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Adaptive Finite-time Consensus for Second-order Nonlinear Multi-agent
Systems with Input Quantization
Jiabo Ren � , Baofang Wang � , and Mingjie Cai* �

Abstract: In this paper, the adaptive finite-time consensus (FTC) control problem of second-order nonlinear multi-
agent systems (MASs) with input quantization and external disturbances is studied. With the help of finite time
control technology, a novel distributed adaptive control protocol is constructed to achieve FTC performance for
second-order nonlinear MASs by using the recursive method. The control input is quantized through a hysteresis
quantizer, which reduces the communication rate of arbitrary two agents. The unknown functions are approximated
by adopting the radial basis function neural networks. Under the consensus protocols and adaptive laws, it can be
proved that velocity errors of arbitrary two agents reach a small region of zero in finite time as well as position
errors. Finally, the effectiveness of the proposed method is illustrated via a simulation example.
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1. INTRODUCTION

During the past decades, many scholars have been a
surge of interest in the consensus, because the consen-
sus problem for MASs has broad applications in vari-
ous fields. For example, formation control [1], synchro-
nization [2], flocking [3], containment control [4] and so
forth. Hence, it has been widely studied in the presence
of consensus schemes. The objective of consensus is to
design a control protocol such that a group of agents can
reach an agreement. Therefore, the consensus of MASs
implies that the states of all the agents can reach a same
value through a suitable consensus protocol. Leaderless
and leader-following consensus protocols have been re-
ported in [5,6].

Recently, FTC becomes a popular topic due to its faster
convergence and high performances. There has three ma-
jor techniques to handle the FTC problems of second-
order MASs, such as homogeneous method [7], termi-
nal sliding mode technique [8] and adding a power inte-
grator [9]. In [10], based on the distributed coordination
control theory and the knowledge of fractional-order dy-
namics, a FTC protocol was investigated for fractional-
order MASs. In [11], a distributed FTC was proposed
for first-order MASs. By employing the terminal slid-
ing mode technique, FTC control for second-order MASs
without velocity measurements was studied in [12]. Du

et al. addressed the problem of FTC algorithm for high-
order MASs by using the adding a power integrator tech-
nique [13]. In [14], under fixed and switching undirected
topologies, it was proved that all the agents can achieve the
consensus in finite time. Under a directed topology, [15]
addressed a FTC problem for second-order MASs with a
positive odd power and nonsymmetric dead-zone. In addi-
tion, it can be pointed out that the nonlinear functions in
MASs usually content linear growth condition. However,
in fact, the nonlinear functions are often partly or totally
unknown because of some constraints, such as unmodeled
dynamics or unknown dynamic disturbances. Meanwhile,
because of the approximation characteristic of fuzzy logic
systems and neural networks, it can be used to deal with
the problem of unknown nonlinear functions in [16,17].
In [18], a distributed consensus protocol was designed for
second-order nonlinear MASs with unmodeled dynamics.
He and Wang studied the problem of distributed finite-
time leaderless consensus control for MASs with external
disturbances in [19], where external disturbances were as-
sumed to be known. To overcome the limitations, the un-
known disturbances and uncertainties were assumed to be
bounded by some positive functions in [20]. In [21], the
problem of adaptive FTC control for MASs with paramet-
ric uncertainties was considered.

