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Neural Network Observer Based Consensus Control of Unknown Nonlin-
ear Multi-agent Systems with Prescribed Performance and Input Quanti-
zation
Zhengqing Shi, Chuan Zhou* � , and Jian Guo

Abstract: This paper investigates the consensus tracking problem with predefined performances requirements for a
class of unknown nonlinear multi-agent systems with hysteresis quantizer and external disturbances under a directed
graph topology. Neural network observers are designed to estimate unmeasurable states and the the consensus track-
ing problem with performance requirements is transformed to a stabilization problem by prescribed performance
error transformation schemes. The novel consensus protocol can be applied to a more general class of nonlinear
multi-agent systems since the Lipschitz condition is avoided and state information is not required. It is strictly
proved that all signals in the closed-loop systems are cooperatively uniformly ultimately bounded and both the
transient and steady performances of the consensus tracking satisfy prescribed performance requirements. Finally,
two numerical examples are presented to validate the effectiveness of the proposed strategy.

Keywords: Dynamic surface control, input quantization, neural network observer, prescribed performance, un-
known nonlinear multi-agent system.

1. INTRODUCTION

Distributed consensus control for multi-agent systems
(MASs) has been one of the most significant research di-
rections due to the booming areas including satellite for-
mation flying, mobile robot system and so on. Various re-
cent results have been published for nonlinear MASs since
nonlinearities are essential in practical systems. Neural
networks and fuzzy logic systems are effective techniques
due to their inherent properties of ‘universal approxima-
tion’ for more general nonlinear dynamics of MASs. In
[1, 2], neural networks are utilized to approximate the
characteristics of unknown nonlinearities. Moreover, the
noise-induced uncertainty is addressed and noise-to-state
practical stability is proved in existing literature [3, 4].

From a practical point of view, measuring all states of
each agent is usually very difficult or impossible. There-
fore, it is of great significance to investigate the observer-
based consensus control protocol [5–7]. Neural network
observer based consensus tracking control problem is
studied in [8], by constructing the state observer and us-
ing backstepping techniques, the consensus tracking error
and the observer error converge to a neighborhood of the
origin. On the other hand, quantized control has received

a great deal of interests in the past several years due to its
potential in digital control systems [9–11].

It is worth noting that all the aforementioned papers
solely focus on the consensus problem of MASs, tran-
sient and steady performances of the consensus tracking
should be guaranteed to satisfy given performance indexes
[12–16] rather than only reaching a consensus of behavior.
For instances, the maximum overshoots is less than a pre-
scribed value, the convergence rate is greater than a pre-
scribed value given constant and the consensus tracking
error stays in an arbitrarily small residual set. Moreover,
the quantized control for nonlinear MASs with prescribed
performance has been considered in some existing works
[17, 18].

However, in existing results [17, 18], all states of fol-
lower agents are assumed to be available for nonlinear
MASs with quantized input and prescribed performance,
which is impractical for real applications. Moreover, some
output feedback quantized controllers have been designed
for MASs without considering prescribed performance
[19–21]. Besides, the design of state observer is also dif-
ficult points. The major challenges lies in how to design
consensus protocol meet the transient and steady perfor-
mance requirements for the nonlinear MAS under some
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non-negligible factors including estimation errors, quanti-
zation errors and external disturbances. To the best of our
knowledge, the observer-based consensus tracking control
for unknown MASs with prescribed performance and in-
put quantization has not been investigated in existing lit-
erature.

Motivated by the above observations, a neural network
observer-based distributed prescribed performance con-
trol protocol is designed for unknown nonlinear MASs
with quantized controller and external disturbances. Based
on radial basis function (RBF) neural networks, prescribed
performance bound error transformation techniques and
dynamic surface control schemes, the consensus condi-
tions and consensus protocol design procedures are given.
Then the main contributions are summarized as follows:

1) Compared with existing literature [17, 18], the pro-
posed consensus protocol for consensus tracking prob-
lem with prescribed performance requirements of MAS
with quantized controller utilizes only output information.
Meanwhile, in contrast to existing results [11–13], the de-
signed neural network observer does not require the un-
known nonlinear dynamics of agents satisfying Lipschitz
conditions. Therefore, the proposed consensus protocol
can be can be applied to a more general class of MASs
to solve the consensus tracking problem with prescribed
performance.

2) The proposed consensus protocol improves the con-
sensus tracking performance of nonlinear MAS. Different
from existing results about practical consensus [5–8], the
result in this paper can guarantee the convergence rate and
tracking error satisfying predefined indexes. Furthermore,
faster convergence rate and smaller consensus tracing er-
ror can be achieved by setting parameters of prescribed
performance functions.

The rest of this paper is organized as follows: Section
2 gives the problem formulation. In Section 3, the main
results are presented. Section 4 illustrates numerical ex-
amples. And section 5 concludes the whole paper.

