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Stabilization of Nonlinear Switched Systems with Distributed Time-delay:
The Discrete-time Case
Chaochen Wang, Xiaoli Fang, Lifeng Ma* � , Jie Zhang, and Yuming Bo

Abstract: This paper investigates the stabilization problem of nonlinear switched systems subject to the distributed
time-delay. The considered nonlinear switched systems are quite general whose dynamics are affected by both
exogenous noises and distributed time-delay. The purpose of the addressed problem is to propose a state feedback
control law such that, the closed-loop system is exponentially stable in the mean square sense and meanwhile, the
required weighted L2 gain is achieved. By resorting to the Lyapunov functional method in combination with the
average dwell time approach, sufficient conditions are provided for the existence of the desired control scheme
in terms of the feasibility of certain Hamilton-Jacobi inequalities (HJIs). Within the established framework, the
required feedback controller gains can be obtained by solving the series of HJIs. Finally, an illustrative numerical
example is provided to demonstrate the effectiveness of the developed control algorithm.
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1. INTRODUCTION

During the past decades, the switched systems have
been garnering growing research attention within the sys-
tems science and control communities due to its ability
to characterize the hybrid dynamics of certain widely uti-
lized industrial systems [1–5]. Switched systems consist
of a set of subsystems that are activated in turn regulated
by a switching signal. In [6], the fundamental problems of
stability has been investigated regarding to switched sys-
tems, which has been followed by many researchers who
devoted a large amount of efforts to the examination of
switched systems. So far, the stability issue has been at-
tracting considerable research interest from both academia
and industry, see [7–11] for example. Many approaches
have been explored to deal with the analysis and synthesis
issues, among which the most frequently used is the so-
called average dwell-time approaches, see, for instance,
[12–14] and the references therein. Note that the average
dwell-time method is more appealing when handling the
stability of switched systems due to the superiority that
the switching instants are finite during the time interval of
interest, thereby bringing much convenience in both theo-
retical study and practical application. As such, up to now,
there have been plenty of research fruits available in liter-
ature concerning the average dwell-time approach and its

utilization on various types of switched systems, see, e.g.,
[9,14–17].

It is worth mentioning that most of those aforemen-
tioned available results have been mainly concentrated on
linear systems (e.g., [11,15,18]) or nonlinear systems with
relatively simpler dynamics that always characterized in
terms of linear dynamic with additional simple nonlinear
disturbances (e.g., [19–22]). Moreover, due to its comput-
ing efficiency, the linear matrix inequality (LMI) method
has been widely applied in coping with the dynamical
analysis and control design problems of switched systems
[20,23–26]. However, when it comes to more general non-
linear switched systems, the LMI-based framework is no
longer applicable, which requires new paradigms for both
analysis and synthesis. Unfortunately, up to now, despite
some limited pioneering work, the relevant research has
been far from adequate and the corresponding results have
been scattered due probably to the substantial challenges
stemming from the cross coupling between nonlinear dy-
namics and switching mechanism. This contributes the
first motivation for us to conduct the current research.

As is well known, time-delays are widespread phe-
nomena in many practical engineering systems especially
those established upon networks where the data trans-
mission would probably result in communication delays.
Such delays might bring significant effects on the sys-
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tem performance and are usually the main sources of per-
formance deterioration or even instability. Accordingly,
when discussing the system analysis and synthesis, time-
delays cannot be neglected and should be taken into ac-
count. Recently, one special type of time-delays, namely,
the distributed time-delay has stirred particular attention
because of its wide appearance in many practical systems
including but not limited to, rocket engine combustion,
neural networks and wireless sensor networks. To date,
the stability analysis and the associated design problems
subject to performance specifications have been widely
studied for systems with distributed time-delays, and a
few approaches have been developed, see, [4,23,26–28].
Some representative work can be summarized as follows:
Specifically, the stability problem for systems with dis-
tributed delay has been solved in [29] by introducing an
appropriate integral inequality in combination with Lya-
punov theory. In [30], the stabilization issues has been
dealt with by adopting the techniques of descriptor model
transformation as well as discrete-delay term matrix de-
composition. It is worth mentioning that, most of those
aforementioned reported results have been focused on lin-
ear and/or continuous switched systems. To the best of
the authors’ knowledge, the corresponding control prob-
lem for discrete-time switched nonlinear systems with dis-
tributed time-delays has not yet been fully investigated,
which presents our second motivation for the present
study.

