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Output Feedback Stabilization for a Class of Cascade Nonlinear ODE-
PDE Systems
Yanjie Chang, Tongjun Sun, Xianfu Zhang* � , and Xiandong Chen

Abstract: In this paper, the output feedback stabilization problem is studied for a class of cascade nonlinear ODE-
PDE systems. The nonlinear terms of ODE-subsystem are assumed to be bounded by a known constant multiplied
by unmeasured states, and PDE-subsystem is a diffusion equation. Especially, the unstable diffusion equation is
considered. Based on the low gain observer and a series of transformations, the output feedback stabilization prob-
lem is converted into designing proper gain parameters. Furthermore, the stability of the closed-loop system is
analyzed by Lyapunov theorem. Finally, two numerical examples are given to demonstrate the effectiveness of the
proposed control strategy.
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1. INTRODUCTION

The actuator is an important component of a control
system. In many cases, for achieving high control accu-
racy, the actuator dynamics cannot be neglected. There are
many practical problems that actuator dynamics are dom-
inated by partial differential equations (PDEs). For exam-
ple, due to high temperature, a controller cannot be di-
rectly set into the plant. Then, a thermal conductivity body
can be used to transfer heat and control the ordinary dif-
ferential equations (ODEs) [1]. Furthermore, some practi-
cal problems can be modeled as a cascade ODE-PDE sys-
tem, such as the stefan problem [2]. Therefore, the cascade
systems with PDEs as subsystems receive much attention.
The study of stabilization problem for PDEs [3–8] pro-
vided the foundation for research on stabilization of cas-
cade systems.

In recent decades, stabilization of cascade systems con-
sisting of ODE and PDE has been widely studied. The
state feedback stabilization problem for linear ODE sys-
tems with actuator dynamics described by a heat equation
and a wave equation was studied in [9, 10]. They were the
early articles on cascade systems. The state feedback sta-
bilization problem, the sliding mode control problem and
the output feedback stabilization problem for linear ODE-
PDE systems subject to disturbance were investigated in
[11–13], respectively. Output feedback stabilization based

on output signal of cascade systems is more practical and
has received much attention, see [12–15].

Nonlinear ODE systems have been the main research
object of stabilization problem, see [16–18]. Thus, the
study of stabilization problem for nonlinear ODE-PDE
system has great significance. In recent five years, prelim-
inary research achievements have been obtained for non-
linear ODE-PDE systems. Under the assumption of input-
to-state stability, the stabilization problem for ODE with
actuator dynamics governed by transport and quasilinear
hyperbolic was studied in [19, 20]. The problem of state-
observation for cascade lower-triangular nonlinear ODE-
PDE systems was studied in [21–23]. In these papers, the
high gain technique, which is used to construct observer
and controller of triangular nonlinear systems [24–28],
played a key role in solving the problem.

In the hope of enriching the research on cascade non-
linear ODE-PDE systems, this paper studied the output
feedback stabilization problem for the feedforward non-
linear system with actuator dynamics governed by the dif-
fusion equation. A low gain observer is designed for the
ODE subsystem and an output feedback controller is con-
structed by using the transformations step by step to make
the feedforward ODE-PDE system globally exponentially
stable. Compared with the existing results, the contribu-
tions of this paper are as follows:
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• There were a few achievements on stabilization prob-
lem for cascade nonlinear ODE-PDE systems [19,
20]. This paper studies the stabilization problem for
cascade system consisting of feedforward nonlinear
system and diffusion equation for the first time.

• First, two state transformations are applied to ODE
subsystem and PDE subsystem to handle unsta-
ble subsystems, respectively. Second, a backstepping
transformation with simple form is used to design
the boundary controller, which makes the closed-loop
system is globally exponentially stable. Compared
with [1], the backstepping transformation we used
and the designed controller are more simple.

• Compared with [21–23], which focused on the ob-
server design problem for cascade lower-triangular
ODE-PDE system, there are two points of particular-
ities in this paper. On the one hand, we focus on the
stabilization problem for cascade feedforward nonlin-
ear ODE-PDE system. On the other hand, the unsta-
ble diffusion subsystem is considered in this paper,
and there is no restriction on the length of the PDE
domain.

