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Adaptive Safety Motion Control for Underactuated Hovercraft Using Im-
proved Integral Barrier Lyapunov Function
Mingyu Fu, Tan Zhang* � , and Fuguang Ding

Abstract: In this paper, we investigate the problem of safety motion control for an underactuated hovercraft from
subject to safety constraint on the states, and model uncertainties. First, a new improved integral barrier Lyapunov
function is proposed to constrain the surge speed, it can guarantee the lower limit of the surge speed is above
the resistance hump speed in order to prevent loss of course stability. Second, to ensure that the heading remains
within the pre-specified safety boundary, a time-varying integral barrier Lyapunov function is introduced to avoid
the violation of the constraint. Third, we constrain the yaw angular velocity to the interior of the time-varying safety
boundary is related to the surge speed to aim at performing the safety turning under the high speed. To deal with
model uncertainties, an adaptive parameter approximation algorithm is designed to estimate it. With the help of
Lyapunov’s stability theory, it can be proved that all the tracking errors are uniformly ultimately bounded. Finally,
results from some simulation studies verify the effectiveness and universality of the proposed scheme.

Keywords: Improved integral barrier function, safety motion control, time-varying constraints, underactuated hov-
ercraft.

1. INTRODUCTION

The hovercraft is viewed as a high-performance am-
phibious marine craft because its hull can be totally lifted
up by a pressurized air cushion which is produced by a
flexible skirt system [1]. Accordingly, the hovercraft has
a higher speed than a normal surface vessel. In recent
decades, due to its superior high speed and unique am-
phibious performance, the hovercraft has more and more
attention in both military and civil fields.

What is particularly noteworthy is that the hovercraft
has very little contact with the sailing surface. It is easy to
generate a large roll angle and drift angle so that the hov-
ercraft runs in a dangerous situation. Moreover, the lateral
component of the air cushion force under large roll an-
gle results in the hovercraft drifting sideways and losing
course stability [2]. The roll motion occurs always when
the hovercraft is turning and is more violent with the in-
crease of the turn rate. Therefore, the turn rate must be
constrained within the safety boundary. From a detailed
review of the available literature about the motion control
of the hovercraft [1–6], the surge speed has never been
constrained. However, the surge speed is influenced by
the resistance hump of the hovercraft. The course stability
will become poor when the surge speed is lower than the
resistance hump speed. Hence, the surge speed needs to be

constrained above the resistance hump speed for holding
better stability. Thus, it is necessary to constrain states of
the hovercraft for ensuring safe navigation.

In the past decades, in order to deal with the prob-
lem of the state constraints in control systems, numer-
ous significant methods have been proposed through the
efforts of the researchers such as moving-horizon opti-
mal control [7,8], artificial potential fields [9,10], model-
predictive control [11,12], etc. In the moving-horizon op-
timal control schemes, the control input is obtained by
solving an open-loop finite-horizon optimal control prob-
lem online, which can be applied effectively to linear sys-
tems [8]. The artificial potential field method can construct
dynamic constrained motion with observed state informa-
tion by defining appropriate repulsive and attractive artifi-
cial potential fields. In [11], the model-predictive control
method is proposed to address the path following of ma-
rine surface vessels with input and state constraints. The
problem of guaranteeing Quality of Service using optimal
buffer allocation is addressed in [13]. Furthermore, the
model predictive control approach is proposed to compute
the optimal buffer with respect to a real-world dataset ac-
counting for the expected data traffic volume for a prede-
fined set of business users belonging to a mobile network
scenario. The approach of a quaternion orientation based
quadrotor that can be controlled by model predictive con-
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trol is proposed in [14]. In [14], the main contribution is to
present a novel cost function for model predictive control
because, by definition, quaternion error is remarkably dif-
ferent from the Euler angle’s attitude error. A robust model
predictive control approach-based trajectory tracking con-
trol for an underactuated two-wheeled inverted pendulum
vehicle with various physical constraints is proposed in
[15]. In [16], a Lyapunov-based predictive tracking con-
troller for nonholonomic wheeled robots with control in-
put constraints is proposed to address the global position
and orientation tracking problem of the robot. However,
solving complex nonlinear optimizations brings difficul-
ties for applying the above methods to real-time control.

Recently, considering the fact that practical systems
are subjected to constraints in the form of safety require-
ment, output, and state, the barrier Lyapunov function-
based control schemes are proposed [17–21]. In [22], log-
type barrier Lyapunov function is introduced to guaran-
tee the full-states stay within pre-specified time-invariant
constraint boundaries. A log-type barrier Lyapunov func-
tion is used in [23] to tackle the trajectory tracking control
problem for an underactuated autonomous underwater ve-
hicle with time-invariant constraints on system output. A
tan-type barrier Lyapunov function-based controller is de-
veloped to handle time-varying constraints on the tracking
errors [24,25]. However, the above log-type and tan-type
barrier Lyapunov function cannot constrain directly the
system states, accordingly, which need an additional map-
ping to state space. An integral barrier Lyapunov function
(iBLF) allowing the system state constraints to be mixed
with the error terms is proposed in [26,27] to directly con-
strain the state signals. However, the above iBLFs only
can constrain the states to the interior of a region contain-
ing zero, and therefore cannot meet the constraint on the
surge speed in this paper.