In this paper, it is our aim to investigate the exponen-
tially stabilization problem for a class of general discrete-
time nonlinear switched systems subject to distributed
time-delays. A state feedback control law is proposed such
that the closed-loop system achieve the desired exponen-
tial stability and the prespecified weighted L2 gain simul-
taneously. The contributions of this paper can be high-
lighted as follows: i) The considered nonlinear system
is quite general that takes both switching dynamics and
distributed time-delays into consideration. ii) A switched
control law is proposed to reach the desired exponential
stability and the prespecified weighted L2 gain. iii) Suffi-
cient conditions are derived for the existence of the desired
controller in terms of the solvability of certain Hamilton-
Jacobi inequalities.

The rest of this paper is organized as follows: Sec-
tion 2 formulates the exponential stabilization problem
for nonlinear switched system with distributed time-delay.
The main results are presented in Section 3 where suf-
ficient conditions are given for the existence of the de-
sired controller in terms of the feasibility of HJIs. Section
4 presents a numerical example to show the effectiveness
of the provided control scheme and Section 5 outlines our
conclusion.

2. PROBLEM PRELIMINARIES AND
FORMULATION

Consider the following nonlinear discrete-time switch-
ed systems with distributed time-delay:

x(k+1) = fσk(x(k))+Bσk u(k)+Cσk w(k)

+
τ(k)

∑
p=1

hσk(x(k− p)),

y(k) = lσk(x(k)),

x(k) = ϕ(k), k =−τM, −τM +1, ..., 0,

(1)

where x(k) ∈ Rn represents the state vector, and its initial
condition is ϕ(k); u(k) ∈ Rν represents the control input,
y(k)∈Rr describes the controlled output; w(k)∈Rp is the
exogenous disturbance belonging to l2[0,∞); σk = σ(k):
Z≥0 7−→M = {1,2, · · ·,M} is a switching signal. fσk(·),
lσk(·) and hσk(·) are vector-valued or matrix-valued non-
linear functions with compatible dimensions, all these
nonlinear functions are assumed to satisfy the global Lips-
chitz condition; Bσk and Cσk are known real-valued matrix
with compatible dimensions, τ(k) denotes the distributed
time-delay satisfying τm ≤ τ(k)≤ τM .

Denote the switching sequence by {(k0,σk0),(k1,σk1), · ·
·,(k j,σk j), · · ·,} where k0 < k1 < · · · < k j < · · ·. When
m ∈ [kr,kr+1), σm = σkr . Moreover, it is assumed that the
state of switched system (1) does not jump at switching
instants. Furthermore, σk = i indicates that the i-th sub-
system ( fi(·),Bi,Ci, li(·),hi(·)) is activated at time step k.

The following assumptions and definitions are needed
for later development.

Assumption 1: The nonlinear function hi(·),(i ∈M)
is assumed to satisfy the following condition, i.e.,
‖hi(x(k))‖ ≤ δi‖x(k)‖, where δi (i ∈M) are known posi-
tive scalars.

Definition 1 [31]: Denote the switching times of sig-
nal σk on the interval [k0,k) by Nσ (k0,k). If Nσ (k0,k) ≤
N0 +

k−k0
Ta

holds for Ta > 0 and N0 ≥ 0, then Ta is called
the average dwell time, and N0 is defined as the chatter
bound. For simplicity and without loss of generality, we
shall take N0 = 0 in this paper.

By denoting xk(`) , x(k+ `) for ` ∈ [−τM,0], we now
present the following stability definition for system (1).

Definition 2 [7]: System (1) is said to be exponentially
stable in the mean square sense subject to switching func-
tion σk if the solution x(k) with w(k) = 0 satisfies

‖x(k)‖2 ≤ κγ
k−k0 sup

−τM≤`≤0
‖xk0(`)‖2, ∀k ∈ Z≥k0 ,

where the parameters κ and γ satisfy κ ≥ 1 and 0 < γ < 1,
respectively.