Notations: Throughout this paper, R stands for the set
of real numbers. I is an identity matrix with approximate
dimensions. λmax (A) and λmin (A) denote the maximum
and minimum eigenvalues of A, respectively. A > 0 is the
matrix A is a positive definite matrix. ‖·‖ is the Euclidean
norm.

2. PROBLEM FORMULATION

Consider a nonlinear MAS consists of one leader agent
and m follower agents. The dynamics of follower agent i
is described as

ẋi j(t) = xi( j+1)(t)+ fi j (x̄i j(t))+di j(t),

i = 1,2, ...,m, j = 1,2, ...,ni−1,

ẋini(t) = Qi (ui(t))+ fini (xi(t))+dini(t),

yi(t) = xi1(t),

(1)

where xi j ∈ R, ui(t) ∈ R and yi(t) ∈ R are the state vari-
ables, input and output of follower agent i, Qi(ui(t)) is
the input quantization and fi j (·) is the unknown nonlin-
ear function. di j(t) is the external disturbance and satis-
fies |di j(t)| 6 d∗i j, where d∗i j is an unknown positive con-
stant. x̄i j(t) = [xi1(t),xi2(t), ...,xi j(t)]

T , xi = [xi1, ...,xini ]
T

and only the output yi(t) can be measured.
The communication topology among m follower

agents is described as a directed graph G(V,E,A).
V = {1,2, ...,m} is the nonempty set of agents, E =
{(i, j) |i, j ∈V} is the set of directed edges, and A= [ai j]⊆
Rm×m with ai j > 0 is the weighted adjacency matrix. If
agent i can access the information from agent j, then
(i, j) ∈ E and ai j > 0, otherwise, ai j = 0 if (i, j) /∈ E. Note
aii = 0. The in-degree of agent i is defined as di = ∑

m
j=1 ai j

and the in-degree matrix D = diag{di}. The Laplacian
matrix L is L = D−A. The set of neighbor agents of agent
i is denoted as Ni = { j ∈V |( j, i) ∈ E, j 6= i}. Define the
local consensus tracking error as

ỹi(t) =
m

∑
j=1

ai j(yi(t)− y j(t))+bi(yi(t)− yd(t)), (2)

where yd(t) is the trajectory of leader agent.
In order to ensure the transient and steady performances

of the local consensus tracking error ỹi(t) within the given
performance indexes, on the basis of performance require-
ments, choose the corresponding prescribed performance
function µi(t) for each follower agent i, which is a positive
monotonic decreasing smooth function. A general form of
the prescribed performance function is given as

µi(t) = (µi(0)−µi (∞))e−lit +µi (∞) , (3)

where µi (∞) > 0 is a constant and refers to the desired
steady state of local consensus tracking error for follower
agent i, and li > 0 is defined as the desired convergence
rate of local consensus tracking error. The following in-
equality should hold to ensure the given transient and
steady performance requirements.

−δ iµi(t)< ỹi(t)< δ̄iµi(t), (4)

where δ i ∈ (0,1] and δ̄i ∈ (0,1] are constants to be chosen
according to performance requirements.

Assumption 1: The leader’s output signal yd , ẏd and
ÿd are bounded, and only available to a part of follower
agents.

Assumption 2: The graph G contains a spanning tree
with the root node being the leader agent.

Remark 1: It should be noted that the follower agent
(1) is a more general system than that investigated in ex-
isting results [9–13], which is an unknown nonlinear sys-
tems with unmatched nonlinearities in control input and
does not satisfy Lipschitz conditions. Moreover, both As-
sumption 1 and Assumption 2 are common assumptions
in existing results.
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Remark 2: The prescribed performance functions rep-
resent the transient and steady performance requirements
of consensus behavior. In the traditional control frame-
work, it is difficult to design the control protocol that
satisfies performance requirements. By using prescribed
performance transformation, the consensus problem with
constraints is transformed to the stabilization problem,
which can be easily solved. The introduction of prescribed
performance functions not only ensures that the transient
and steady performance requirements are satisfied, but
also simplifies the design process.

For system (1), the following hysteresis quantizer de-
scribed in [9] is considered.

Qi(ui)

=



ui,hsgn(ui),
ui,h

1+gi
< |ui| ≤ ui,h, u̇i < 0,

or ui,h < |ui| ≤
ui,h

1−gi
, u̇i > 0,

ui,h(1+gi)sgn(ui), ui,h < |ui| ≤
ui,h

1−gi
, u̇i < 0,

or
ui,h

1−gi
< |ui| ≤

ui,h(1+gi)

1−gi
, u̇i > 0,

0, 0 < |ui| ≤
ui,min

1+gi
, u̇i < 0,

or
ui,min

1+gi
< |ui| ≤ ui,min, u̇i > 0,

Qi(ui(t−1)), otherwise,

(5)

where ui,h = ρ
1−h
i ui,min with h = 1,2, ...., 0 < ρi < 1 and

ui,min > 0 is the size of dead zone of Qi (·), gi =
1−ρi
1+ρi

.
The hysteresis quantizer can be decomposed into two

parts that a linear part and a nonlinear part as follows:

Qi (ui) = ui +Fi(ui),

where Fi(ui) = Qi (ui)−ui ∈ R.