On the other hand, signal input quantization is a sig-
nificant issue that should be considered for hybrid sys-
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tems, digital control systems, nonlinear uncertain systems
and networked control systems [22–24]. In [25], it was
the first time that Ceragiolia et al. proposed the hystere-
sis quantization to deal with chattering phenomena. On
the basis of [25], [26] has been further studied by em-
ploying backstepping technique, where the strict feedback
nonlinear systems with signal input quantization was stud-
ied and the designed method relaxed the stability con-
dition in [24]. In [27], a new quantizer was first intro-
duced to deal with uncertain nonlinear systems with in-
put quantization, where the proposed method and novel
quantizer removed the assumptions imposed in [26] that
the nonlinearities of the system to be controlled should
content global Lipschitz conditions with known Lipschitz
constants. In addition, there are many papers considering
the input quantization of MASs [28–30]. In [31], Zhang
et al. proposed the leader-following consensus for linear
and Lipschitz nonlinear MASs with uniform quantization,
where an event-triggered control algorithm is proposed to
reduce the communication burden. In [32], the quantized
leaderless and leader-following consensus for high-order
MASs with limited data rate were considered, which was
a challenging issue because of data rate minimization for
high-order systems. Based on the neural networks, [33]
and [34] developed a fault tolerant consensus algorithm
for high order MASs with input quantization and time-
varying parameters and a distributed adaptive asymptot-
ically consensus tracking control scheme for nonlinear
MASs with input quantization and actuator faults, respec-
tively. Recently, based on finite-time control theory, the
cooperative finite-time control for stochastic MASs with
input quantisation was investigated in [35]. Liu et al. de-
veloped a new finite-time event-triggered consensus algo-
rithm for second-order MASs with the power of positive
odd rational number and input quantization [36]. How-
ever, to the best of our knowledge, only few works pay
attention to nonlinear FTC protocols for MASs with input
quantization.

Therefore, according to the aforementioned observa-
tions, it can be observed that there are very few papers
to consider the adaptive FTC for second-order MASs with
input quantization and unknown disturbances. Due to the
fact that digital communications are widely adopted and
have attracted recurring interest, quantised consensus is a
considerable problem in MASs. A hysteresis quantizer is
used to avoid the chattering phenomenon. Compared with
the existing results, the major contributions of this paper
are given as follows: In this paper quantised problem is
considered for nonlinear MASs, and a quantised control
strategy is provided to guarantee the desired system per-
formance in finite time. A novel distributed FTC protocols
and adaptive laws are designed for second-order nonlinear
MASs with input quantization. Compared with the pro-
posed control schemes in [36], the second-order nonlinear
MASs with input quantization and uncertain dynamics is

further studied. The unknown nonlinearities are totally un-
known in this paper and are approximated by using radial
basis function neural networks. Instead of assuming the
bound of unknown disturbance be known [19], an adaptive
parameter is used to obtain the estimation of the unknown
disturbances bound.

The rest of the paper is organized as follows: In Section
2, the problem description and preliminary results are pre-
sented. The main results are presented in Section 3. An
example is designed to testify the proposed results and
conclusions are given in Sections 4 and 5, respectively.

Notations: [ai j] ∈ Rn×n denotes a matrix consisting of
ai j, i, j = 1,2, · · · ,n; diag{ · } denotes a block-diagonal
matrix; ‖x‖ represents the Euclidean norm of a vector x;
sign(·) stands for signum function; 0 is a vector represent-
ing all elements as 0 and 1 means a vector with all ele-
ments being 1.

2. PROBLEM FORMULATION

2.1. Problem formulation
The following class of second-order nonlinear MASs is

given as

ẋi = vi,

v̇i = qi(ui)+ fi (xi,vi)+di (t) , i ∈M = {1, . . . ,m} ,
(1)

where xi ∈R denotes the position, vi ∈R denotes the veloc-
ity, ui ∈ R is the control input to be designed, qi(ui) ∈ R is
the quantized control input, fi (xi,vi) is an unknown con-
tinuous function contenting fi (0,0) = 0, di(t) represents
the external disturbances. Then, the following lemmas and
assumptions need to be introduced.

Assumption 1: For arbitrary i ∈ M, the disturbance is
bounded such that |di(t)| ≤ ζi, where ζi is an unknown
positive constant.

Definition 1: The FTC of second-order nonlinear MAS
(1) can be reached if for any initial condition P0 =
[x0,v0]

T , there exist ε1 > 0, ε2 > 0 and T (P0,ε1,ε2) < ∞

such that position and velocity errors satisfy |xi− x j| <
ε1, |vi− v j|< ε2, for all t ≥ T, i ∈M, j ∈M, i 6= j.