We now proceed to give the definition of the weighted
disturbance attenuation level of the investigated nonlinear
switched system.
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Definition 3: Given ψ > 0 and α > 0. If there exists a
switching function σk such that the following inequality

∞

∑
s=0

e−αsyT(s)y(s)≤ ψ
2

∞

∑
s=0

wT(s)w(s)

is satisfied under the zero initial condition, then, system
(1) is said to have a weighted L2 gain less than ψ .

3. MAIN RESULTS

In this section, the exponential stability as well as
weighted disturbance attenuation performance of the sys-
tem under investigation will be analysed separately. Then,
sufficient conditions for the existence of desired state
feedback controller will be established in terms of the
solvability of a series of HJIs by solving which, we can
obtain the required control parameters. First of all, we in-
troduce the following lemmas which will be used in sub-
sequent derivations.

Lemma 1 [31]: Let M ∈ Rm×m be a positive semi-
definite matrix, µi be a vector. If the series concerned is
convergent, then the following holds:

(
l

∑
i=1

µi)
TM(

l

∑
i=1

µi)≤ l
l

∑
i=1

µ
T
i Mµi.

Lemma 2 [32]: For a ∈ Rn and b ∈ Rn, if matrix P−1

exists, then we have

aTPa+aTb+bTa = (a+P−1b)T P(a+P−1b)−bT P−1b.

Lemma 3 [33]: For any real-valued vectors a, b and
matrix P > 0 of compatible dimensions, we have

aTPb+bTPa≤ εaTPa+ ε
−1bTPb,

where ε > 0 is a given constant.

3.1. Exponentially stable in the mean square sense
In this subsection, a sufficient condition is proposed for

the unforced system (1) to reach the exponential stability
in the mean square sense under the condition of u(k) = 0
and w(k) = 0 . To this end, by setting u(k) = 0 and w(k) =
0 in system (1), we obtain the following unforced system:

x(k+1) = fσk(x(k))+
τ(k)

∑
p=1

hσk(x(k− p)),

y(k) = lσk(x(k)),

x(k) = ϕ(k), k =−τM, −τM +1, ..., 0.

(2)

Theorem 1: Consider the unforced nonlinear switched
time-delay system (2). For any given scalars 0 < α < 1
and ρ ≥ 1, if there exist positive-definite matrices Pi and
Qi (∀i, j ∈M) satisfying the following conditions:

Ta > T ∗a =− lnρ

lnα
, (3)

Pi ≤ ρPj,Qi ≤ ρQ j, (4)

Ξi = Pi−
ατM

τM
Qi < 0, (5)

H1,i = f T
i (x(k))Ωi fi(x(k))+hT

i (x(k))Θihi(x(k))

−αxT(k)Ωix(k)< 0, (6)

then system (2) is exponential stable in the mean square
sense.

Proof: First, we introduce a Lyapunov functional as
follows:

Vσk(k) =V1,σk(k)+V2,σk(k)+V3,σk(k), (7)

where

V1,σk(k) = xT(k)Pσk x(k),

V2,σk(k) =
τ(k)

∑
d=1

k−1

∑
p=k−d

α
k−1−phT

σk
(x(p))Qσk hσk(x(p)),

V3,σk(k) =
τM

∑
l=τm+1

l−1

∑
d=1

k−1

∑
p=k−d

α
k−1−phT

σk
(x(p))Qσk hσk(x(p).

For denotation simplicity, we assume that σk = σkr =
i. For any k ∈ [kr,kr+1), define 4Vm,i(k) = Vm,i(k + 1)−
αVm,i(k) (m = 1,2,3), then it follows that

4V1,i(k) =V1,i(k+1)−αV1,i(k)

=xT(k+1)Pix(k+1)−αxT(k)Pix(k)

= f T
i (x(k))Pi fi(x(k))+

(
Biu(k)

)TPi
(
Biu(k)

)
+
(
Ciw(k)

)TPi
(
Ciw(k)

)
+2
(
Biu(k)

)TPiCiw(k)

+
( τ(k)

∑
p=1

hi(x(k− p))
)TPi

( τ(k)

∑
p=1

hi(x(k− p))
)

+2 f T
i (x(k))PiBiu(k)+2 f T

i (x(k))PiCiw(k)

+2 f T
i (x(k))Pi

τ(k)

∑
p=1

hi(x(k− p))

−αxT(k)Pix(k)

+2
(
Biu(k)