Motivated by the above-mentioned observations, an im-
proved iBLF-based adaptive safety motion control for an
underactuated hovercraft is proposed that ensures safe
navigation and deals with the model uncertainties. In par-
ticular, the constraint on the surge speed using improved
iBLF in this paper has been unprecedented. Accordingly,
the contributions of this study are summarized as follows:

1) Unlike the existing iBLF-based constraint scheme in
[26–31], the proposed improved iBLF-based motion con-
trol scheme can guarantee the surge speed exceeds always
the resistance hump speed, namely the hovercraft sails at
high speed to ensure course stability.

2) Based on time-varying iBLF, we constrain the yaw
angular velocity to the interior of a time-varying safety
boundary is related to the surge speed to aim at performing
the safety turning under the high speed.

3) To address the model uncertainties, an adaptive pa-
rameter estimation algorithm is incorporated with the con-
trol scheme. It is proven that the proposed control schemes
are universal and easy to implement. The simulation re-

sults show the superiority and universality of the proposed
strategies across various scenarios.

The remainder of this paper is arranged as follows: The
preliminaries and problem formulation are given in Sec-
tion 2. Section 3 is devoted to developing the adaptive
safety motion controllers for a hovercraft. Numerical sim-
ulation results are shown in Section 4. Section 5 concludes
the work of this paper.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1. Model description of a hovercraft
Neglecting the pitch and heave motion, four degrees

of freedom model of the hovercraft shown in Fig. 1 with
model uncertainties can be described as follows:

ẋ = ucosψ− vsinψ cosφ ,

ẏ = usinψ + vcosψ cosφ ,

φ̇ = p,

ψ̇ = r cosφ ,

u̇ = vr+FxD0
/

m0 +Θ
T
u fu (η̇ ,η)+ τu

/
m0,

v̇ =−ur+FyD0
/

m0 +Θ
T
v fv (η̇ ,η) ,

ṗ = MxD0
/

Jx0 +Θ
T
p fp (η̇ ,η) ,

ṙ = MzD0
/

Jz0 +Θ
T
r fr (η̇ ,η)+ τr

/
Jz0,

(1)

where x, y, φ , ψ signify positions and attitudes of the hov-
ercraft in the earth-fixed frame, u, v, p, r denote speeds
and angular velocities. m0, Jx0, Jz0 are mass and moment
of inertia, τu, τr represent control inputs. FxD0, FyD0, MxD0,
MzD0 are the total drags of the known model. Please re-
fer to [2,32] for details of the drags. Θu ∈ Rnu , Θv ∈ Rnv ,
Θp ∈ Rnp , Θr ∈ Rnr denote unknown constant vectors with
known dimensions nu, nv, np, nr. The model uncertain-
ties Fu = θ T

u fu (η̇ ,η), Fv = θ T
v fv (η̇ ,η), Fp = θ T

p fp (η̇ ,η)
and Fr = θ T

r fr (η̇ ,η) with fu = [vr, u]T ∈ Rnu , fv = [ur,
v]T ∈ Rnv , fp = [vr, p]T ∈ Rnp and fr = [vu, r]T ∈ Rnr repre-
senting the known smooth vector functions, and η = (u, v,
p, r) denoting the independent variable of nonlinear func-
tions fu, fv, fp, and fr. The model uncertainties are se-
lected as Fu = 0.2vr+0.1u and Fr = 0.1uv+0.3r. And the

Fig. 1. Three dimensional model of the hovercraft. Picture
is from the international cooperation project of au-
thors.
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Fig. 2. Structure of the adaptive parameter estimation.

structure of the adaptive parameter estimation is shown in
Fig. 2. The adaptive updating laws will be given later.

2.2. Preliminaries
In order to guarantee the time-varying safety constraints

on the heading angle and yaw angular velocity of the hov-
ercraft, the time-varying iBLF [27] is introduced as

Vi (ei,kiH , id) =
∫ ei

0

σk2
iH

k2
iH − (σ + id)

2 dσ , (2)

where ei = i− id with id being a continuously differen-
tiable desired target satisfying |id |< kiH , i=ψ,r. It is clear
that Vi is a continuously positive differentiable functional
over the set Ωi = {i : |i|< kiH}.

Assumption 1: The desired target values are set to sat-
isfy |id |< kiH , i = ψ,r.

Theorem 1: Vi (ei,kiH , id) is a continuously positive
differentiable functional over the set Ωi and satisfies al-
ways the following inequality:

e2
i

2
≤Vi ≤

k2
iHe2

i

k2
iH − i2

. (3)

Proof: Please refer to Appendix A in [27]. �

Remark 1: In the previous works applying iBLF [27–
31], the constraint on the system states is time-invariant.
However, for many practical systems [33], the constraint
on the system states is time-varying. In (2), kiH is a time-
varying function and signifies safety limit of the system
states. Therefore, it is practically significant to extend
the previous iBLF-based controller designs for the system
with time-varying state constraints.

To guarantee that the hovercraft sails at a safe speed,
namely, the surge speed must be greater than the resistance
hump speed, a new improved iBLF is proposed for the first
time in this paper as

Vu (eu,kuL,ud) =
∫ eu

0

σ(σ +ud)
2

(σ +ud)
2− k2

uL

dσ , (4)

where eu = u− ud and ud is a continuously positive dif-
ferentiable function or constant. It is obvious that V is a

continuously positive differentiable functional over the set
Ωu := {u : u > kuL}.