Lemma 1 [37]: If there exists a continuous differen-
tiable positive definite function V (x) for a nonlinear sys-
tem ẋ = f (x), scalars γ > 0, 0 < α < 1 and 0 < ι < ∞

contenting V̇ (x)≤−γV α (x)+ ι , then there exists a finite
time T contents that T ≤ V 1−α (x0)/(γθ0(1−α)), such
that when t ≥ T , the trajectory of the system ẋ = f (x)
is bounded as B = {x|V α(x)≤ ι/γ (1−θ0)}, where 0 <
θ0 < 1, x0 is the initial state.

2.2. Graph theory
In this section, some knowledge about graph theory

will be introduced. An undirected graph is given by G =
{V,E,A}, which is composed of m agents, where V =
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{v1,v2, ...,vm} denotes the set of vertices, E ⊆ V × V
denotes the set of edges, A denotes the weighted adja-
cency matrix. When there exists an edge between agent
i and agent j, i.e., (vi,v j) ∈ E, then ai j = a ji > 0 and
ai j = a ji = 0 otherwise. In addition, take care that self
edges (vi,vi) are not permitted, therefore (vi,vi) /∈ E, aii =
0. The set of neighbors of node vi is defined as Ni =
{v j ∈ V : (vi,v j) ∈ E}. Denote D = diag{d1, . . . ,dm} ∈
Rm×m with di = ∑

m
j=1 ai j = ∑ j∈Ni

ai j for i ∈M as a degree
matrix of graph G, then the Laplacian of the weighted G
is defined as L = D−A. A path from vi to v j in graph G
is a sequence of different vertices beginning with vi and
ending with v j, such that the continuous vertices are adja-
cent. Therefore, there exists a path of arbitrary two agents
vi,v j ∈ V if G is connected.

Assumption 2: Considering second-order nonlinear
MAS (1), graph G is connected.

Lemma 2 [38]: According to a connected undirected
graph, the following properties need to be introduced:

1) L is positive semi-definite;
2) 0 is a simple eigenvalue of L and 1 is the associated

eigenvector, where 1 represents a vector with all elements
being 1;

3) Supposing the eigenvalue of L is expressed as
0, λ2, . . . ,λn contenting 0 ≤ λ2 ≤ ·· · ≤ λn, then the sec-
ond smallest eigenvalue contents λ2 > 0. What’s more, if
1T x = 0, then xT Lx≥ λ2xT x.

2.3. Hysteretic quantizer
In this section, a hysteresis quantizer is employed to

avoid the input disturbances phenomenon. According to
[26], the hysteretic quantizer qi (ui) is given as

qi (ui)

=



uiksgn(ui) ,
uik

1+δi
≤ |ui| ≤ uik, u̇i < 0,

or uik ≤ |ui| ≤
uik

1−δi
,

u̇i > 0,

uik (1+δi)sgn(ui) , uik ≤ |ui| ≤
uik

1−δi
, u̇i < 0,

or
uik

1−δi
< |ui| ≤

ui

1−δi
,

u̇i > 0,

0, 0≤ |ui|<
ūi

1+δi
, u̇i < 0,

or
ūi

1+δi
≤ |ui|< ūi,

u̇i > 0,

qi

(
ui
(
t−
))

, u̇i = 0,
(2)

where uik = ρ
1−k
i ūi, k = 1, 2, . . ., the constant 0 < ρi < 1

represents a measure of quantization density, and ūi > 0

represents the dead-zone size of the quantizer. δi =
1−ρi
1+ρi

and 0 < δi < 1. qi (ui) is in the set Ui = {0,±uik,±uik(1+
δi)}.

In fact, the hysteretic quantizer qi (ui) is divided into a
linear term and a nonlinear term, its form is

qi (ui) = ui +bi, (3)

where bi = qi (ui)−ui ∈ R, i ∈M.
Remark 1: In this paper, for the hysteretic quantizer

(2), the dead-zone size of the quantizer ūi and the un-
known disturbance di(t) will be estimated together.

2.4. Radial basis function neural networks (RBFNNs)
The unknown continuous function is approximated by

adopting the RBFNN. In general, RBFNNs contain three
layers, which are the input layer, the hidden layer, and the
output layer, respectively.