)TPi

τ(k)

∑
p=1

hi(x(k− p))

+2
(
Ciw(k)

)TPi

τ(k)

∑
p=1

hi(x(k− p)), (8)

4V2,i(k) =V2,i(k+1)−αV2,i(k)

=
τ(k+1)

∑
d=1

k

∑
p=k−d+1

α
k−phT

i (x(p))Qihi(x(p))

−
τ(k)

∑
d=1

k−1

∑
p=k−d

α
k−phT

i (x(p))Qihi(x(p))
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≤
τM

∑
d=1

k

∑
p=k−d+1

α
k−phT

i (x(p))Qihi(x(p))

−
τm

∑
d=1

k−1

∑
p=k−d

α
k−phT

i (x(p))Qihi(x(p))

−
τ(k)

∑
d=1

α
dhT

i (x(k−d))Qihi(x(k−d))

=
τM

∑
d=1

hT
i (x(k))Qihi(x(k))

+
τM

∑
d=1

k

∑
p=k−d+1

α
k−phT

i (x(p))Qihi(x(p))

−
τm

∑
d=1

k−1

∑
p=k−d+1

α
k−phT

i (x(p))Qihi(x(p))

−
τ(k)

∑
d=1

α
dhT

i (x(k−d))Qihi(x(k−d))

≤τMhT
i (x(k))Qihi(x(k))

+
τM

∑
d=τm+1

k

∑
p=k−d+1

α
k−phT

i (x(p))Qihi(x(p))

−α
τM

τ(k)

∑
d=1

hT
i (x(k−d))Qihi(x(k−d)),

(9)

and

4V3,i(k) =V3,i(k+1)−αV3,i(k)

=
τM

∑
l=τm+1

l−1

∑
d=1

k

∑
p=k−d+1

α
k−phT

i (x(p))Qihi(x(p)

−
τM

∑
l=τm+1

l−1

∑
d=1

k−1

∑
p=k−d

α
k−phT

i (x(p))Qihi(x(p))

=
1
2
(τM−τm)(τM+τm−1)hT

i (x(k))Qihi(x(k))

−
τM

∑
l=τm+1

l−1

∑
d=1

α
dhT

i (x(k−d)Qihi(x(k−d)).

(10)

It can be deduced from Lemma 1 that

−α
τM

τ(k)

∑
d=1

hT
i (x(k−d))Qihi(x(k−d))

≤− ατM

τ(k)

( τ(k)

∑
d=1

hi(x(k−d))
)TQi

( τ(k)

∑
d=1

hi(x(k−d))
)

≤−ατM

τM

( τ(k)

∑
d=1

hi(x(k−d))
)TQi

( τ(k)

∑
d=1

hi(x(k−d))
)
.

(11)

Consequently, it follows readily from (8)-(11) that

4Vi(k) =Vi(k+1)−αVi(k)

≤ f T
i (x(k))Pi fi(x(k))+

(
Biu(k)

)TPi
(
Biu(k)

)
+
(
Ciw(k)

)TPi
(
Ciw(k)

)
+2 fT

i (x(k))PiBiu(k)

+
( τ(k)

∑
p=1

hi(x(k− p))
)TPi

( τ(k)

∑
p=1

hi(x(k− p))
)

+2 f T
i (x(k))PiCiw(k)+2

(
Biu(k)

)TPiCiw(k)

+2 f T
i (x(k))Pi

τ(k)

∑
p=1

hi(x(k− p))

+2
(
Biu(k)

)TPi

τ(k)

∑
p=1

hi(x(k− p))

+2
(
Ciw(k)

)TPi

τ(k)

∑
p=1

hi(x(k− p))

+ τMhT
i (x(k))Qihi(x(k))

+
1
2
(τM−τm)(τM+τm−1)hT

i(x(k))Qihi(x(k))

−ατM

τM

(τ(k)

∑
d=1

hi(x(k−d))
)TQi

(τ(k)

∑
d=1

hi(x(k−d))
)

−αxT(k)Pix(k)

≤ f T
i (x(k))Pi fi(x(k))+

(
Biu(k)

)TPi
(
Biu(k)

)
+
(
Ciw(k)

)TPi
(
Ciw(k)

)
−αxT(k)Pix(k)