The rest of the paper is organized as follows: In Section
2, the original cascade system is proposed, and some im-
portant lemmas are presented. The observer and observer-
based controller are designed in the section 3. The main
theorem is presented in the section 4. Finally, two numer-
ical examples are given to demonstrate the present results.

Notations: In this paper, Rn is the n dimensional real
space and Rn×m is n×m real matrix space. The corre-
sponding Euclidean norm of these two spaces is ‖·‖. Su-
perscript T is used to represent the transposition of ma-
trices. In denote n dimension identity matrix. 0 represent
zero matrix with proper dimension. For a symmetric ma-
trix P ∈ Rn×n, λmax(P) and λmin(P) denote the largest
eigenvalue and the smallest eigenvalue of P, respectively.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider the cascade system consisting of a finite-
dimensional nonlinear ordinary differential system and a
diffusion partial differential system. The nonlinear ODE-
PDE system is described by the following equations:

Ẋ(t) = AX(t)+Bu(0, t)+ f (X(t)),

ut(x, t) = uxx(x, t)+µu(x, t),

ux(0, t) = 0,

ux(1, t) =U(t),

X(0) = X0,

u(x,0) = u0(x),

y(t) = (CX(t),u(1, t)),

(1)

where A =

(
0T In−1

0 0

)
∈Rn×n, 0 =

(
0 . . . 0

)
∈R1×n−1,

B =
(

0 . . . 0 1
)T ∈ Rn×1, C =

(
1 0 . . . 0

)
∈ R1×n,

µ is a known constant, the states Xi(t), i = 2, . . . ,n and
u(x, t),0 < x < 1 are unmeasurable, U(t) is the boundary
control input, the nonlinear terms fi, i = 1,2, . . . ,n−2 are
continuous unknown functions, and y(t) is the output sig-
nal. For this type of output, [12, 13, 31] investigated the
stabilization for a cascade heat PDE-ODE and wave PDE-
ODE subject to uncertain disturbance, respectively.

Assumption 1: For all X(t)∈Rn, there is a known con-
stant m such that

| fi(X(t))| ≤ m
n

∑
j=i+2
|X j(t)|,

and fn−1(X(t)) = fn(X(t)) = 0.

Remark 1: From Assumption 1, the system (1) can
be viewed as a feedforward nonlinear system ([26, 27])
with actuator dynamics governed by diffusion equation
([9, 11–13]). Compared with the global Lipschitz condi-
tion with f (0) = 0 in [21], the specific form of nonlinear
terms in this paper is unknown. Thus, the observer and
controller design can not use fi. Furthermore, Assumption
1 contains more forms of nonlinear terms. For example,
fi = cos(Xi+2)Xi+2, when Xi+2 ∈ (−∞,+∞).

Lemma 1 [27]: There exist real numbers a j,b j, j =
1,2, . . . ,n, and symmetric positive matrices P, Q satisfy-
ing the following inequalities:

PG+GT P≤−I, QJ+ JT Q≤−I,

where G = A+KC with K = (−a1 − a2 . . . − an)
T , and

J = A+BB̄ with B̄ = (−b1 −b2 . . . −bn).

Lemma 2 (Poincaré Inequality) [32]: For any function
w(x, t), continuously differentiable for x ∈ [0,1], the fol-
lowing inequalities hold:∫ 1

0
w2(x, t)dx≤ 2w2(1, t)+4

∫ 1

0
w2

x(x, t)dx,

and ∫ 1

0
w2(x, t)dx≤ 2w2(0, t)+4

∫ 1

0
w2

x(x, t)dx.

The objective in this paper is to construct an output
feedback controller to make the system (1) exponentially
stable. The controller can only use the measurable signals
and needs to stabilize the two subsystems.