Lemma 3 [42]: Given any unknown continuous func-
tion h(o) defined on the compact set ϒ ⊂ Rn and any pre-
cision εN , there exists an RBFNN hnn(o) = π∗T ω(o) such
that

h(o) = π
∗T

ω(o)+ ε(o), ∀o ∈ ϒ,

where ω(o) = [ω1(o),ω2(o), · · · ,ωg(o)]
T represents

known smooth vector function, g > 1 represents neural
network node number, ε(o) represents approximation er-
ror, π∗ represents unknown parameter vector. The basis
function ωi(o) is selected as general Gaussian function as
follows:

ωi(o) = exp

[
− (o− zi)

T (o− zi)

y2
i

]
, i = 1,2, . . . ,g,

where zi = [zi1, zi2, . . ., zin]
T and yi represent the center and

width of the basis function ωi(o), respectively. Choosing
the optimal weight vector π∗ as the value of π , which min-
imizes the values of ε(o) for all o ∈ ϒ, i.e.,

π
∗ := arg min

π∈Rg

{
sup
o∈ϒ

∣∣h(o)−π
T

ω(o)
∣∣} .

Assumption 3: Over a compact region ϒ⊂ Rn , the ap-
proximation error contents

|ε(o)| ≤ εN , ∀o ∈ ϒ,

where εN is an unknown bound.
Remark 2: Suppose that the bound of ε(o) is unknown.

Therefore, the bound of ε(o) and unknown parameter vec-
tor π∗ can be estimated together.

Lemma 4 [26]: The nonlinear term bi contents the fol-
lowing inequalities:

|bi| ≤ δi |ui| , |ui| ≥ ūi,

|bi| ≤ ūi, |ui| ≤ ūi.
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Lemma 5 [39]: For α,β ∈ R, if 0 < n = n1
/

n2 ≤ 1, n1

and n2 are odd integers, then

|αn−β
n| ≤ 21−n|α−β |n.

Lemma 6 [40]: For αi ∈ R, i ∈M, if 0 < n≤ 1, then(
m

∑
i=1
|αi|
)n

≤
m

∑
i=1
|αi|n ≤ m1−n

(
m

∑
i=1
|αi|
)n

.

Lemma 7 [41]: For arbitrary two numbers χ1 > 0 and
χ2 > 0, arbitrary real-valued function ψ(α,β )> 0,

|α|χ1 |β |χ2 ≤ χ1

χ1 +χ2
ψ(α,β )|α|χ1+χ2

+
χ2

χ1 +χ2
ψ
−χ1/χ2(α,β )|β |χ1+χ2 .

The paper will design an adaptive FTC control algo-
rithm and adaptive laws for second-order nonlinear MAS
(1) such that the FTC of system (1) can be reached.

3. MAIN RESULTS

3.1. Consensus protocols design
In this section, the adaptive FTC control algorithm for

second-order nonlinear MASs will be designed. First of
all, the virtual velocities are designed. Second, the control
algorithm and adaptive laws will be designed.

Step 1: For any i∈M, define ρi =∑ j∈Ni ai j(xi−x j), and
ρ = [ρ1, . . ., ρm]

T .
Choose the following Lyapunov function:

V1 =
1
4

m

∑
i=1

∑
j∈Ni

ai j(xi− x j)
2, (4)

the time derivative of V1 is

V̇1 =
m

∑
i=1

[
∑
j∈Ni

ai j (xi− x j)

]
vi

=
m

∑
i=1

ρiv∗i +
m

∑
i=1

ρi (vi− v∗i ) , (5)

where v∗i denotes virtual velocity.
Next, v∗i is designed as

v∗i =−k1ρ
κ

i , i ∈M, (6)

where k1 > 0 is a constant to be designed, κ is a ratio of
odd integers contenting 0.5 < κ < 1, one gets

V̇1 ≤
m

∑
i=1

ρi (vi− v∗i )− k1

m

∑
i=1

ρ
1+κ

i . (7)

Step 2: A new variable will be defined, namely ηi =

v1/κ
i − v∗1/κi , i ∈M. From Lemma 5, it yields

vi− v∗i ≤ |vi− v∗i | ≤ 21−κ |ηi|κ . (8)