+hT
i (x(k))Θihi(x(k))+2 f T

i (x(k))PiBiu(k)

+2 f T
i (x(k))PiCiw(k)+2

(
Biu(k)

)TPiCiw(k)

+2Σ
T
i

τ(k)

∑
p=1

hi(x(k− p))

+
( τ(k)

∑
p=1

hi(x(k− p))
)T

Ξi
( τ(k)

∑
p=1

hi(x(k− p))
)
,

(12)

where

Ξi = Pi−
ατM

τM
Qi,

Θi = τM +
1
2
(τM− τm)(τM + τm−1),

Σi = PT
i

(
fi(x(k))+Biu(k)+Ciw(k)

)
.

Moreover, it can be obtained from Lemma 2 that

2Σ
T
i

τ(k)

∑
p=1

hi(x(k− p))

+
( τ(k)

∑
p=1

hi(x(k− p))
)T

Ξi
( τ(k)

∑
p=1

hi(x(k− p))
)

=
( τ(k)

∑
p=1

hi(x(k− p))−h∗
)T

Ξi
( τ(k)

∑
p=1

hi(x(k− p))−h∗
)

−Σ
T
i ΞiΣi, (13)
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where

h∗ =−Ξi
−1

Σi.

Noticing the condition (5), one further has

4Vi(k) =Vi(k+1)−αVi(k)

≤ f T
i (x(k))Ωi fi(x(k))+

(
Biu(k)

)T
Ωi
(
Biu(k)

)
+
(
Ciw(k)

)T
Ωi
(
Ciw(k)

)
−αxT(k)Ωix(k)

+hT
i (x(k))Θihi(x(k))+2 f T

i (x(k))ΩiBiu(k)

+2 fT
i (x(k))ΩiCiw(k)+2

(
Biu(k)

)T
ΩiCiw(k)

= f T
i (x(k))Ωi fi(x(k))+uT(k)Φiu(k)

+hT
i (x(k))Θihi(x(k))−αxT(k)Ωix(k)

+Γ1,iu(k)+Γ2,iw(k)+uT(k)Γ3,iw(k)

+wT(k)Ψiw(k), (14)

where

Ωi = Pi−PiΞi
−1PT

i ,

Φi = BT
i ΩiBi,

Ψi =CT
i ΩiCi,

Γ1,i = 2 f T
i (x(k))ΩiBi,

Γ2,i = 2 f T
i (x(k))ΩiCi,

Γ3,i = 2BT
i ΩiCi.

Setting u(k) = 0 and w(k) = 0, we arrive at

4Vi(k) =Vi(k+1)−αVi(k)

≤ f T
i (x(k))Ωi fi(x(k))+hT

i (x(k))Θihi(x(k))

−αxT(k)Ωix(k). (15)

Note that (15) in combination withH1,i ≤ 0 implies that

Vσk(k+1)≤ αVσk(k). (16)

Therefore, we can acquire that

Vσk(k)≤ α
k−krVσkr

(kr)

≤ ρα
k−krVσkr−1

(kr)

≤ ρα
k−kr−1Vσkr−1

(kr−1)

≤ ρ
Nσ (k0,k)αk−k0Vσk0

(k0)

≤
(
ρ

1
Ta α
)k−k0Vσk0

(k0). (17)

Subsequently, by virtue of (7), it is implied that

ζ1‖x(k)‖2 ≤Vσk(k),

Vσk0
(k0)≤ ζ2 sup

−τM≤`≤0
‖xk0(`)‖2, (18)

where

ζ1 = min
i∈M

λmin(Pi),

ζ2 = max
i∈M

λmax(Pi)

+
1
2

δ
2
i τM(τM +1)(τM− τm +1)max

i∈M
λmax(Qi).