Lemma 1 [9]: The nonlinear function fi satisfies the
following inequalities:

F2
i (ui)6 g2

i u2
i ,∀|ui|> ui,min,

F2
i (ui)6 u2

i,min,∀|ui|6 ui,min.

Lemma 2 [21]: For any positive constant σ and any
variable x, the following relationship holds:

06 |x|− x2
√

x2 +σ 2
< σ .

The objective of this paper is to design a consensus pro-
tocol for a class of unknown nonlinear MAS with hystere-
sis quantizer and external disturbances under a directed
graph topology to achieve consensus and meet the pre-
scribed performance requirements.

3. DESIGN OF OBSERVER AND PRESCRIBED
PERFORMANCE CONTROL PROTOCOL

In this section, a consensus protocol will be proposed
to achieve the consensus and guarantee prescribed perfor-
mances for the whole MAS. Since only output informa-
tion of each follower agent is available, neural network
state observers are designed to estimate states for follower
agents. Then the prescribed performance consensus proto-
col is designed based on dynamic surface control schemes.

According to the universal approximation property of
neural networks, RBF neural networks can be used to ap-
proximate unknown nonlinear functions. For any contin-
uous function f (z) defined on a compact set z ∈ Ωz ⊆ Rn

and any predefined accuracy ε̄ > 0, there exists

f (z) =W ∗T
Φ (z)+ ε (z) , (6)

where W ∗ = [W ∗
1 , ...,W

∗
N ]

T ∈ RN is the unknown ideal
weight vector and the approximation error |ε (z)| 6 ε̄ .
Φ (z) = [Φ1 (z) , ...,ΦN (z)]T ∈ RN is the basis vector cho-
sen as the Gaussian function, i.e.,

Φi (z) = exp
[
− (z−µi)

T (z−µi)
ηi

]
, (7)

where µi = [µi1, ...,µil ]
T is the center of the receptive field

and ηi is the width of the Gaussian function. Obviously,
the basis function is bounded, and there exists Φ̄i > 0 such
that ‖Φi (z)‖6 Φ̄i.

3.1. State observer design
The following neural network observer is designed to

estimate unmeasurable states of follower agent i described
as (1). For simplicity, the term ‘t’ is omitted in the follow-
ing sections.

˙̂xi j = x̂i( j+1)+Ŵ T
i j Φi j

(
ˆ̄xi j
)
+ li j (xi1− x̂i1) ,

i = 1,2, ...,m, j = 1,2, ...,ni−1,
˙̂xini = Qi (ui)+Ŵ T

ini
Φini (x̂i)+ lini (xi1− x̂i1) ,

(8)

where x̂i j is the estimation of xi j, ˆ̄xi j = [x̂i1, ..., x̂i j]
T and

x̂i = [x̂i1, ..., x̂ini ]
T . Since fi j (x̄i j) = W ∗T

i j Φi j (x̄i j)+ εi j (x̄i j)

with the unknown ideal weight vector W ∗
i j , we use Ŵi j to

approximate W ∗
i j . li j is the parameter to be chosen. Qi (ui)

is the quantized control input.
The estimation error is defined as

ei j = xi j− x̂i j. (9)

From (1) and (8), we have

ėi =Aicei +W̃ T
i Φi (x̂i)+W ∗T

i (Φi(xi)−Φi (x̂i))

+ εi(xi)+di, (10)
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where ei = [ei1, ei2, ..., eini ]
T , W̃i = diag{W̃i1, W̃i2, ...,

W̃ini}, Φi(xi) = [Φi1(xi,1)
T , Φi2(x̄i,2)

T , · · · , Φi,ni(x̄i,ni)
T ]T ,

Φi(x̂i) = [Φi1(x̂i,1)
T , Φi2( ˆ̄xi,2)

T , · · · , Φi,ni( ˆ̄xi,ni)
T ]T , and

Aic =


−li1 1 0 · · · 0
−li2 0 1 · · · 0

...
. . . . . .

...
−li,ni−1 · · · 0 1
−li,ni · · · 0

 .