Then according to Lemma 7, it gets

ρi (vi− v∗i )≤ 21−κ |ρi| |ηi|κ

≤ 21−κ

1+κ
ρ

1+κ

i +
κ21−κ

1+κ
η

1+κ

i . (9)

Combining (7) and (9), we have

V̇1 ≤−(k1−
21−κ

1+κ
)

m

∑
i=1

ρ
1+κ

i +
21−κ κ

1+κ

m

∑
i=1

η
1+κ

i . (10)

Choose the following Lyapunov function candidate:

V2 =V1 +
m

∑
i=1

Wi,

Wi =
1

(2−κ)21−κ k1+1/κ

1

∫ vi

v∗i
(s1/κ − v∗1/κi )

2−κ

ds.

(11)

Combining (10) and (11), the time derivative of V2 is

V̇2 ≤− (k1−
21−κ

1+κ
)

m

∑
i=1

ρ
1+κ

i +
21−κ κ

1+κ

m

∑
i=1

η
1+κ

i

+
m

∑
i=1

Ẇi, (12)

where

Ẇi =
η

2−κ

i qi(ui)

(2−κ)21−κ k1+1/κ

1

+
η

2−κ

i fi(xi,vi)

(2−κ)21−κ k1+1/κ

1

+
1

(2−κ)21−κ k1+1/κ

1

η
2−κ

i di(t)

− 1

21−κ k1+1/κ

1

dv∗1/κi

dt

∫ vi

v∗i
(s1/κ − v∗1/κi )

1−κ

ds.

(13)

From the RBFNNs, take into account the term
η

2−κ

i

(2−κ)21−κ k1+1/κ

1

fi(xi,vi). Since fi(xi,vi) is an unknown func-

tion, we can adopt a RBFNN to approximate it on the
compact set ϒi as follows:

fi(xi,vi) = π
∗T
i ωi(xi,vi)+δi(xi,vi), ∀(xi,vi) ∈ ϒi,

(14)

where π∗i ∈ Rgi represents optimal parameter vector,
ωi(xi,vi)∈ Rgi represents basis function vector, δi(xi,vi)∈
R represents approximation error, |δi(xi,vi)| ≤ εiN , gi > 1
is the node number of neural network.

Letting π̄∗Ti =
[
π∗Ti ,εiN

]T , ϖi(xi,vi) =
[
ωT

i (xi,vi),1
]T .

In fact, basis function vector ωi(xi,vi) contents 0 <
ωT

i (xi,vi)ωi(xi,vi)≤ gi, we have

fi(xi,vi)≤ π̄
∗T
i ϖi(xi,vi)≤

∣∣π̄∗Ti ϖi(xi,vi)
∣∣

≤ ‖π̄∗i ‖‖ϖi(xi,vi)‖ ≤
√

gi +1‖π̄∗i ‖ . (15)
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According to Lemma 7, we obtain

η
2−κ

i fi(xi,vi)≤
∣∣η2−κ

i

∣∣√gi +1‖π̄∗i ‖

=
(
|ηi|
√

gi +1‖π̄∗i ‖
1

2−κ

)2−κ

·12κ−1

≤ 2−κ

(2−κ)+(2κ−1)
χiη

(2−κ)+(2κ−1)
i ·(√

gi +1‖π̄∗i ‖
)((2−κ)+(2κ−1))/(2−κ)

+
2κ−1

(2−κ)+(2κ−1)
χ
−(2−κ)/(2κ−1)
i ·1(2−κ)+(2κ−1)

≤ 2−κ

1+κ
χi(gi+1)

1+κ

2(2−κ) η
1+κ

i Θ
∗
i +

2κ−1
1+κ

χ
(κ−2)/(2κ−1)
i ,

(16)

where Θ∗i = ‖π̄∗i ‖
(1+κ)/(2−κ) is an unknown parameter and

χi > 0 is a constant.
Therefore, the term η

2−κ

i

(2−κ)21−κ k1+1/κ

1

fi(xi,vi) can be writ-

ten as follows:

1

(2−κ)21−κ k1+1/κ

1

η
2−κ

i fi(xi,vi)

≤ 1

21−κ(1+κ)k1+1/κ

1

χi(gi +1)
1+κ

2(2−κ) η
1+κ

i Θ
∗
i + χ̄i,

(17)

where χ̄i =
2κ−1

(2−κ)(1+κ)21−κ k1+1/κ

1

χ
(κ−2)/(2κ−1)
i is a constant.