Assumption 2: The desired target value is set to satisfy
ud > kuL.

Theorem 2: The functional Vu (eu,kuL,ud) over the set
Ωu, designed in this paper, satisfies

e2
u

2
≤Vu (eu,kuL,ud)≤

u2e2
u

u2− k2
uL
. (5)

Proof: The proof process is divided into two steps.
First step, we prove that Vu0 (eu,kuL,ud) ≤ u2e2

u
u2−k2

uL
holds.

Define function p(σ) = σ(σ +ud)
2
/(

(σ +ud)
2− k2

uL

)
,

then the partial derivative ∂ p
/

∂σ over the set Ωu is

∂ p
∂σ

=

(
(σ+ud)

3−k2
uL (σ+ud)−2k2

uLσ

)
(σ+ud)(

(σ +ud)
2− k2

uL

)2 .

(6)

Define pσ =
(
(σ+ud)

3−k2
uL (σ+ud)−2k2

uLσ

)
(σ+ud).

When σ < 0, we know that −2k2
uLσ > 0 and (σ +ud)

3−
k2

uL (σ +ud) > 0 in the set σ + ud > kuL, accordingly,
∂ p
/

∂σ > 0 holds. When σ > 0, we have

pσ =
((

σ
2+2σud+u2

d−k2
uL

)
(σ+ud)−2k2

uLσ
)
(σ+ud)

=
(
σ

3 +3σ
2ud +2σ

(
u2

d− k2
uL

))
(σ +ud)

+
(
u2

d− k2
uL

)
(σ +ud)

2. (7)

This means that ∂ p
/

∂σ is positive for ud > kuL in the
set σ +ud > kuL. According to that p(σ) is monotonically
increasing function of variable σ in the set σ +ud > kuL ,
and p(0) = 0, the following inequality holds∫ eu

0
p(σ)dσ ≤ eu p(eu) =

e2
uu2

u2− k2
uL
. (8)

Second step, we prove that e2
u

2 ≤ Vu (eu,kuL,ud) holds.
First off, define the function:

g(eu) =
∫ eu

0

σ(σ +ud)
2

(σ +ud)
2− k2

uL

dσ − e2
u

2
, (9)

the partial derivative of (9) is ∂g(eu)/∂eu=euk2
uL/(u

2−k2
uL),

we can easily obtain that ∂g(eu)
/

∂eu < 0 when eu < 0
and ∂g(eu)

/
∂eu > 0 when eu > 0 over the compact set Ωu.

Furthermore, we have g(eu) = 0 when eu = 0. Accord-
ingly, g(eu) ≥ 0 always holds over the set Ωu, namely,∫ eu

0
σ(σ+ud)

2

(σ+ud)
2−k2

uL
dσ ≥ e2

u
2 . The proof of Theorem 2 is com-

pleted. �

Assumption 3: The initial values of the system states
satisfy u(0)> kuL, |ψ(0)|< kψH and |r(0)|< krH .
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Remark 2: The existing iBLF can only constrain sys-
tem states within a range around zero. However, in order
to meet the practical requirement that some system states
need to be greater than the safety value, such as hover-
craft’s surge speed is required to exceed resistance hump
speed, the new improved iBLF is proposed to solve this
kind of problem in this paper.

Theorem 3: For any positive constant kl , define χ :=
{x ∈ R : x > kl} ⊂ R and N := Rl×χ ⊂ Rl+1 as open sets.
Consider the following system:

η̇ = h(η , t) , (10)

where η :=[ω,x]T ∈N with ω=

ω1

· · ·
ωl

T

∈Rl being the free

states, and h : R+×N→Rl+1 is piecewise continuous with
respect to t, locally Lipschitz with respect to η and uni-
formly in t, on R+×N. Suppose that there are functions
U : Rl→R+ and Vx : χ→R+ are positive definite and con-
tinuously differentiable in their respective domains, such
that

Vx (x)→ ∞ as x→ kl , (11)

γ1 (‖ω‖)≤U (ω)≤ γ2 (‖ω‖) , (12)

where γ1 and γ2 are class k∞ functions. Assign V (η) =
Vx+U and the initial value satisfies x(0)∈ χ . If the deriva-
tive of V with respect to η satisfies

V̇ =
∂V
∂η

h≤−µV +λ , η ∈ N, (13)

where µ and λ are positive constants, then ω is bounded
and x(t) ∈ χ , ∀t ∈ [0,∞).

Proof: We can easily know that the maximal solu-
tion η (t) as t ∈ [0,τmax) is existent and unique accord-
ing to conditions on h. Considering the initial condition
x(0) ∈ χ , we have that Vx(x(0)) and V (η (0)) exist. Inte-
grating both sides of (13), we have V (η (t))≤V (η (0))+
λ
/

µ, t ∈ [0,τmax). According to V (η) = Vx +U with Vx

being a positive function, we obtain that Vx is bounded as
t ∈ [0,τmax). As Vx → ∞ only if x → kl . In view of the
boundedness of Vx, we have x > kl , t ∈ [0,τmax). There-
fore, there exists a compact subset K ⊂ N such that the
maximal solution of (10) satisfies η (t) ∈ K, t ∈ [0,τmax).
However, the domain of definition of η (t) is t ∈ [0,∞), so
we can obtain that x(t) ∈ χ, t ∈ [0,∞). This completes the
proof. �

Remark 3: Theorem 3 proposed in this paper is sim-
ilar to Lemma 3 in [27] is aimed at completing the sta-
bility analysis of the constrained system. However, there
exist some differences between them. Lemma 3 in [27] is
only applied to prove the system state x can be constrained

within a range containing zero, like |x|< k, k > 0. But the
proposed Theorem 3 devotes to analyze that the lowest
safety boundary of the system state x is ensured, for ex-
ample, x > k, k > 0.