Since W ∗T
i (Φi(xi)−Φi (x̂i)) + εi(xi) is bounded, there

exists ξ̄i > 0 such that ‖W ∗T
i (Φi(xi)−Φi (x̂i))+ εi(xi)‖ ≤

ξ̄i. The Lyapunov function candidate is chosen as

Vi0 = eT
i Piei, (11)

where Pi > 0. Since ‖Φi (x̂i)‖ 6 Φ̄i, by using Young’s in-
equality, we obtain

2eT
i Pi
(
W ∗T

i (Φi(xi)−Φi (x̂i))+ εi(xi)
)

≤ ci,01eT
i PiPei + c−1

i,01ξ̄
2
i , (12)

2eT
i Pidi ≤ ci,02eT

i PiPiei + c−1
i,02d∗2i , (13)

2eT
i Pi
(
W̃ T

i Φi (x̂i)
)

6 ci,03eT
i PiPiei + c−1

i,03Φ̄
2
i ∑

ni

j=1 W̃ T
i j W̃i j, (14)

where ci,01 > 0, ci,02 > 0 and ci,03 > 0. The time derivative
of Vi0 satisfies

V̇i0 ≤eT
i

(
PiAic +AT

icPi +(ci,01 + ci,02 + ci,03)PiPi
)

ei

+ c−1
i,01ξ̄

2
i + c−1

i,02d∗2i + c−1
i,03Φ̄

2
i ∑

ni

j=1 W̃ T
i j W̃i j. (15)

3.2. Prescribed performance control protocol design
According to the property (4), if we set ỹi = µiSi (εi)

and Si (εi) =
δ̄ieεi−δ ie

−εi

eεi+e−εi , since Si (εi) is strictly monotonic
increasing and its inverse function exists, i.e. S−1

i (ỹi/µi)=
1
2 ln δ i+ỹi/µi

δ̄i−ỹi/µi
. The transformed error is given as

si1 = S−1
i (ỹi/µi)−

1
2

ln
(
δ i/δ̄i

)
. (16)

From the above procedure, the consensus tracking prob-
lem is transformed into a stabilization problem described
as (16), if si1 is bounded, the given performance require-
ments of the consensus tracking error is satisfied and the
tracking consensus is achieved. Define ni error surfaces as
follows.

si1 = S−1
i (ỹi/µi)−

1
2

ln
(
δ i/δ̄i

)
,

si2 = x̂i2− v̄i2,

...

sini = x̂ini − v̄ini ,

i = 1,2, ...,m,

(17)

where v̄i j, j = 2, ..., ni is a stabilizing function and ob-
tained through a first-order filter with respect to the virtual
control vi j. The first-order filter is designed as

βi j ˙̄vi j + v̄i j = vi j, v̄i j(0) = vi j(0), (18)

where βi j > 0 is a parameter to be chosen.
The virtual control law vi j, j = 2, ..., ni for follower

agent i during the design procedure of prescribed perfor-
mance consensus protocol are constructed as follows:

vi2 =−
ki1

riqi
si1 +

1
qi

(
biẏd +

ỹiµ̇i

µi
+∑

m
j=1 ai j x̂ j2

)
− 1

riqi

(
ci11 + ci12 + ci13 + ci14 + ci17

2
(riqi)

2

+
ci15 + ci16

2
mr2

i

)
si1−Ŵ T

i1 Φi1 (x̂i1)

− M̂T
i Ψi (χi) ,

vi3 =−
(

ki2 +
ci21 + ci22

2

)
si2− riqisi1

+ li2 (xi1− x̂i1)+ ˙̄vi2,

vi( j+1) =−
(

ki j +
ci j1 + ci j2

2

)
si j− si( j−1)

+ li j (xi1− x̂i1)+ ˙̄vi j,

(i = 1,2, ...,m; 36 j 6 ni−1),
(19)

where ci1k > 0,k = 1,2, ...,7, ci jk > 0, j = 2, ...,ni,k = 1,2,
ki1 > 0 and ki j > 0 are parameters to be chosen later, and
Ŵi, M̂i and ϖi will be defined later. The actual control law
is constructed as

ui =−
sini ϖ

2
i

(1−gi)
√

s2
ini

ϖ2
i +σ 2

. (20)

Remark 3: The parameters li and µi (∞) of the pre-
scribed performance functions are chosen according to the
transient and steady performance requirements, where li is
associated with the convergence rate and µi (∞) is related
to the consensus tracking errors. Larger li will bring faster
convergence rates and smaller µi (∞) will bring smaller
consensus tracking errors, thus better transient and steady
performances will be achieved by setting parameters of
prescribed performance functions. However, too large li or
too small µi (∞) will bring other threatens to the systems.
Therefore, it is important to choose appropriate parame-
ters of the prescribed performance functions.

Theorem 1: Consider nonlinear MAS (1) under As-
sumption 1 and Assumption 2, if there exists a ma-
trix Pi = PT

i > 0 and Qi > 0 such that PiAic + AT
icPi +

(ci01 + ci02 + ci03)PiPi +
(

1
2ci11

+∑
m
j=1

a2
ji

2c j15

)
I < −Qi for ∀

i = 1, 2, ..., m, the adaptive laws are given as (23), (24),
(41) and (48), and the control is given by (20), then all sig-
nals of the closed loop system are bounded and the local
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consensus tracking error ỹi satisfies the prescribed perfor-
mance requirements.