Consider the term− 1
21−κ k1+1/κ

1

dv∗1/κi
dt

∫ vi
v∗i
(s1/κ − v∗1/κi )

1−κ

ds.

From the definition of ηi and Lemma 5, there has∣∣∣∣∣dv∗1/κi

dt

∣∣∣∣∣=
∣∣∣∣∣∣−

d
(

ρik1
1/κ
)

dt

∣∣∣∣∣∣
=−k1

1/κ ρ̇i ≤ k1
1/κ
(

a |vi|+b ∑
j∈Ni

|v j|
)
,

(18)

where a = maxi∈M
{

∑ j∈Ni
ai j
}

and b = maxi, j∈M {ai j}.
From (18) and Lemma 7, we have∣∣∣∣∣− 1

21−κ k1+1/κ

1

dv∗1/κi

dt

∫ vi

v∗i
(s1/κ − v∗1/κi )

1−κ

ds

∣∣∣∣∣
≤ 1

k1

(
a |vi|+b ∑

j∈Ni

|v j|
)
|ηi|

≤ a
k1

(
21−κ + k1

1+κ
η

1+κ

i +
21−κ κ

1+κ
η

1+κ

i +
k1κ

1+κ
ρ

1+κ

i

)
+

b
k1

∑
j∈Ni

(
21−κ+k1

1+κ
η

1+κ

i +
21−κ κ

1+κ
η

1+κ

j +
k1κ

1+κ
ρ

1+κ

j

)
= τ1η

1+κ

i +
aκ

1+κ
ρ

1+κ

i +
b
k1

21−κ κ

1+κ
∑
j∈Ni

η
1+κ

j

+
bκ

1+κ
∑
j∈Ni

ρ
1+κ

j , (19)

where τ1 =
a
k1

21−κ+k1+21−κ κ

1+κ
+ mb

k1

21−κ+k1
1+κ

.
Combining (12), (13), (17), and (19), we can obtain V̇2 as
follows:

V̇2 ≤− (k1−
21−κ

1+κ
)

m

∑
i=1

ρ
1+κ

i +
21−κ κ

1+κ

m

∑
i=1

η
1+κ

i

+ τ1η
1+κ

i +
aκ

1+κ
ρ

1+κ

i +
b
k1

21−κ κ

1+κ
∑
j∈Ni

η
1+κ

j

+
bκ

1+κ
∑
j∈Ni

ρ
1+κ

j +
1

(2−κ)21−κ k1+1/κ

1

m

∑
i=1

η
2−κ

i di(t)

+
1

(2−κ)21−κ k1+1/κ

1

m

∑
i=1

η
2−κ

i qi(ui)

+
1

(1+κ)21−κ k1+1/κ

1

m

∑
i=1

χi(gi+1)
1+κ

2(2−κ) η
1+κ

i Θ
∗
i+χ̄,

(20)

further

V̇2 ≤−ϑ

m

∑
i=1

ρ
1+κ

i + k2

m

∑
i=1

η
1+κ

i

+
1

(2−κ)21−κ k1+1/κ

1

m

∑
i=1

η
2−κ

i di(t)

+
1

(2−κ)21−κ k1+1/κ

1

m

∑
i=1

η
2−κ

i (ui +bi)

+
1

(1+κ)21−κ k1+1/κ

1

m

∑
i=1

χi(gi+1)
1+κ

2(2−κ) η
1+κ

i Θ
∗
i +χ̄,

(21)

where ϑ = k1− 21−κ

1+κ
− aκ

1+κ
− mbκ

1+κ
> 0, k2 =

κ21−κ

1+κ
+ τ1 +

mb
k1

21−κ κ

1+κ
.