3. OBSERVER AND OBSERVER-BASED
CONTROLLER DESIGN

The following observer and controller design are car-
ried out when µ > 0.
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3.1. Observer design
Using the low gain observer construction technique of

feedforward system ([26, 27]), the observer of the system
(1) is designed as,

˙̂X(t) = AX̂(t)+Bû(0, t)−ΩK(X1(t)− X̂1(t)),

ût(x, t) = ûxx(x, t)+µ û(x, t)+q1(x)[u(1, t)− û(1, t)],

ûx(0, t) = 0,

ûx(1, t) =U(t)+q0[u(1, t)− û(1, t)],
(2)

where K is given by Lemma 1, Ω= diag
(

1
τ
, 1

τ2 , . . . ,
1
τn

)
,

τ > 1 and q0 are two parameters to be designed, and q1(x)
is a function to be determined. It is clear that the observer
system (2) only depends on the output signal of the system
(1), see [13, 26, 28].

Remark 2: The observer (2) is a kind of formal ob-
server since it can estimate the states of system (1) only
for the specific controller (controller designed in this pa-
per). Under Assumption 1, the observer is common, by
which the problem of output feedback stabilization is ad-
dressed effectively, see [26, 28].

In order to analyze the observer performance, define
the state estimation errors as X̃ = Γ(X(t)− X̂(t)) and
ũ(x, t) = u(x, t)− û(x, t), where Γ = diag( 1

τn , . . . ,
1
τ
). Then

subtracting each equation of the observer system (2) from
the corresponding equation of the system (1), and using
the state transformation X̃ = Γ(X(t)− X̂(t)), the follow-
ing error system can be obtained easily:

˙̃X(t) =
1
τ
(A+KC)X̃(t)+

1
τ

Bũ(0, t)+F(X(t)),

ũt(x, t) = ũxx(x, t)+µ ũ(x, t)−q1(x)ũ(1, t),

ũx(0, t) = 0,

ũx(1, t) =−q0ũ(1, t),

(3)

where F(X(t)) =
(
− f1(X(t))

τn , . . . ,− fn−3(X(t))
τ2 , 0, 0

)T .
The following Volterra integral transformation is used

for the PDE subsystem:

ũ(x, t) = w̃(x, t)−
∫ 1

x
q(x,y)w̃(y, t)dy. (4)

Select the target cascade system consisting of ODE and
stable PDE as follows:

˙̃X(t) =
1
τ
(A+KC)X̃(t)+

1
τ

Bw̃(0, t)

− 1
τ

B
∫ 1

0
p(0,y)w̃(y, t)dy+F(X(t)),

w̃t(x, t) = w̃xx(x, t),

w̃x(0, t) = 0,

w̃x(1, t) =−c1w̃(1, t),

(5)

where c1 is a positive constant that can be selected arbi-
trarily. For the convenience of subsequent stability analy-
sis, c1 is selected to satisfy c1 ≥ 1 in this paper.

After calculation, the kernel function q(x,y) can be de-
signed to satisfy

qxx(x,y)−qyy(x,y) =−µq(x,y),

q(x,x) =−µ

2
x,

qx(0,y) = 0,

the solution of which is q(x,y) = −µy I1(
√

µ(y2−x2))√
µ(y2−x2)

. q1(x)

and q0 are designed as −qy(x,1)− c1q(x,1) and c1 +
µ

2 .

3.2. Observer-based controller design
To construct the controller, we need to define transfor-

mations of the observer system (2) and analyze it. Accord-
ing to the characteristic of the observer system (2), some
transformations of the ODE subsystem and the PDE sub-
system do not change the structure of the observer system
(2). Define transformations,

Ẑ(t) = ΓX̂(t), (6)

for the ODE subsystem and

ŵ(x, t) = û(x, t)−
∫ x

0
s(x,y)û(y, t)dy, (7)

for the PDE subsystem. Let kernel function s(x,y) satisfy
the following partial differential equation:

sxx(x,y)− syy(x,y) = µs(x,y),

s(x,x) =−µ

2
x,

sy(x,0) = 0,

the solution of which is s(x,y) = −µx I1(
√

µ(x2−y2))√
µ(x2−y2)

. Then

the observer system (2) can be converted into the follow-
ing system:

˙̂Z(t) =
1
τ

AẐ(t)+
1
τ

Bŵ(0, t)+
1
τ

DX̃(t),

ŵt(x, t) = ŵxx(x, t)+q1(x)w̃(1, t)

−
∫ x

0
s(x,y)q1(y)dyw̃(1, t),

ŵx(0, t) = 0,

ŵx(1, t) =U(t)+(c1 +
µ

2
)u(1, t)− c1û(1, t)

−
∫ 1

0
sx(1,y)û(y, t)dy,

with D =
(
−K 0n×(n−1)

)
.