Proof: Step 1: The Lyapunov function is chosen as

Vi1 =
1
2

s2
i1 +

1
2ϑi1

W̃ T
i1 W̃i1 +

1
2ψi1

M̃T
i M̃i +

1
2

z2
i2 (21)

where M̃i = M∗i − M̂i, W̃i1 = W ∗
i1−Ŵi1, ψi1 > 0, ϑi1 > 0.

zi2 = v̄i2− vi2 and M̂i is the estimation weight vector of
M∗i .

From (1), (16), the definition of ei2, zi2 and e j2, the time
derivative of the first error surface is given as

ṡi1 =ri
(
qi(si2+ei2+vi2+zi2+ fi1(x̂i1)+Γi(χi)+di1)

−
m

∑
j=1

ai j(x̂ j2 + e j2 +d j1)−biẏd−
ỹiµ̇i

µi

)
, (22)

where qi = ∑
m
j=1 ai j + bi, ri =

1
2

[
1

ỹi+δ iµi
− 1

ỹi−δ̄iµi

]
with

−δ iµi(0)< ỹi(0)< δ̄iµi(0), Γi (Xi) = fi1 (xi1)− fi1 (x̂i1)−
∑

m
j=1 ai j f j1(x j1)

qi
and Xi = [xi1, x̂i1,x j1] ,∀ j ∈ Ni.

Construct RBF neural networks to approximate fi1

and Γi (χi) such that fi1 (x̂i1) = W ∗T
i1 Φi1 (x̂i1) + εi1 (x̂i1),

Γi (χi) = M∗Ti Ψi (χi) + τi (χi), W ∗
i1 and M∗i are unknown

weight vectors, and there exists τ̄i > 0 such that ‖τi(χi)‖≤
τ̄i. The Ψ(·) is a Gaussian function defined as (7), and the
adaptive laws of M̂i and Ŵi1 are designed as

˙̂Mi = ψiriqisi1Ψi (χi)− γiM̂i, (23)
˙̂Wi1 = ϑi1riqisi1Φi1 (xi1)−ηi1Ŵi1. (24)

We define the compact set Ωi2 =
{

∑
m
j=1(e

T
j Pje j +

1
2 s2

j1+
1
2 s2

j2+
1
2 z2

j2+
1
2W̃ T

j1W̃j1+
1
2W̃ T

j2W̃j2+
1
2 M̃T

j M̃ j)6 µ

}
and Π = {y2

d + ẏ2
d + ÿ2

d 6 R}, where µ , R are constants.
From (18), we have

żi2 =−
zi2

βi2
+Bi2, (25)

where Bi2 =−v̇i2 is a continuous function and has a max-
imum B̄i2 over Ωi2×Π . By using Young’s inequality, we
have

si1riqiei,2 ≤
ci11

2
(riqi)

2 s2
i1 +

e2
i2

2ci11
, (26)

si1riqiτi (χi)≤
ci12

2
(riqi)

2 s2
i1 +

τ̄2
i

2ci12
, (27)

si1riqiεi1 (x̂i1)6
ci13

2
(riqi)

2 s2
i1 +

ε̄2
i1

2ci13
, (28)

si1riqidi1 ≤
ci14

2
(riqi)

2 s2
i1 +

d∗2i1

2ci14
, (29)

− si1ri

m

∑
j=1

ai je j2 ≤
ci15

2
mr2

i s2
i1 +

1
2ci15

m

∑
j=1

a2
i je

2
j2, (30)

− si1ri

m

∑
j=1

ai jd j1 ≤
ci16

2
mr2

i s2
i1 +

1
2ci16

m

∑
j=1

a2
i jd
∗2
j1 , (31)

si1riqizi2 6
ci17

2
(riqi)

2 s2
i1 +

1
2ci17

z2
i2, (32)

zi2B̄i2 6
1

2ci18
z2

i2 +
ci18

2
B̄2

i2, (33)

where ci1k > 0, k = 1,2, ...,8. From the definition of vi2 in
(19), the time derivative of Vi1 is

V̇i1 6− ki1s2
i1−

γi

2ψi
M̃T

i M̃i−
ηi1

2ϑi1
W̃ T

i1 W̃i1

+

(
1

2ci17
+

1
2ci18

− 1
βi2

)
z2

i2 +
eT

i ei

2ci11

+
∑

m
j=1 a2

i je
T
j e j

2ci15
+

τ̄2
i

2ci12
+

ε̄2
i1

2ci13
+

d∗2i1

2ci14

+
1

2ci16
∑

m
j=1 a2

i jd
∗2
j1 +

ci18

2
B̄2

i2 + si1riqisi2

+
γi

2ψi
M∗Ti M∗i +

ηi1

2ϑi1
W ∗T

i1 W ∗
i1. (34)

Choose positive parameters ηi1, ϑi1, βi2, ci03, ci17 and
ci18 such that ηi1

2ϑi1
− c−1

i03Φ̄i > 0 and 2
βi2
− 1

ci17
− 1

ci18
> 0.