Choose the following control input:

ui =−
1

1−δi
η

2κ−1
i

(
(2−κ)21−κ k1+1/κ

1 (ϑ + k2)

+
2−κ

1+κ
σi

√
1+ D̂2

i

+
2−κ

1+κ
χi(gi +1)

1+κ

2(2−κ)

√
1+ Θ̂2

i

)
, (22)

where σi > 0 is a constant, D̂i is the estimation of D∗i that
will be defined later, Θ̂i is the estimation of Θ∗i .

Consider the 1
(2−κ)21−κ k1+1/κ

1

m
∑

i=1
η

2−κ

i bi term. According

to Lemma 4, by noting that 1
(2−κ)21−κ k1+1/κ

1

m
∑

i=1
η

2−κ

i ui ≤ 0,

we can obtain that

1

(2−κ)21−κ k1+1/κ

1

m

∑
i=1

η
2−κ

i bi



774 Jiabo Ren, Baofang Wang, and Mingjie Cai

≤ 1

(2−κ)21−κ k1+1/κ

1

(
m

∑
i=1
|ηi|2−κ

δi |ui|+
m

∑
i=1
|ηi|2−κ ūi

)

≤ 1

(2−κ)21−κ k1+1/κ

1

(
−

m

∑
i=1

η
2−κ

i δiui+
m

∑
i=1
|ηi|2−κ ūi

)
.

(23)

Combining (21) and (23), we have

V̇2 ≤−ϑ

m

∑
i=1

ρ
1+κ

i +
1

(2−κ)21−κ k1+1/κ

1

m

∑
i=1

η
2−κ

i (1−δi)ui

+
1

(2−κ)21−κ k1+1/κ

1

m

∑
i=1
|ηi|2−κ ūi

+
1

(2−κ)21−κ k1+1/κ

1

m

∑
i=1

η
2−κ

i di(t)

+
1

(1+κ)21−κ k1+1/κ
1

m

∑
i=1

χi(gi+1)
1+κ

2(2−κ) η
1+κ

i Θ
∗
i+χ̄.

(24)

Apparently, there exists an upper bound for ūi and di(t).
Hence, before the adaptive laws are designed, we can de-
fine

Di = ūi +ζi. (25)

According to Assumption 1 and Lemma 7, one gets

1

(2−κ)21−κ k1+1/κ

1

m

∑
i=1

η
2−κ

i di(t)

+
1

(2−κ)21−κ k1+1/κ

1

m

∑
i=1
|ηi|2−κ ūi

≤ 1

(2−κ)21−κ k1+1/κ

1

m

∑
i=1
|ηi|2−κ Di

≤ 1

(1+κ)21−κ k1+1/κ

1

m

∑
i=1

η
1+κ

i σiD∗i

+
2κ−1

(2−κ)(1+κ)21−κ k1+1/κ

1

m

∑
i=1

σ
(2−κ)/(2κ−1)

i , (26)

where D∗i = D
(1+κ)/(2−κ)

i is an unknown constant.
Defining Θ̃i = Θ∗i − Θ̂i and D̃i = D∗i − D̂i as the estima-

tion errors. From (24) and (26), one obtains

V̇2 ≤−ϑ

m

∑
i=1

(
ρ

1+κ

i +η
1+κ

i

)
+

1

(1+κ)21−κ k1+1/κ

1

m

∑
i=1

σiη
1+κ

i D̃i

+
1

(1+κ)21−κ k1+1/κ
1

m

∑
i=1

χi(gi+1)
1+κ

2(2−κ) η
1+κ

i Θ̃i+ε,

(27)

where ε = χ̄ + 2κ−1
(2−κ)(1+κ)21−κ k1+1/κ

1

m
∑

i=1
σ

(2−κ)/(2κ−1)

i .

Choose the following Lyapunov function:

V (ξ ) =V2 +
1
2

m

∑
i=1

Θ̃
2
i +

1
2

m

∑
i=1

D̃2
i , (28)

where ξi =
[
ρi,ηi, D̃i,Θ̃i

]T
, i ∈M,ξ =

[
ξ T

1 , . . . ,ξ
T
m

]T
.