Inspired by the transform idea in [21], the following
transformation

v̂(x, t) = ŵ(x, t)−ϕ(x)Ẑ(t), (8)
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is taken into account, where ϕ(x) is a vector function to
be derived later.

Remark 3: The backstepping transformation w(x, t) =
û(x, t) −

∫ x
0 q(x,y)û(y, t)dy + ϕ(x)Ẑ(t) is often used to

cope with the stabilization problem for cascade ODE-PDE
systems and boundary coupled systems ([1, 9, 33]). How-
ever, when the ODE-subsystem is a nonlinear system, the
kernel function of the invertible transformation is very dif-
ficult to be found. Thus, the transformation with the sim-
ple form (8) is used in this paper, which is invertible obvi-
ously.

Our goal now is to find the function ϕ(x) and controller
U(t) such that the observer system coincides with the fol-
lowing target system:

˙̂Z(t) =
1
τ
(A+BB̄)Ẑ(t)+

1
τ

Bv̂(0, t)+
1
τ

DX̃(t),

v̂t(x, t)=v̂xx(x, t)+(q1(x)−
∫ x

0
s(x,y)q1(y)dy)w̃(1, t)

− 1
τ

ϕ(x)BB̄Ẑ(t)− 1
τ

ϕ(x)Bv̂(0, t)

− 1
τ

ϕ(x)DX̃ ,

v̂x(0, t) = 0,

v̂x(1, t) =−c2v̂(1, t),
(9)

where B̄ is given in Lemma 1, and c2 is an arbitrary pos-
itive constant. The target systems (5) and (9) will be ver-
ified to be exponentially stable by choosing proper Lya-
punov functional.

After calculation, ϕ(x) is defined to satisfy the follow-
ing equations:

ϕ
′′(x) =

1
τ

ϕ(x)A, 0≤ x≤ 1,

ϕ(0) = B̄,

ϕ
′(0) = 0,

which expresses a second order ODE, and the explicit so-
lution is found as

ϕ(x) =
(

B̄ 0
)

e

 0 A
τ

I 0

x( I
0

)
.

Obviously, ϕ(x) is a bounded vector function, it is as-
sumed that ‖ϕ(x)‖ ≤M, with M = ‖B̄‖

√
ne
√

2n−1.
To satisfy the right boundary term of the system (9), the

controller is designed as,

U(t) =−(c1 +
µ

2
)u(1, t)+(c1− c2)û(1, t)

+ c2

∫ 1

0
s(1,y)û(y, t)dy+ c2ϕ(1)Ẑ(t)

+
∫ 1

0
sx(1,y)û(y, t)dy+ϕ

′(1)Ẑ(t). (10)

Remark 4: This type of controller structure is common
in many cascade ODE-PDE systems since the solution
to the differential equation that ϕ(x) satisfies is an expo-
nential function, see [9, 10]. Controller (10) contains two
parts, one is about states of PDE which is used to stabi-
lized the PDE subsystem, the other is about states of ODE
which can transfer to boundary u(0, t) by PDE subsystem
to stabilize the ODE subsystem.

4. MAIN RESULT

Based on the observer (2) and the controller (10), the
globally exponential stability analysis of the closed-loop
system is presented in this section.

Theorem 1: Under Assumption 1, there exists an out-
put feedback controller with the form (10), such that the
closed-loop system consisting of (1), (2) and (10) is glob-
ally exponentially stable.