Step jjj (2 ≤ j < ni): The Lyapunov function candidate
is chosen as

Vi j =
1
2

s2
i j +

1
2ϑi j

W̃ T
i j W̃i j +

1
2

z2
i( j+1), (35)

where W̃i j = W ∗
i j −Ŵi j and zi( j+1) = v̄i( j+1)− vi( j+1). The

time derivative of si j is

ṡi j =si( j+1)+ vi( j+1)+ zi( j+1)+Ŵ T
i j Φi j

(
ˆ̄xi j
)

+ li j (xi1− x̂i1)− ˙̄vi j. (36)

We define the compact set Ωi( j+1) = {∑m
k=1[e

T
k Pkek +

∑
j+1
l=1 (

1
2 s2

kl +
1
2W̃ T

kl W̃kl)+∑
j+1
f=2(

1
2 z2

k f )+
1
2 M̃T

k M̃k]6 µ}, µ >
0 is a constant. From (18), we have

żi( j+1) =−
zi( j+1)

βi( j+1)
+Bi( j+1), (37)

where Bi( j+1) = v̇i( j+1) is a continuous function and has
a maximum B̄i( j+1) over Ωi( j+1)×Π . By using Young’s
inequality, we have

si jzi( j+1) 6
ci j1

2
s2

i j +
1

2ci j1
z2

i( j+1), (38)

si jW ∗T
i j Φi j

(
ˆ̄xi j
)
6

ci j2

2
s2

i j +
1

2ci j2
Φ̄

2
i W ∗T

i j W ∗
i j, (39)

zi( j+1)Bi( j+1) 6
ci j3

2
z2

i( j+1)+
1

2ci j3
B̄2

i( j+1), (40)

where ci j1, ci j2 and ci j3 are positive parameters.
The adaptive law of estimation vector Ŵi j is chosen as

˙̂Wi j =−ϑi jsi jΦi j
(

ˆ̄xi j
)
−ηi jŴi j, (41)
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where ϑi j > 0 and ηi j > 0 are design parameters. From the
Lyapunov function (35) and the virtual control law (19), if
j = 2, then

V̇i j 6si jsi( j+1)− ki js2
i j− riqisi jsi( j−1)

−
(

1
βi( j+1)

− 1
2ci j1

−
ci j3

2

)
z2

i( j+1)−
ηi j

2ϑi j
W̃ T

i j W̃i j

+
1

2ci j3
B̄2

i( j+1)+

(
1

2ci j2
Φ̄

2
i +

ηi j

2ϑi j

)
W ∗T

i j W ∗
i j.

(42)

If j = 3, ..., ni−1, then

V̇i j 6si jsi( j+1)− ki js2
i j− si jsi( j−1)

−
(

1
βi( j+1)

− 1
2ci j1

−
ci j3

2

)
z2

i( j+1)−
ηi j

2ϑi j
W̃ T

i j W̃i j

+
1

2ci j3
B̄2

i( j+1)+

(
1

2ci j2
Φ̄

2
i +

ηi j

2ϑi j

)
W ∗T

i j W ∗
i j.

(43)

Step ninini: The Lyapunov function candidate is chosen as

Vini =
1
2

s2
ini
+

1
2ϑini

W̃ T
ini

W̃ini , (44)

where W̃ini =W ∗
ini
−Ŵini . Let

ϖi =si(ni−1)+

(
kini +

1
2cini

)
sini + lini (xi1− x̂i1)

− ˙̄vini +
u2

iminsini√
u2

imin |sini |
2 +σ 2

. (45)

The time derivative of sini is transformed into

ṡini =ui +Fi (ui)−W̃ T
ini

Φini (x̂i)+W ∗T
ini

Φini (x̂i)

−
(

kini +
1

2cini1

)
sini − si(ni−1)

− u2
iminsini√

u2
imin |sini |+σ 2

+ϖi. (46)

From Lemma 1, we have

sini Fi (ui)6−gisini ui +uimin |sini | . (47)

The adaptive law Ŵini is chosen as

˙̂Wini =−ϑini sini Φini (x̂ini)−ηiniŴini , (48)

where ϑini > 0 and ηini > 0 are design parameters. From
the control law (20), the time derivative of Vini is

V̇ini 6− kini s
2
ini
− si(ni−1)sini −

ηini

2ϑini

W̃ T
ini

W̃ini

+

(
cini1

2
Φ̄

2
i +

ηini

2ϑini

)
W ∗T

ini
W ∗

ini
+2σ . (49)

The overall Lyapunov function for follower agent i is
chosen as

Vi =Vi0 +∑
ni

j=1 Vi j. (50)