Thus, (17) and (18) result in

‖x(k)‖2 ≤ ζ2

ζ1

(
ρ

1
Ta α
)k−k0 sup

−τM≤`≤0
‖xk0(`)‖2. (19)

Therefore, according to Definition 2, system (2) is ex-
ponential stability in the mean square sense with κ = ζ2

ζ1

and γ = ρ
1

Ta α , where κ ≥ 1 and 0 < γ < 1. The proof is
now complete. �

3.2. Weighted L2 gain
In this subsection, we shall proceed to investigate

the weighted L2 gain specification defined in Definition
3. A sufficient condition is presented by means of the
Hamilton-Jacobi inequality approach. First, consider the
following nonlinear switched time-delay system subject
to disturbance w(k) ∈ L2[0,∞):

x(k+1) = fσk(x(k))+Cσk w(k)+
τ(k)

∑
p=1

hσk(x(k−p)),

y(k) = lσk(x(k)),

x(k) = ϕ(k), k =−τM, −τM +1, ..., 0.
(20)

Theorem 2: Consider the nonlinear switched time-
delay system (20). For any given scalars 0 < α < 1, ρ > 1
and ψ > 0, if there exist positive-definite matrices Pi and
Qi (∀i, j ∈M) satisfying the following conditions:

Ta > T ∗a =− lnρ

lnα
, (21)

Pi ≤ ρPj,Qi ≤ ρQ j, (22)

Ξi = Pi−
ατM

τM
Qi < 0, (23)

Ψi−ψ
2 < 0, (24)

H2,i = f T
i (x(k))Ωi fi(x(k))+hT

i (x(k))Θihi(x(k))

−αxT(k)Ωix(k)+ lT
i (x(k))li(x(k))

+
Γ2,i(Ψi−ψ2)

−1
ΓT

2,i

4
< 0, (25)

then system (20) is exponential stable in the mean square
sense and achieves the weighted L2 gain performance de-
fined in Definition 3.

Proof: First, it can be seen that if the set of HJIs (6)
hold, then system (20) is exponentially stable. By utilizing
the similar technique, we can easily obtain that

4Vi(k) =Vi(k+1)−αVi(k)

≤ f T
i (x(k))Ωi fi(x(k))+hT

i (x(k))Θihi(x(k))
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−αxT(k)Ωix(k)+wT(k)Ψiw(k)+Γ2,iw(k).
(26)

Adding the term z(k) = yT(k)y(k)−ψ2wT(k)w(k) to (26)
yields

Vi(k+1)−αVi(k)+ z(k)

≤ f T
i (x(k))Ωi fi(x(k))+hT

i (x(k))Θihi(x(k))

−αxT(k)Ωix(k)−wT(k)(ψ2−Ψi)w(k)

+ lT
i (x(k))li(x(k))+Γ2,iw(k)

≤ f T
i (x(k))Ωi fi(x(k))+hT

i (x(k))Θihi(x(k))

−αxT(k)Ωix(k)+ lT
i (x(k))li(x(k))

+
Γ2,i(ψ

2−Ψi)
−1

ΓT
2,i

4
− w̄T(k)(ψ2−Ψi)

−1
w̄(k), (27)

where

w̄(k) = (ψ2−Ψi)w(k)−
Γ2,i

2
.

Subsequently, it can be known from (25) that

Vσk(k+1)≤ αVσk(k)− z(k). (28)

Thus, for k ∈ [kr,kr+1), it is obtained that

Vσk(k)≤α
k−krVσkr

(kr)−
k−1

∑
s=kr

α
k−sz(s)

≤ρα
k−krVσkr−1

(kr)−
k−s

∑
s=kr

α
k−sz(s)

≤ρα
k−kr
(
α

kr−kr−1Vσkr−1
(kr−1)

−
kr−1

∑
s=kr−1

α
k−sz(s)

)
−

k−1

∑
s=kr

α
k−sz(s)

≤ρ
k
α

kVσ0(0)−
k−1

∑
s=kr

α
k−sz(s)

−ρ

kr−1

∑
s=kr−1

α
k−sz(s)−·· ·−ρ

k
k1−1

∑
s=0

α
k−sz(s)

≤ρ
k
α

kVσ0(0)−
k−1

∑
s=0

α
k−seNσ (s,k) lnρ z(s), (29)

where Nσ (s,k) represents the switching instants between
[s,k] as defined in Definition 1.