3. MOTION CONTROL DESIGN

3.1. Surge speed control
We define the surge speed tracking error and calculate

its derivative as follows:

eu = u−ud ,

ėu = vr+
FxD0

m0
+Θ

T
u fu (η̇ ,η)+

τu

m0
− u̇d , (14)

where ud is desired surge speed.
In order to guarantee the surge speed is above resistance

hump speed in the moving process, namely, u > kuL with
kuL being a positive time-varying lower bound constraint
on the surge speed, we design a greatest lower bound-
guaranteed iBLF for the first time as follows:

Vu0 (eu,kuL,ud) =
∫ eu

0

σ(σ +ud)
2

(σ +ud)
2− k2

uL

dσ . (15)

For the sake of convenience in writing, we define

Vu0 (·)
de f
= Vu0 (eu,kuL,ud).

The derivative of (15) with respect to time is

V̇u0 (·) =
∂Vu

∂eu
ėu +

∂Vu

∂ud
u̇d +

∂Vu

∂kuL
k̇uL

=
euu2

u2− k2
uL

ėu + eu

(
u2

u2− k2
uL

+ lud

)
u̇d

+ eu (l∂ku1 + l∂ku2− l∂ku3) k̇uL, (16)

where

lud =
1
2

kuL

eu
ln
(
(u+ kuL)(ud− kuL)

(u− kuL)(ud + kuL)

)
, (17)

l∂ku1 =
kuL

eu
ln
(

u2− k2
uL

u2
d− k2

uL

)
, (18)

l∂ku2 =
ud

2eu
ln
(
(u+ kuL)(ud− kuL)

(u− kuL)(ud + kuL)

)
, (19)

l∂ku3 =
kuLu

u2− k2
uL
. (20)

By substituting (14) into (16), we have

V̇u0 (·) =
euu2

u2− k2
uL

(
vr+

FxD0

m0
+Θ

T
u fu +

τu

m0
− u̇d

)
+ eu

(
u2

u2− k2
uL

+ lud

)
u̇d− eul∂ku3k̇uL

+ eu (l∂ku1 + l∂ku2) k̇uL. (21)
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According to (21), the surge control law is designed as
follows:

τ
∗
u =m0

(
−kueu− vr− FxD0

m0
−Θ

T
u fu −

u2− k2
uL

u2 lud u̇d

−u2− k2
uL

u2 (l∂ku1 + l∂ku2− l∂ku3) k̇uL

)
, (22)

where ku is a positive constant. However, there is an un-
known term in control law (22), therefore τ∗u can’t be ap-
plied directly to the actual system. An adaptive algorithm
is utilized to approximate the uncertainty. The adaptive
surge control law is designed as

τu =m0

(
−kueu− vr− FxD0

m0
− Θ̂

T
u fu −

u2− k2
uL

u2 lud u̇d

−u2− k2
uL

u2 (l∂ku1 + l∂ku2− l∂ku3) k̇uL

)
, (23)

where Θ̂u signifies the estimation value of Θu with Θ̃u =
Θu− Θ̂u being the estimation error. Then we design the
adaptive updating law as

˙̂
Θu = Γu

(
euu2

u2− k2
uL

fu−σuΘ̂u

)
, (24)

where Γu ∈ Rnu×nu is a positive definite diagonal matrix
and σu is a positive design constant.

Next, let’s discuss whether the control law τu is well
defined when eu = 0 or eu 6= 0.

Remark 4: According to ud > kuL in Assumption 2 and
considering (17), (18) and (19), lud , l∂ku1 and l∂ku2 are well
defined and bounded when eu 6= 0. When eu = 0, since

lim
eu→0

lud =−
k2

uL

u2
d− k2

uL
, (25)

lim
eu→0

l∂ku1 =
2kuLud

u2
d− k2

uL
, (26)

lim
eu→0

l∂ku2 =−
kuLud

u2
d− k2

uL
, (27)

we have that lud , l∂ku1 and l∂ku2 are well defined and
bounded as well. Therefore, we can obtain that the con-
trol law τu is well defined whether eu = 0 or eu 6= 0.

Next, we will use the control law τu to prove the stabil-
ity of the motion system whether eu = 0 or eu 6= 0.

Select the following candidate Lyapunov function:

Vu =Vu0 (·)+
1
2

Θ̃
T
u Γ
−1
u Θ̃u. (28)

By using (23) and (24), we can get the time derivative
of (28) as

V̇u =− ku
u2e2

u

u2− k2
uL

+σuθ̃
T
u θ̂u

=− ku
u2e2

u

u2− k2
uL

+σuθ̃
T
u θu−σuθ̃

T
u θ̃u

≤− ku
u2e2

u

u2− k2
uL

+
σu

2
θ̃

T
u θ̃u +

σu

2
θ

T
u θu. (29)

The result in (29) will be applied to the stability analysis
of the motion system in Subsection 3.4. Furthermore, the
condition of eu = 0 is not used to prove the stability of the
system.

