 5−3sin(x1)
2 is ‘big’ and sin(x2)+2 is ‘small’, THEN

E2Dα x(t) = A1x(t)+Bu(t);

IF 5−3sin(x1)
2 is ‘big’ and sin(x2)+2 is ‘big’, THEN

E2Dα x(t) = A2x(t)+Bu(t),

where

E1 =

[
1 −1
0 0

]
, E2 =

[
4 −1
0 0

]
,

A1 =

[
−1 1
1 1

]
, A2 =

[
−1 3
1 1

]
,

B =

[
0
−1

]
.

We choose the following membership functions:

ν1 =
4− 5−3sin(x1)

2

4−1
=

1+ sin(x1)

2
, ν2 = 1−ν1,

h1 =
3− (sin(x2)+2)

3−1
=

1− sin(x2)

2
, h2 = 1−h1,

µ1 =
x2

2

10
, µ2 = 1−µ1.

Based on Theorem 3, by setting ρ1 = 0.1, ρ2 = 0.4, and
solving LMIs (8) and (13)-(15), the PDSF controller gain
matrices are obtained as follows:

K∗11 = K∗12

=
[
−11.5142 −11.6811 −28.7513 −0.4896

]
,

K∗21 = K∗22

=
[
−11.5343 −11.7011 −28.7980 −0.4933

]
.

Designing the PDSF controller with above parameters,
then, the state trajectories of the closed-loop system (11)
are plotted in Fig. 2. It implies that the closed-loop system
(11) is admissible and the PDSF controller design method
in Theorem 3 is effective.
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Fig. 2. State trajectories of the closed-loop system based
on PDSF controller.

5. CONCLUSION

The issues of normalization and stabilization of T-S
fuzzy singular FOS with fractional order 0 < α < 1 are
investigated in this paper. In order to facilitate the admis-
sibility analysis, a equivalent system in admissibility is in-
troduced. And the system matrices and controllers share
different membership function, resulting in a more relaxed
admissibility analysis result by PDSF controller. The ef-
fectiveness of the proposed method has been illustrated
by the provided example. In the future, we will consider
the problems of output feedback control for the nonlin-
ear systems subject to parameter uncertainties in the frame
structure of this paper.
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