Taking the zero initial condition into account, the in-
equality (29) results in

k−1

∑
s=0

α
k−seNσ (s,k) lnρ z(s)≤ 0, (30)

which means
k−1

∑
s=0

α
k−se−Nσ (s,k) lnρ yT(s)y(s)

≤
k−1

∑
s=0

α
k−se−Nσ (s,k) lnρ

ψ
2wT(s)w(s). (31)

Noticing that Nσ (0,k) = s
Ta
≤ αs

lnρ
, we acquire

k−1

∑
s=0

α
k−se−αsyT(s)y(s)≤

k−1

∑
s=0

α
k−s

ψ
2wT(s)w(s). (32)

Then, summing both sides of (32) with respect to s from 0
to ∞, we can immediately arrive at

∞

∑
s=0

e−αsyT(s)y(s)≤
∞

∑
s=0

ψ
2wT(s)w(s), (33)

which indicates that the pre-specified weighted L2 gain is
achieved. The proof is now complete. �

3.3. Controller design
In this subsection, based on the results obtained pre-

viously, we shall give the sufficient condition for the ex-
istence of the desired control strategy that is capable of
ensuring both expected exponential stability in the mean
square sense and pre-specified weighted noise attenuation
level. First, applying u(k) = kσ (x(k)) to system (1), we
obtain the following closed-loop system:

x(k+1) = fσk(x(k))+Bσk kσ (x(k)),

+Cσk w(k)+
τ(k)

∑
p=1

hσk(x(k− p))

y(k) = lσk(x(k)),

x(k) = ϕ(k), k =−τM, −τM +1, ..., 0.

(34)

Theorem 3: Consider the closed-loop system (34). For
any given scalars 0<α < 1, ρ > 1 and ψ > 0, if there exist
positive-definite matrices Pi and Qi (∀i, j ∈M) satisfying
the conditions (21)–(23) and

Ψi +η
−1

Γ3,i−ψ
2 < 0, (35)

H3,i = f T
i (x(k))Ωi fi(x(k))+hT

i (x(k))Θihi(x(k))

−αxT(k)Ωix(k)+ lT
σk
(x(k))lσk(x(k))

−
Γ1,iΦ̆

−1
i ΓT

1,i

4
−

Γ2,iΨ̆
−1
i ΓT

2,i

4
< 0, (36)

then, the controller of the form

ki(x(k)) =−
Φ̆
−1
i ΓT

1,i

2
(37)

stabilize system (1) exponentially in the mean square
sense with guarantee of the predetermined weighted L2

gain.

Proof: First, based on the previous derivation, one can
easily obtain that

4Vi(k) =Vi(k+1)−αVi(k)
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≤ f T
i (x(k))Ωi fi(x(k))+ kT

σ (x(k))Φikσ (x(k))

+hT
i (x(k))Θihi(x(k))−αxT(k)Ωix(k)

+Γ1,ikσ (x(k))+Γ2,iw(k)+kT
σ (x(k))Γ3,iw(k)

+wT(k)Ψiw(k). (38)

For a given η > 0, it follows from Lemma 3 that

4Vi(k) =Vi(k+1)−αVi(k)

≤ f T
i (x(k))Ωi fi(x(k))+ kT

σ (x(k))Φ̃ikσ (x(k))

+hT
i (x(k))Θihi(x(k))−αxT(k)Ωix(k)

+Γ1,ikσ (x(k))+Γ2,iw(k)

+wT(k)Ψ̃iw(k), (39)

where

Φ̃i = Φi +
1
4

ηΓ3,i,

Ψ̃i = Ψi +η
−1

Γ3,i.

Adding the term z(k) = yT(k)y(k)−ψ2wT(k)w(k) to both
sides of (39) yields

Vi(k+1)−αVi(k)+ z(k)

≤ f T
i (x(k))Ωi fi(x(k))+wT(k)Ψ̃iw(k)

+hT
i (x(k))Θihi(x(k))+ kT

σ (x(k))Φ̃ikσ (x(k))

+Γ1,ikσ (x(k))+Γ2,iw(k)+ lT
σk
(x(k))lσk(x(k))

−ψ
2wT(k)w(k)−αxT(k)Ωix(k)

≤ f T
i (x(k))Ωi fi(x(k))+hT

i (x(k))Θihi(x(k))

−αxT(k)Ωix(k)+ lT
σk
(x(k))lσk(x(k))

−
Γ1,iΦ̃

−1
i ΓT

1,i

4
−

Γ2,iΨ̆
−1
i ΓT

2,i

4
+ k̃T

σ (x(k))Φ̃ik̃σ (x(k))

+ w̃T(k)Ψ̆iw̃(k), (40)

where

Ψ̆i = Ψ̃i−ψ
2,

k̃σ (x(k)) = k(x(k))+
Φ̃
−1
i ΓT

1,i

2
,

w̃(k) = w(k)+
Ψ̆
−1
i ΓT

2,i

2
.