3.2. Heading control
Unlike the design of the surge speed control law in sub-

section 3.1, this subsection introduces time-varying iBLF
to ensure that the hovercraft sails in prescribed safety
heading angles, namely, |ψ|< kψH with kψH being a pos-
itive time-varying function.

We define heading tracking error and take its derivative:

eψ = ψ−ψd ,

ėψ = ψ̇− ψ̇d = r cosφ − ψ̇d . (30)

The time-varying iBLF is constructed as

Vψ

(
eψ ,kψH ,ψd

)
=
∫ eψ

0

σk2
ψH

k2
ψH − (σ +ψd)

2 dσ . (31)

Define Vψ (·)
de f
= Vψ

(
eψ ,kψH ,ψd

)
.

The time derivative of Vψ (·) is given by

V̇ψ (·) =
k2

ψHeψ

k2
ψH −ψ2 ėψ + eψ

(
k2

ψH

k2
ψH −ψ2 − lψd

)
ψ̇d

+ eψ

(
l∂kψ1− l∂kψ2 + l∂kψ3

)
k̇ψH

=
k2

ψHeψ

k2
ψH −ψ2 (r cosφ − ψ̇d)

+ eψ

(
k2

ψH

k2
ψH −ψ2 − lψd

)
ψ̇d

+ eψ

(
l∂kψ1− l∂kψ2− l∂kψ3

)
k̇ψH , (32)

where

lψd =
kψH

2eψ

ln

(
kψH +ψ

)(
kψH −ψd

)(
kψH −ψ

)(
kψH +ψd

) , (33)

l∂kψ1 =
kψH

eψ

ln

(
k2

ψH −ψ2
d

k2
ψH −ψ2

)
, (34)

l∂kψ2 =
1
2

ψd

eψ

ln

(
kψH +ψ

)(
kψH −ψd

)(
kψH −ψ

)(
kψH +ψd

) , (35)

l∂kψ3 =
kψHψ

k2
ψH −ψ2 . (36)

Remark 5: In view of |ψd |< kψH in Assumption 1 and
considering (33), (34) and (35), lψd , l∂kψ1 and l∂kψ2 are
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well defined when eψ 6= 0. When eψ = 0, since

lim
eψ→0

lψd =
k2

ψH

k2
ψH −ψ2

d
, (37)

lim
eψ→0

l∂kψ1 =
2kψHψd

k2
ψH −ψ2

d
, (38)

lim
eψ→0

l∂kψ2 =
kψHψd

k2
ψH −ψ2

d
, (39)

we have that lψd , l∂kψ1 and l∂kψ2 are well defined as well.

The virtual control law rd as stability function is given
by

rd =

(
−kψ eψ+

k2
ψH−v2

k2
ψH

(
lψd ψ̇d−l∂kψ k̇ψH

))
/cosφ ,

(40)

where kψ is a positive constant and l∂kψ = l∂kψ1− l∂kψ2−
l∂kψ3.

Remark 6: Because of the effects of the roll restoring
moment, φ can not reach±90◦. Therefore, the virtual con-
trol law (40) is well defined.

By invoking the virtual control law rd into (32), we have

V̇ψ (·) =−kψ

k2
ψHe2

ψ

k2
ψH −ψ2 +

erk2
ψHeψ

k2
ψH −ψ2 cosφ , (41)

where er = r−rd is the yaw angular velocity tracking error
and k2

ψHeψ re cosφ
/(

k2
ψH −ψ2

)
will be stabilized in the

next subsection.
The result in (41) will be used to complete stability

analysis of the motion system in Subsection 3.4.

3.3. Yaw angular velocity control
The yaw angular velocity of the hovercraft is an im-

portant indicator of safe navigation. If yaw angular veloc-
ity exceeds the corresponding safety boundary, the motion
control system will become unstable, even it may lead to a
capsizing accident. Therefore, we design a time-varying
iBLF with considering model uncertainty such that the
yaw angular velocity r converges to the desired target
rd while ensuring that the yaw angular velocity remains
within safety boundary [33] relating the surge speed.

Considering dynamic model (1), the time derivative of
er is

ėr =
MzD0

Jz0
+Θ

T
r fr +

τr

Jz0
− ṙd . (42)

The time-varying iBLF with considering model uncer-
tainty is constructed as

Vr(er,krH ,rd)=
∫ er

0

σk2
rH

k2
rH−(σ+rd)

2 dσ+
1
2

Θ̃
T
r Γ
−1
r Θ̃r,

(43)

where Θ̃r = Θr − Θ̂r is estimation error with Θ̂r sig-

nifying the estimated value of Θr. We define Vr (·)
de f
=

Vr (er,krH ,rd) for convenience’s sake in writing.
The derivative of (43) with respect to time, is given by

V̇r (·) =
∂Vr

∂er
ėr +

∂Vr

∂ rd
ṙd +

∂Vr

∂krH
k̇rH − Θ̃

T
r Γ
−1
r

˙̂
Θr

=
k2

rHer

k2
rH − r2

(
MzD0

Jz0
+Θ

T
r fr +

τr

Jz0
− ṙd

)
+ er

(
k2

rH

k2
rH − r2 − lrd

)
ṙd− Θ̃

T
r Γ
−1
r

˙̂
Θr

+ er (l∂kr1− l∂kr2− l∂kr3) k̇rH , (44)

where

lrd =
krH

2er
ln

(krH + r)(krH − rd)