The time derivative of (50) is

V̇i6eT
i

(
PiAic+AT

icPi+(ci01+ci02+ci03)PiPi+
eT

i ei

2ci11
I
)

ei

+
∑

m
j=1 a2

i je
T
j e j

2ci15
+

(
c−1

i03Φ̄
2
i −

ηi1

2ϑi1

)
∑

ni

j=1 W̃ T
i j W̃i j

− γi

2ψi
M̃T

i M̃i−
ni

∑
j=1

ki js2
i j−
(

1
βi2
− 1

2ci17
− 1

2ci18

)
z2

i2

−
ni−1

∑
j=2

(
1

βi( j+1)
− 1

2ci j1
−

ci j3

2

)
z2

i( j+1)

+c−1
i01ξ̄

2
i +c−1

i02d∗2i +
τ̄2

i

2ci12
+

ε̄2
i1

2ci13
+

d∗2i1

2ci14

+
1

2ci16

m

∑
j=1

a2
i jd
∗2
j1+

ci18

2
B̄2

i2+
γi

2ψi
M∗Ti M∗i

+
ni−1

∑
j=2

(
1

2ci j3
B̄2

i( j+1)+

(
1

2ci j2
Φ̄

2
i +

ηi j

2ϑi1

)
W ∗T

i j W ∗
i j

)
+

ηi1

2ϑi1
W ∗T

i1 W ∗
i1+

(
cini1

2
Φ̄

2
i +

ηini

2ϑini

)
W ∗T

ini
W ∗

ini
+2σ .

(51)

For the whole MAS, the Lyapunov function is chosen
as

V (t) = ∑
m
i=1 Vi(t). (52)

From (51), we have

V̇ (t) = ∑
m
i=1 V̇i(t)6−ζV +∆ , (53)

where ζ = min{ λmin(Qi)
λmax(Pi)

, ηi1
ϑi1
− 2c−1

i03Φ̄2
i ,2ki j, 2

βi( j+1)
−

1
ci j1
− ci j3, 2

βi( j+1)
− 1

ci j7
− 1

ci j8
, γi1

ψi1
}, ∆ = ∑

m
i=1(c

−1
i01ξ̄ 2

i +

c−1
i02d∗2i + τ̄2

i
2ci12

+
ε̄2

i1
2ci13

+
d∗2i1

2ci14
+ 1

2ci16
∑

m
j=1 a2

i jd
∗2
j1 + ci18

2 B̄2
i2 +

γi
2ψi

M∗Ti M∗i +∑
ni−1
j=2 (

1
2ci j3

B̄2
i( j+1)+

(
1

2ci j2
Φ̄2

i +
ηi j

2ϑi1

)
W ∗T

i j W ∗
i j)

+ ηi1
2ϑi1

W ∗T
i1 W ∗

i1 +(
cini1

2 Φ̄2
i +

ηini
2ϑini

)W ∗T
ini

W ∗
ini
+2σ).

Let ζ > ∆/µ , V̇ (t)6 0 on V (t) = µ . Thus, V (t)6 µ is
an invariant set, i.e., if V (0) 6 µ , then V (t) 6 µ , ∀t > 0.
Therefore, all signals in the closed-loop systems are coop-
erative semi-globally uniformly ultimately bounded. Then
we have

s2
1 6 2V (t)6 2e−ζ tV (0)+

2∆

ζ

(
1− e−ζ t

)
, (54)

which means ‖s1‖1 6
√

2e−ζ tV (0)+ 2∆

ζ

(
1− e−ζ t

)
, s1 =

[s11, s21, ..., sm1]
T . Since limt→∞ e−ζ t = 0, limt→∞‖s1‖1 6√

2∆

ζ
. From the aforementioned analysis, we know that

the local consensus tracking error satisfy the given perfor-
mance requirements (4). �
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4. NUMERICAL EXAMPLES

In this section, we will give two numerical examples to
validate the effectiveness of the designed control protocol.

Example 1: A two-order nonlinear MAS is consid-
ered, the communication graph of the considered nonlin-
ear MAS is shown in Fig. 1 and the dynamics of the fol-
lower agent is described in (55).

ẋi1(t) = xi2(t)+ fi1 (xi1, t)+di1(t),

ẋi2(t) = Qi (ui)+ fi2 (xi1,xi2, t)+di2(t),

yi(t) = xi1(t),

(55)

where fi1(xi1, t) =− xi1(t)
1+x2

i1(t)
, fi2(xi1,xi2, t) = x2

i1(t)+xi2(t),
di1(t) =−0.9sin(t) and di2(t) = 0.9cos(t).

The dynamics of the leader agent is described as yd =
sin(t), the performance functions are chosen as µi(t) =
2e−5t +0.25 and δ i = δ̄i = 1.