Proof: Choose Lyapunov functional candidates for
the error system (5) and the observer system (9) as
V1 = X̃(t)T PX̃(t)+ a

2

∫ 1
0 w̃2(x, t)dx and V2 = Ẑ(t)T QẐ(t)+

1
2

∫ 1
0 v̂2(x, t)dx.
For analyzing the stability of the closed-loop system

consisting of (1), (2) and (10), the Lyapunov functional
candidate V = V1 +

1
τ
V2 is considered. Then, the deriva-

tive of V along (5) and (9) is obtained,

V̇ |(5)(9)

≤−1
τ
||X̃(t)||2− 1

τ2 ||Ẑ(t)||
2 +

2
τ2 Ẑ(t)T QDX̃(t)

+
2
τ

X̃(t)TPBw̃(0, t)−ac1w̃2(1, t)−a
∫ 1

0
w̃2

x(x, t)dx

+
1
τ

∫ 1

0
v̂(x, t)(q1(x)−

∫ x

0
s(x,y)q1(y)dy)dxw̃(1, t)

− 1
τ

∫ 1

0
v̂2

x(x, t)dx− 1
τ2

∫ 1

0
v̂(x, t)ϕ(x)DX̃(t)dx

− c2

τ
v̂2(1, t)− 2

τ
X̃(t)T PB

∫ 1

0
q(0,y)w̃(y, t)dy

+
2
τ2 Ẑ(t)T QBv̂(0, t)+2X̃(t)T PF(X(t))

− 1
τ2

∫ 1

0
v̂(x, t)ϕ(x)Bv̂(0, t)dx

− 1
τ2

∫ 1

0
v̂(x, t)ϕ(x)BB̄Ẑ(t)dx.

The nonlinear term is analyzed as follows:

||F(X(t))|| ≤ k
τ2 (||Ẑ(t)||+ ||X̃(t)||),

where k =m(n−1) and the above transformations of ODE
subsystem are applied to cope with X(t).

By Young’s inequality, one can have

|2X̃(t)T PF(X(t))|
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≤ (
2k
τ2 ||P||+

4k2

τ2 ||P||
2)||X̃(t)||2 + 1

4τ2 ||Ẑ(t)||
2.

Applying the Young’s inequality to cope with the cross
terms, the following estimations are obtained:∣∣∣∣ 2

τ2 Ẑ(t)T QDX̃(t)
∣∣∣∣≤ 1

4τ2 ||Ẑ(t)||
2+

4||QD||2

τ2 ||X̃(t)||2,∣∣∣∣ 2
τ2 Ẑ(t)T QBv̂(0, t)

∣∣∣∣≤ 4||QB||2

τ2 v̂2(0, t)+
1

4τ2 ||Ẑ(t)||
2,∣∣∣∣2τ X̃(t)T PBw̃(0, t)

∣∣∣∣≤ ||PB||2

τ2 ||X̃(t)||2 + w̃2(0, t),

∣∣∣∣− 1
τ2

∫ 1

0
v̂(x, t)ϕ(x)DX̃(t)dx

∣∣∣∣
≤ M||D||

2τ2

∫ 1

0
v̂2(x, t)dx+

M||D||
2τ2 ||X̃(t)||2,∣∣∣∣− 1

τ2

∫ 1

0
v̂(x, t)ϕ(x)Bv̂(0, t)dx

∣∣∣∣
≤ M

2τ2

∫ 1

0
v̂2(x, t)dx+

M
2τ2 v̂2(0, t),∣∣∣∣− 1

τ2

∫ 1

0
v̂(x, t)ϕ(x)BB̄Ẑ(t)dx

∣∣∣∣
≤ 2M2||BB̄||2

τ2

∫ 1

0
v̂2(x, t)dx+

1
8τ2 ||Ẑ(t)||

2,∣∣∣∣2τ X̃T PB
∫ 1

0
q(0,y)w̃(y, t)dy

∣∣∣∣
≤ ||PB||2

τ2 ||X̃ ||2 + k2
1

∫ 1

0
w̃2(x, t)dx,

and ∣∣∣∣1τ
∫ 1

0
v̂(x, t)(q1(x)−

∫ x

0
s(x,y)q1(y)dy)dxw̃(1, t)

∣∣∣∣
≤ 1

4τ2

∫ 1

0
v̂2(x, t)dx+ k2

2w̃2(1, t),

where k1 = max
y∈[0,1]

|q(0,y)| and k2 = max
x∈[0,1]

|q1(x)−
∫ x

0 s(x,y)

q1(y)dy|.
It is clear that w̃(0, t) = w̃(1, t) −

∫ 1
0 w̃x(x, t)dx and

v̂(0, t) = v̂(1, t)−
∫ 1

0 v̂x(x, t)dx, then the following useful
inequalities can be obtained by Schwarz inequality:

|w̃(0, t)|2 ≤ 2w̃2(1, t)+2
∫ 1

0
w̃2

x(x, t)dx,

|v̂(0, t)|2 ≤ 2v̂2(1, t)+2
∫ 1

0
v̂2

x(x, t)dx,

and from Lemma 2, one gets the following two inequali-
ties:

−
∫ 1

0
w̃2

x(x, t)dx≤ 1
2

w̃2(1, t)− 1
4

∫ 1

0
w̃2(x, t)dx,

−
∫ 1

0
v̂2

x(x, t)dx≤ 1
2

v̂2(1, t)− 1
4

∫ 1

0
v̂2(x, t)dx.

Then the the derivative of V along (5) and (9) can be
rewritten as follows:

V̇ |(5)(9) ≤−ν1||X̃(t)||2− 1
8τ2 ||Z(t)||

2−ν3

∫ 1

0
v̂2(x, t)dx

−ν4

∫ 1

0
v̂2

x(x, t)dx−ν2v̂2(1, t)−ν5w̃2(1, t)

−ν6

∫ 1

0
w̃2(x, t)dx−ν7

∫ 1

0
w̃2

x(x, t)dx,

(11)

where the coefficients νi, i = 1, . . . ,7, have the following
forms:

ν1=
1
τ
−

2k||P||+4k2||P||2+4||QD||2+2||PB||2+M||D||
2

τ2

ν2 =
c2

τ
− 8||QB||2 +M

τ2 − 1
4τ

,

ν3 =
1

8τ
− 1

4τ2 −
2M2||BB̄||2

τ2 − M
2τ2 −

M||D||
2τ2 ,

ν4 =
1

2τ
− 8||QB||2 +M

τ2 ,

ν5 =
5a
8
−2− k2

2, ν6 =
3a
16
− k2

1, ν7 =
a
4
−2.

From expressions of ν1, . . ., ν4, we can choose

τ =max
{

16k||P||+32k2||P||2+32||QD||2+16||PB||2

7

+
4M||D||

7
,

32||QB||2 +4M
4c2−1

, 16||QB||2 +2M,

4+32M2||BB̄||2 +8M(1+ ||D||)
}
, (12)

and from coefficients ν5, . . . ,ν7, one can choose

a = max
{

16
5

+
8k2

2

5
,16k2

1,8
}
. (13)

(12) and (13) make the seven coefficients non-negative.
It follows from (11) and (12) that

V̇ |(5)(9) ≤−
1

8τ
||X̃(t)||2− a

16

∫ 1

0
w̃2(x, t)dx

− 1
16τ

∫ 1

0
v̂2(x, t)dx− 1

8τ2 ||Ẑ(t)||
2

≤−βV,

where β = min
{

1
8τλmax(P)

, 1
8τλmax(Q) ,

1
8

}
, then we can ob-

tain

||X̃(t)||+ ||w̃(x, t)||+ ||Ẑ(t)||+ ||v̂(x, t)||

≤ 2
√

α1e−
β

2 t(||X̃(0)||+ ||w̃(x,0)||+ ||Ẑ(0)||
+ ||v̂(x,0)||), (14)
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where α1 =

max

{
λmax(P),

λmax(Q)
τ

, a
2 ,

1
2τ

}
min

{
λmin(P),

λmin(Q)

τ
, a

2 ,
1

2τ

} . (14) indicates that

systems (5) and (9) are exponentially stable at X̃(t) = 0,
w̃(x, t) = 0, Ẑ(t) = 0, and v̂(x, t) = 0.
From the above transformations, the following inequality
can be obtained:

||X(t)||+ ||u(x, t)||+ ||X̂(t)||+ ||û(x, t)||

≤ 6
√

α2e−
β

2 t(||X(0)||+ ||u(x,0)||+ ||X̂(0)||
+ ||û(x,0)||), (15)

and

α2 =α1 max
{

3||Γ−1||2 + p2M2, p1, p2
}

×max
{

3||Γ||2 +2M2||Γ||2, p3, p4
}
,

where p1 = 4 + 4 max
y∈[0,1]

∫ y
0 q2(x,y)dx, p2 = 12 +

12 max
y∈[0,1]

∫ 1
y l2(x,y)dx, p3 = 2 + 2 max

y∈[0,1]

∫ y
0 p2(x,y)dx, and

p4 = 4 + 4 max
y∈[0,1]

∫ 1
y s2(x,y)dx, with l(x,y) and p(x,y)

being the kernels of inverse transformation û = ŵ +∫ x
0 l(x,y)ŵ(y, t)dy and w̃ = ũ+

∫ 1
x p(x,y)ũ(y, t)dy.