(krH − r)(krH + rd)
, (45)

l∂kr1 =
krH

er
ln
(

k2
rH − r2

d

k2
rH − r2

)
, (46)

l∂kr2 =
1
2

rd

er
ln

(krH + r)(krH − rd)

(krH − r)(krH + rd)
, (47)

l∂kr3 =
krHr

k2
rH − r2 . (48)

Remark 7: According to L’Hopital’s rule, |rd | < krH

in Assumption 1, and considering (45), (46) and (47), lrd ,
l∂kr1 and l∂kr2 are well defined when er 6= 0. When er = 0,
we have

lim
er→0

lrd =
k2

rH

k2
rH − r2

d
, (49)

lim
er→0

l∂kr1 =
2krHrd

k2
rH − r2

d
, (50)

lim
er→0

l∂kr2 =
krHrd

k2
rH − r2

d
, (51)

therefore, lrd , l∂kr1 and l∂kr2 are well defined as well.

Then we design the yaw control law and the adaptive
updating law of uncertainty parameter as

τr = Jz0

(
−krer−

MzD0

Jz0
− Θ̂

T
r fr +

k2
rH − r2

k2
rH

lrd ṙd

−k2
rH − r2

k2
rH

l∂krk̇rH −
k2

rH − r2

k2
rH

k2
ψHeψ

k2
ψH −ψ2 cosφ

)
,

(52)

˙̂
Θr = Γr

(
k2

rHer

k2
rH − r2 fr−σrΘ̂r

)
, (53)

where l∂kr = l∂kr1− l∂kr2− l∂kr3, Γr ∈ Rnr×nr is a positive
definite diagonal matrix and σr is a positive constant.

Substituting (52) and (53) into (44) yields

V̇r (·) =− kr
k2

rHe2
r

k2
rH − r2 −

k2
ψHeψ er

k2
ψH −ψ2 cosφ +σrΘ̃

T
r Θ̂r
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≤− kr
k2

rHe2
r

k2
rH − r2 −

k2
ψHeψ er

k2
ψH −ψ2 cosφ

− σr

2
Θ̃

T
r Θ̃r +

σr

2
Θ

T
r Θr. (54)

The result in (54) will be utilized for the stability anal-
ysis of motion controllers in the next subsection.

3.4. Stability analysis
Next, we summarize the major results of this paper.

Theorem 4: Consider the hovercraft model (1) with
safety constraints and system uncertainties, and suppose
that Assumption 1-3 are satisfied. If the surge control law
is calculated by (23), the virtual heading control law is de-
signed as (40), the yaw control law is expressed by (52)
and uncertain parameters are estimated by (24) and (53),
then the motion control system is developed in this pa-
per such that: the surge speed is greater than the resis-
tance hump speed, the hovercraft sails in the pre-specified
safety heading angles and the yaw angular velocity re-
mains within the safety boundaries relating to the surge
speed, as well as all the tracking errors converge to a small
region around zero.

Proof: Assign the complete Lyapunov function of the
motion control system as

V =Vu +Vψ +Vr. (55)

In virtue of (29), (41) and (54), we can obtain the
derivative of V as

V̇ ≤− ku
u2e2

u

u2− k2
uL
− kψ

k2
ψHe2

ψ

k2
ψH −ψ2 − kr

k2
rHe2

r

k2
rH − r2

− σu

2
Θ̃

T
u Θ̃u−

σr

2
Θ̃

T
r Θ̃r

+
σu

2
Θ

T
u Θu +

σr

2
Θ

T
r Θr. (56)

According to Theorem 1-2, we further have

V̇ ≤−ρV + ε, (57)

where

ρ = min
{

ku,kψ ,kr,σuλmin (Γu) ,σrλmin (Γr)
}
,

ε=
σu

2
Θ

T
u Θu +

σr

2
Θ

T
r Θr, (58)

with λmin (·) denoting the minimum eigenvalue of the ma-
trix ·.

Solving the inequality (57) yields

0≤V ≤
(

V (0)− ε

ρ

)
e−ρt +

ε

ρ
. (59)

It is obvious that V is uniformly ultimately bounded
from (59). Then, according to Theorem 1-2 we have

e2
u

2
≤
∫ eu

0

σ(σ +ud)
2

(σ +ud)
2− k2

uL

dσ

≤
(

V (0)− ε

ρ

)
e−ρt+

ε

ρ
, (60)

e2
i

2
≤
∫ ei

0

σk2
iH

k2
iH − (σ + id)

2 dσ

≤
(

V (0)− ε

ρ

)
e−ρt +

ε

ρ
, (61)

where i = ψ,r. Further, there are |e j| ≤
√

2Ξ, j = u,ψ,r

and
∥∥Θ̃k

∥∥ ≤ √
2Ξ
/

λmin
(
Γ
−1
k

)
, k = u,r with Ξ :=(

V (0)− ε

ρ

)
e−ρt + ε

ρ
.