The initial states of the four follower agents are cho-
sen as x1(0) = [0.1, 0.1]T , x2 = [0.2, 0.2]T , x3(0) = [0.3,
0.3]T , x4(0) = [0.4, 0.4]T . ci01 = ci02 = ci03 = ci11 = · · ·=
ci18 = ci21 = ci22 = ci23 = 1, ∀i∈ {1, 2, 3, 4}. The parame-
ters of the neural network observer are chosen as li1 = 10,
li2 = 20, ∀i∈{1, 2, 3, 4}. The parameters of the neural net-
works are selected as ηi1 = ηi2 = 10, ϑi1 =ϑi2 = 0.01, and
γi = ψi = 1,∀i ∈ {1, 2, 3, 4}. k11 = 12, k12 = 0.5, k21 = 3,
k22 = 2, k31 = 1, k32 = 3, k41 = 0.4, k42 = 3. The design
parameters of the first-order filter are βi1 = βi2 = 0.01,
∀i ∈ {1, 2, 3, 4}. By using schur complement lemma and
LMI toolbox, the symmetric and positive definite matrix
Pi for each agent i is

Pi =

[
6.2410 −2.2854
−2.2854 1.2177

]
. (56)

The simulation results are shown in Figs. 2-3, Fig. 2
depicts the trajectory of yi, Fig. 3 depicts the trajectory of
local consensus tracking error ỹi. From these figures, we
can see the output signals of all follower agents converge
to the leader and the consensus is achieved, furthermore,
the local consensus tracking error signals ỹi satisfy the per-
formance requirements.

Example 2: In order to further illustrate the effective-
ness of the designed control protocol, a three-order non-
linear MAS is considered that consists of one leader agent
and four follower agents. The communication graph is
given in Fig.4, and the dynamics of the follower agent is
described as

ẋi1(t) = xi2(t)+ fi1 (xi1(t))+di1(t),

ẋi2(t) = xi3(t)+ fi2 (xi1(t),xi2(t))+di2(t),

ẋi3(t) = Qi(ui(t))+ fi3(xi1(t),xi2(t),xi3(t))+di3(t),

yi(t) = xi1(t),
(57)

0 1 2

34

1 1

1 1
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where fi1(xi1(t))=sin(xi1(t)), fi2(xi1(t),xi2(t))=sin(xi1(t)
+xi2(t)), fi3(xi1(t),xi2(t),xi3(t)) =−sin(xi1(t))sin(xi2(t))
+cos(xi3(t)), di1(t) = di2(t) = di3(t) = 0.1sin(t).

The dynamics of the leader agent is descried as yd(t) =
sin(t), the prescribed performance function is chosen as
µi(t) = 0.8e−t +0.25, δ i = δ̄i = 1.

The initial states of the four follower agents are cho-
sen as x1 = [0.2, 0.2, 0.2]T , x2 = [−0.1, −0.1, −0.1]T ,
x3 = [0.1, 0.1, 0.1]T and x4 = [−0.2, −0.2, −0.2]T . The
parameters are chosen as ci01 = ci02 = ci03 = 0.03, ci11 =
· · · = ci18 = ci21 = ci22 = ci23 = ci31 = ci32 = ci33 = 1,
∀i ∈ {1, 2, 3, 4}. The parameters of the neural network
observer are chosen as li1 = 20, li2 = 30, li3 = 20, ∀i ∈ {1,
2, 3, 4}. The parameters of neural networks are chosen as
ηi1 = ηi2 = ηi3 = 10, ϑi1 = ϑi2 = ϑi3 = 0.01, γi = ψi = 1,
∀i ∈ {1, 2, 3, 4}. k11 = 2, k12 = 5, k13 = 3, k21 = 2.5,
k12 = 3, k13 = 3, k31 = 1, k32 = 2, k33 = 3, k41 = 2.5,
k42 = 3, k43 = 2. The design parameters of the first-order
filter are βi1 = βi2 = βi3 = 0.01, ∀i∈ {1, 2, 3, 4}. By using
schur complement lemma and LMI toolbox, the symmet-
ric and positive definite matrix Pi for each agent i is

Pi =

26.7774 −3.8887 −1.2019
−3.8887 4.9814 −3.8624
−1.2019 −3.8624 6.6709

 . (58)

The simulation results are shown in Figs. 5-6, Fig. 5
depicts the trajectory of yi, Fig. 6 depicts the trajectory of
local consensus tracking error ỹi. From these figures, we
can see the output signals of all follower agents converge
to the leader and the consensus is achieved, furthermore,
the local consensus tracking error signals ỹi satisfy the per-
formance requirements.

5. CONCLUSIONS

In this paper, the observer-based prescribed perfor-
mance consensus control protocol is proposed for un-
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Fig. 6. Local consensus tracking error.

known nonlinear MASs with quantized controller and ex-
ternal disturbances under directed communication topol-
ogy. Effects of estimation errors, external disturbances and
quantization errors on the performances of consensus are
solved in this paper. Therefore, the designed control pro-
tocol can be applied to a more general class of practical
engineering systems. Based on Lyapunov stability theory,
it is proved that all signals in the closed-loop system are
cooperatively ultimately uniformly bounded and both the
transient and steady performances of the consensus track-
ing errors satisfy prescribed performance requirements.
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