Taking into account (36) and (37), we obtain

Vσk(k+1)≤ αVσk(k)− z(k), (41)

which, from Theorem 2, indicates that both the exponen-
tial stability and the weighted L2 gain are ensured for the
closed-loop system (34). The proof is now complete. �

4. SIMULATION RESULTS

In this section, a numerical example is provided to
demonstrate the effectiveness of the proposed feedback
control strategy. The system under consideration de-
scribed by (1) is with parameters as follows:

f (x,1) =
[

3x1 +3x1x2
2

0.1x1

]
, f (x,2) =

[
0.2x2

2x2 +2x2x2
1

]
,

B1 =

[
3
0

]
, B2 =

[
0
4

]
, C1 =

[
0
1

]
, C2 =

[
1
0

]
,

h(x,1) =
[

0.5(| x1x2 |)
1
2

0.5x1

]
, h(x,2) =

[
0.12x2

0.5(| x1x2 |)
1
2

]
,

l(x,1) =
[

0.5(| x1x2 |)
1
2

0.5x1

]
, l(x,2) =

[
0.5x1

0.5(| x1x2 |)
1
2

]
.

Utilizing the proposed algorithm, we have α = 3
4 , ρ = 2,

ψ = 5
2 , η = 1 and we can acquire that T ∗a =− lnρ

lnα
= 2.409,

Ta = 3 > T ∗a , P1 = P2 =

[ 5
4 0
0 5

4

]
, Q1 = Q2 =

[
8 0
0 8

]
. Con-

sequently, we can verify that

H1(1) =−(
1
2

x1− x2)
2− 569

704
x2

1−
71
64

x2
2 < 0,

H1(2) =−(
1
2

x1− x2)
2− 103

64
x2

1−
5537
8800

x2
2 < 0. (42)

Therefore, the desired controller uk = k(xk, i) can be de-
termined by

k(xk,1) =−x1− x1x2
2,

k(xk,2) =−x2− x2
1x2. (43)

Setting the initial value x0 = [1 −0.8]T, we obtain the
simulation results shown in Figs. 1 and 2. Specifically, Fig.
1 shows the trajectory of the open-loop system while Fig.

Fig. 1. The dynamics of open-loop system.
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Fig. 2. The dynamics of closed-loop system.

2 depicts the corresponding closed-loop case by imple-
menting the proposed control strategy. It can be seen that
the proposed algorithm is effective that can exponentially
stabilize the original instable systems.

Remark 1: It can be seen from (21) that the lower
bound T ∗a of average dwell time is monotonic increasing
with respect to α and ρ . Therefore, in order to obtain a
small value of T ∗a , we should choose α and ρ as small as
possible under the feasibility of the (22)-(24) and a set of
Hamilton-Jacobi inequalities in Theorem 3.

Remark 2: So far, a unified framework has been es-
tablished for the exponential stabilization of general non-
linear switched system subject to distributed time-delay.
The advantages of our proposed algorithm can be high-
lighted as follows: a) the system under investigation is
quite general, which is modeled by the delayed nonlinear
stochastic difference equation; b) distributed time-delay
is considered with in a unified framework based on the
HJI approach; c) based on the proposed framework, we
can easily utilize our methodology to investigate systems
with more performance requirements, such as dissipativity
[34,35] and guaranteed cost [5,36].

5. CONCLUSION

In this paper, the control problem has been investi-
gated for discrete-time nonlinear switched system subject
to distributed time-delays. By resorting to the Lyapunov
functional approach, sufficient conditions have been es-
tablished, in terms of a set of HJIs, for the existence of the
desired state feedback control scheme capable of stabiliz-
ing the unstable system exponentially in the mean square
sense while satisfying the predetermined weighted distur-
bance attenuation level. The explicit form of the desired
controller has been formulated which can be obtained via

solving the corresponding set of HJIs. An illustrative sim-
ulation example has been presented to show the applica-
bility and correctness of the proposed control algorithm.
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