It is clear that the closed-loop system consisting of (1),
(2) and controller (10) is globally exponentially stable. �

Remark 5: From Theorem 1, the closed-loop system is
globally exponentially stable, thus it has a unique solution.

Remark 6: As shown in the proof of Theorem 1, the
parameter τ and boundary damping are used to dominate
the nonlinearities and coupling terms. For any c1 ≥ 1 and
c2 > 0, if parameter τ is picked sufficiently large, the ob-
server, error system and controller converge.

Corollary 1: When µ ≤ 0, we can design the observer
and controller of the system (1) as follows:

˙̂X(t) = AX̂(t)+Bû(0, t)−ΩK(X1(t)− X̂1(t)),

ût(x, t) = ûxx(x, t)+µ û(x, t),

ûx(0, t) = 0,

ûx(1, t) =U(t)+ c1[u(1, t)− û(1, t)],
(16)

and

U(t) =−c1u(1, t)+ c1ϕ(1)Ẑ(t)+ϕ
′(1)Ẑ(t), (17)

where

ϕ(x) =
(

B̄ 0
)

e

 0 −µI + A
τ

I 0

x( I
0

)
.

The closed-loop system consisting of (1), (16) and con-
troller (17) is exponentially stable.

5. NUMERICAL EXAMPLES

In this section, we present two numerical examples to
demonstrate the effectiveness of the proposed output feed-
back controllers. Choose the trapezoidal method to dis-
cretize ODE-subsystem and the finite difference scheme
to discretize PDE-subsystem. Time and space steps are
taken as 0.001 and 0.05, respectively. A three-dimensional
nonlinear ODE-PDE system is

Ẋ1(t) = X2(t)+ω(t,X(t))X3(t),

Ẋ2(t) = X3(t),

Ẋ3(t) = u(0, t),

ut(x, t) = uxx(x, t)+µu(x, t),

ux(0, t) = 0,

ux(1, t) =U(t),

(18)

where |ω(t,X(t))| is bounded by a known constant ε , and
it is not difficult to verify that Assumption 1 holds.

Let µ = 5 in (18). By (2), the observer of (18) can be
designed as,

˙̂X1(t) = X̂2(t)+
0.6
τ

(X1(t)− X̂1(t)),

˙̂X2(t) = X̂3(t)+
0.7
τ2 (X1(t)− X̂1(t)),

˙̂X3(t) = û(0, t)+
0.2
τ2 (X1(t)− X̂1(t)),

ût(x, t)= ûxx(x, t)+5û(x, t)+
(

5(c1+1)
I1(
√

2(1−x2))√
2(1−x2)

+5
I2(
√

2(1− x2))

1− x2

)
(u(1, t)− û(1, t)),

ûx(0, t) = 0,

ûx(1, t) =U(t)+q0(u(1, t)− û(1, t)).
(19)

Assume that the initial conditions of the systems (18)
and (19) are X(0) = (−30 5 0.2)T , X̂(0) = (0 0 0)T ,
u(x,0) = x + 1

10 and û(x,0) = 0.1, x ∈ (0,1). Choosing
ε = 0.1 and Hurwitz coefficients b1 = 0.2, b2 = 1.2, and
b3 = 0.6, one can calculate that the value of τ is 276.0172.
We set c1 = 30 and c2 = 30 here, then q0 = 32.5 and the
following controller can be obtained:

U(t) =−32.5u(1, t)+30ϕ(1)
(

X̂1(t)
τ3

X̂2(t)
τ2

X̂3(t)
τ

)T

−
∫ 1

0

(
155

I1(
√

6(1−y2))√
6(1−y2)

+5
I2(
√

6(1−y2))

1−y2

)
× û(y, t)dy+ϕ

′(1)
(

X̂1(t)
τ3

X̂2(t)
τ2

X̂3(t)
τ

)T
.