According to the boundedness of V , we infer that there
is a positive constant kV such that V ≤ kV . From the
definition of iBLF, we know that as V (t) → ∞ only if
|ψ|→ kψH or |r|→ krH or u→ kuL. Accordingly, we know
that |ψ| 6= kψH , |r| 6= krH and u 6= kuL. In light of Assump-
tion 3, Theorem 3 proposed in this paper, and Lemma 3 in
[28], we can conclude that u> kuL, |ψ|< kψH and |r|< krH

for ∀t ≥ 0. The proof of Theorem 3 is completed. �

Remark 8: Compared with previous works in [17–25],
the yaw control law τr and virtual heading control law rd

designed in this paper handle directly time-varying con-
straints on system states r and ψ in order to satisfy the re-
quirement of safe navigation. Furthermore, the surge con-
trol scheme proposed in this paper can ensure that the
surge speed is always beyond the resistance hump speed,
this scheme is different from all the existing iBLF control
schemes [26–31], as far as authors know.

Remark 9: Compared with previous work in [34],
the log-type BLF cannot constrain directly the system
state, accordingly, an additional mapping to state space
is needed. However, in this paper, the proposed iBLF al-
lowing the system state constraints to be mixed with error
terms to directly constrain the state signals. In addition,
the constraint boundary ke is time-invariant in [34]. The
time-varying BLF technique is more general and compli-
cated than the time-invariant BLF technique. The time-
varying iBLF-based control approach has a wider applica-
tion range in this paper.

Remark 10: Compared with previous works in [35–
37], we discovered that the time delays on the inputs gen-
erally exist in the control of nonlinear systems. It can lead
to the consequence of overshoot increasing, stability time
increasing, and even oscillation, divergence and instability
of the systems. By presenting a discrete variable transfor-
mation, the discrete-time system with time delays on the
inputs is transformed into an equivalent non-delay system.
Then, the tracking control problem for a class of discrete-
time systems with input delays is transformed into the op-
timal tracking problem for a non-delay system [36,37].
For the hovercraft control, it takes some time for the ac-
tuators: air rudders and air propellers to respond to the
control signal. However, the simulation results show that
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the proposed approach is robust to time delays on the in-
puts. Some methods to deal with the time delays on inputs
will be applied to the hovercraft motion control in future
works.

4. SIMULATION RESULTS

In this section, the performance of the proposed mo-
tion control system is demonstrated on an underactuated
hovercraft. In this case, the surge speed, heading angle
and yaw angular velocity are constrained. In simulations,
the reader can refer to [2,32] for obtaining details of the
main parameters of the hovercraft. The initial values of
the hovercraft model are chosen in the pre-specified con-
strained state space as: u(0) = 30, ψ(0) = 30, r(0) = 0
and the control parameters are set as: ku = 4, kψ = 1.099,
kr = 80. The units of the speed, attitude angle, and angu-
lar velocity are kn, deg, and deg/s in this paper, respec-
tively. The initial values of unknown vectors are selected
as θ̂u(0) = [0.2,0.1]T and θ̂r(0) = [0.1,0.3]T . The param-
eters of the adaptive updating are selected as σu = 0.9,
σr = 0.1, Γu = diag{2,2} and Γr = diag{6,6}. In order
to show the feasibility and universality of the proposed
scheme, we divide the simulation study into three cases:

Case 1: In the first case, the desired values of the surge
speed, heading angle are ud = 30 and ψd = 40, respec-
tively. The boundaries of the state constraint are kuL =
sin(0.02t) + 26, kψH = 43 + cos(0.03t), krH = 15/8−
u2/800. The time-varying yaw angular velocity constraint
adopted in this paper is similar to those in [33] to ensure
safety turning motion under high speed. Accordingly, the
control laws and the desired yaw angular velocity become
the following form:

τu = m0

(
−kueu− vr− FxD0

m0
− Θ̂

T
u fu

−u2− k2
uL

u2 (l∂ku1 + l∂ku2− l∂ku3) k̇uL

)
, (62)

τr = Jz0

(
−krer−

MzD0

Jz0
− Θ̂

T
r fr +

k2
rH − r2

k2
rH

lrd ṙd

−k2
rH − r2

k2
rH

l∂krk̇rH −
k2

rH − r2

k2
rH

k2
ψHeψ

k2
ψH −ψ2 cosφ

)
,

(63)

rd =

(
−kψ eψ −

k2
ψH −ψ2

k2
ψH

l∂kψ k̇ψH

)/
cosφ . (64)

We know that the above control scheme is similar to
those in [23], which deal with a time-varying constraint
on state variables. However, the desired targets ud and ψd

are time-invariant, in addition, the constraint on state u is
u > kuL in this paper.

The simulation results of Case 1 are shown in Figs. 3-7.
It is obvious from Figs. 3-5 that the desired time-invariant

Fig. 3. Tracking performance and tracking error of the
surge speed under Case 1.

Fig. 4. Tracking performance and tracking error of the
heading angle under Case 1.

Fig. 5. Tracking performance and tracking error of the
yaw angular velocity under Case 1.
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Fig. 6. Control input under Case 1.

Fig. 7. Parameter estimation performance under Case 1.

targets ud , ψd can be tracked in ideal accuracy and the
time-varying virtual control law rd can be tracked as well.
And for the purpose of safety navigation, the surge speed
can be limited above the lowest safe boundary kuL, the
heading angle can be constrained within prescribed safety
heading angles kψH and the time-varying constraint krH on
the yaw angular velocity is never violated. The tracking er-
rors can converge to a small region containing zero from
further observation. The curves of the control input vary
with time are shown in Fig. 6. From the adaptive updat-
ing laws (24), (53) and Fig. 7, we know that the adaptive
parameter estimation performance has a large deviation
due to the large state tracking errors eu and er in the ini-
tial tracking stage. After 10 seconds, the adaptive parame-
ters basically achieved tracking the desired setting values,
namely, we have that θ̂u = θu and θ̂r = θr. Therefore, by
analyzing simulation results, we know that the proposed
motion control scheme can complete that the states con-
verge to the desired time-invariant targets while ensuring

that the corresponding states remain within the predefined
time-varying safety constraint boundaries.

Case 2: In the second case, the desired values of the
surge speed, heading angle are ud = 30+2cos(0.02t) and
ψd = 39+ cos(0.01t), respectively. The boundaries of the
state constraint are kuL = 26, kψH = 43, and krH = 1.5.
Then the control laws and the desired yaw angular velocity
become the following form:

τu = m0

(
−kueu− vr− FxD0

m0
− Θ̂

T
u fu

−u2− k2
uL

u2 lud u̇d

)
, (65)

τr = Jz0

(
−krer−

MzD0

Jz0
− Θ̂

T
r fr +

k2
rH − r2

k2
rH

lrd ṙd

−k2
rH − r2

k2
rH

k2
ψHeψ cosφ

k2
ψH −ψ2

)
, (66)

rd =

(
−kψ eψ +

k2
ψH − v2

k2
ψH

lψd ψ̇d

)/
cosφ . (67)

The above control scheme is analogous to those in [24],
which only completes time-invariant constraints on sys-
tem states. However, the proposed scheme can ensure the
time-varying constraint on states in this paper.

The simulation results of Case 2 are presented in Figs.
8-12. In Figs. 8-10, the desired time-varying targets ud ,
ψd , and time-varying virtual control law rd can be tracked
by the corresponding states in ideal accuracy. Consider-
ing safety navigation, the surge speed can be constrained
above the resistance hump speed kuL, the heading and
the yaw angular velocity never surpass the correspond-
ing time-invariant safety boundaries kψH and krH , respec-
tively. In Fig. 11, the control inputs are given. From the
adaptive updating laws (24), (53) and Fig. 12, we know

Fig. 8. Tracking performance and tracking error of the
surge speed under Case 2.
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Fig. 9. Tracking performance and tracking error of the
heading angle under Case 2.

Fig. 10. Tracking performance and tracking error of the
yaw angular velocity under Case 2.

Fig. 11. Control input under Case 2.

Fig. 12. Parameter estimation performance under Case 2.

that the adaptive parameter estimation performance has a
large deviation due to the large state tracking errors eu and
er in the initial tracking stage. After 10 seconds, the adap-
tive parameters basically achieved tracking the desired set-
ting values, namely, we have that θ̂u = θu and θ̂r = θr.
According to the above analysis, we can summarize that
the motion control system designed in this paper can real-
ize the system states move along the desired time-varying
targets while making the corresponding states stay always
within the considered time-invariant safety limits.

Case 3: In the third case, the desired values of the
surge speed and heading angle are ud = 30+2cos(0.02t)
and ψd = 39 + cos(0.01t), respectively. The boundaries
of the state constraint are kuL = sin(0.02t) + 26, kψH =
43 + cos(0.03t), and krH = 15/8− u2/800. The control
laws and the desired yaw angular velocity are expressed
by (26), (52) and (40), respectively. The simulation results
of Case 4 are presented in Figs. 13-17. In Figs. 13-15, the
system states of the hovercraft have been able to move ac-
curately along desired time-varying target trajectories ud ,
ψd and the virtual time-varying stability function rd . At
the same time, the time-varying constraints on the surge
speed guaranteeing the lowest safety boundary never be
violated, the heading of the hovercraft is always kept in
the pre-specified time-varying safety range and the yaw
angular velocity remains within the time-varying safety
boundary as well. The control inputs are shown in Fig. 16.
From the adaptive updating laws (24), (53) and Fig. 17, we
know that the adaptive parameter estimation performance
has a large deviation due to the large state tracking errors
eu and er in the initial tracking stage. After 10 seconds,
the adaptive parameters basically achieved tracking the
desired setting values, namely, we have that θ̂u = θu and
θ̂r = θr. Accordingly, the simulation results can be sum-
marized as the control laws (23), (52) and (40) designed
in this paper can realize that the system states track accu-
rately the desired time-varying targets while ensuring that
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Fig. 13. Tracking performance and tracking error of the
surge speed under Case 3.

Fig. 14. Tracking performance and tracking error of the
heading angle under Case 3.

Fig. 15. Tracking performance and tracking error of the
yaw angular velocity under Case 3.

Fig. 16. Control input under Case 3.

Fig. 17. Parameter estimation performance under Case 3.

the corresponding states are constrained always within the
considered time-varying safety boundaries.

5. CONCLUSION

This study aims at developing an adaptive safety mo-
tion control schemes for a hovercraft with multiple safety
constraints and model uncertainties. The surge speed has
been constrained effectively to exceed always the resis-
tance hump speed by virtue of the improved iBLF-based
control method. By introducing the time-varying iBLF,
the yaw angular velocity is successfully constrained to
the interior of a time-varying safety boundary relating the
surge speed to perform the safety turning under the high
surge speed, as well as the heading is limited within the
pre-specified safety region. And the model uncertainties
are handled very well by designing an adaptive parameter
approximation algorithm. Three different simulations are
completed to verify the effectiveness and universality of
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the proposed control schemes.
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