(20)

The numerical results are depicted in the following five
pictures. Figs. 1, 2 and 3 show states and corresponding
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Fig. 1. The states X1 and X̂1 of the closed-loop system con-
sisting of (18), (19) and (20) with µ = 5.

Fig. 2. The states X2 and X̂2 of the closed-loop system con-
sisting of (18), (19) and (20) with µ = 5.

Fig. 3. The states X3 and X̂3 of the closed-loop system con-
sisting of (18), (19) and (20) with µ = 5.

observer states of the ODE-subsystem, and Figs. 4 and 5
present the state and observer state of the PDE-subsystem.
Figs. 1-5 validate our results clearly.

Let µ =−5 in (18), which is considered as a numerical
experiment of corollary. From (16), the observer of the
system (18) with µ =−5 is as follows:


˙̂X1(t) = X̂2(t)+

0.6
τ

(X1(t)− X̂1(t)),

˙̂X2(t) = X̂3(t)+
0.7
τ2 (X1(t)− X̂1(t)),

Fig. 4. The state u(x, t) of the closed-loop system consist-
ing of (18), (19) and (20) with µ = 5.

Fig. 5. The state û(x, t) of the closed-loop system consist-
ing of (18), (19) and (20) with µ = 5.

Fig. 6. The states X1 and X̂1 of the closed-loop system con-
sisting of (18), (21) and (22) with µ =−5.



˙̂X3(t) = û(0, t)+
0.2
τ2 (X1(t)− X̂1(t)),

ût(x, t) = ûxx(x, t)−5û(x, t),

ûx(0, t) = 0,

ûx(1, t) =U(t)+ c1(u(1, t)− û(1, t)).

(21)

Choosing c1 = 1, the controller (17) is as follows:

U(t) =−u(1, t)+ϕ(1)
(

X̂1(t)
τ3

X̂2(t)
τ2

X̂3(t)
τ

)T

+ϕ
′(1)

(
X̂1(t)

τ3
X̂2(t)

τ2
X̂3(t)

τ

)T
. (22)

Under the same initial condition and τ , the numerical re-
sults are shown in Figs. 6-10, which validate the effective-
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Fig. 7. The states X2 and X̂2 of the closed-loop system con-
sisting of (18), (21) and (22) with µ =−5.

Fig. 8. The states X3 and X̂3 of the closed-loop system con-
sisting of (18), (21) and (22) with µ =−5.

ness of the corollary.

Remark 7: Parameters c1 ≥ 1 and c2 > 0 can be cho-
sen arbitrarily. Then parameter q0 and function q1(x) can
be determined. τ is given in (12). In numerical examples,
we find two points. One is that the greater the parameter τ

is, the smaller the controller is and the longer the conver-
gence time is. The other is that, under µ ≤ 0, the control
performance is better when c1 is small.

6. CONCLUSIONS

This paper has studied output feedback stabilization
problem for the cascade feedforward nonlinear ODE-PDE
system, where the unstable diffusion PDE subsystem has
been considered. First, under a linear growth condition
(Assumption 1), low gain observers have been designed.
Two output feedback controllers have been constructed by
the transformations step by step. Second, the globally ex-
ponential stability of the closed-loop system has been ob-
tained by constructing proper Lyapunov functional.

Our work will be further studied from the following
three aspects: (i) Study the stabilization problem for tri-
angular nonlinear system with actuator described by other
types of PDE, such as second-order wave equation, Euler-
Bernoulli beam equation; (ii) Stabilization problem for
cascade triangular nonlinear ODE-PDE systems with dis-

Fig. 9. The state u(x, t) of the closed-loop system consist-
ing of (18), (21) and (22) with µ =−5.

Fig. 10. The state û(x, t) of the closed-loop system con-
sisting of (18), (21) and (22) with µ =−5.

turbance is still an open issue. (iii) Tracking problem for
cascade nonlinear ODE-PDE system or boundary coupled
system may be solved.
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