Choose the following adaptive laws:

˙̂Di =
1

(1+κ)21−κ k1+1/κ

1

σiη
1+κ

i − p0iD̂i,

˙̂
Θi =

1

(1+κ)21−κ k1+1/κ

1

χi(gi +1)
1+κ

2(2−κ) η
1+κ

i − p1iΘ̂i,

(29)

where p0i > 0 and p1i > 0 are parameters to be designed.
Then from (27) and (29), the time derivative of V (ξ ) is

V̇ (ξ )≤−ϑ

m

∑
i=1

(
ρ

1+κ

i +η
1+κ

i

)
+

m

∑
i=1

p0iD̃iD̂i

+
m

∑
i=1

p1iΘ̃iΘ̂i + ε. (30)

This completes the design procedure.

4. CONSENSUS ANALYSIS

Theorem 1: Suppose Assumptions 1-3 are contented,
take into account the second-order nonlinear MAS (1) un-
der the consensus protocols (22) and the adaptive laws
(29), the FTC in the sense of Definition 1 can be achieved.

Proof: According to the Lyapunov function V (ξ ) in
(30). Since Lx = [ρ1, . . . ,ρm]

T , we can obtain ∑
m
i=1 ρ2

i =
(Lx)T Lx = xT L2x. Let L1/21 = h = [h1, . . . ,hm]

T , then
hT h = (L1/21)T L1/21= 1T L1. According to Lemma 2, we
get L1= 0. Thus hT h = 0, which means that hT = 0T , then
hT x = 0, so 1T L1/2x = 0. From Lemma 2, one obtains

m

∑
i=1

ρ
2
i = (L1/2x)T L(L1/2x)≥ λ2xT Lx

=
λ2

2

m

∑
i=1

∑
j=Ni

ai j(xi− x j)
2 = 2λ2V1. (31)

Next, from Wi in (11) and Lemma 5, one gets

Wi ≤
1

(2−κ)21−κ k1+1/κ

1

|vi− v∗i |
∣∣∣v1/κ − v∗1/κi

∣∣∣2−κ

≤ 1

(2−κ)k1+1/κ

1

η
2
i . (32)

Combining (31) and (32), we have

V2 ≤
1

2λ2

m

∑
i=1

ρ
2
i +

1

(2−κ)k1+1/κ

1

m

∑
i=1

η
2
i

≤ ϑ1

m

∑
i=1

(ρ2
i +η

2
i ), (33)
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where ϑ1 = max
{

1/2λ2,1/(2−κ)k1+1/κ

1

}
, from Lemma

6, we have

V2
(1+κ)/2 ≤ ϑ

(1+κ)/2
1

m

∑
i=1

(ρ1+κ

i +η
1+κ

i ). (34)

Combining (30), (33) and (34), we can obtain

V̇ (ξ )≤−ϑ

m

∑
i=1

(ρ1+κ

i +η
1+κ

i )+
m

∑
i=1

p0iD̃iD̂i

+
m

∑
i=1

p1iΘ̃iΘ̂i + ε

≤− ϑ

ϑ
(1+κ)/2
1

V (1+κ)/2(ξ )

+
ϑ

ϑ
(1+κ)/2
1

(
1
2

m

∑
i=1

Θ̃
2
i +

1
2

m

∑
i=1

D̃2
i

)(1+κ)/2

+
m

∑
i=1

p0iD̃iD̂i +
m

∑
i=1

p1iΘ̃iΘ̂i + ε. (35)

From Lemma 7, we have(
1
2

D̃2
i

)(1+κ)/2
≤ 1

2
D̃2

i +
1−κ

2
(

1+κ

2
)(1+κ)/(1−κ),(

1
2

Θ̃
2
i

)(1+κ)/2
≤ 1

2
Θ̃

2
i +

1−κ

2
(

1+κ

2
)(1+κ)/(1−κ).

(36)

According to Θ̃i = Θ∗i − Θ̂i, D̃i = Di− D̂i, it has the fol-
lowing inequality:

p0iD̃iD̂i = p1iD̃i(−D̃i +D∗i )≤ p0i(−
1
2

D̃2
i +

1
2

D∗2i ),

p1iΘ̃iΘ̂i = p1iΘ̃i(−Θ̃i +Θ
∗
i )≤ p1i(−

1
2

Θ̃
2
i +

1
2

Θ
∗2
i ).

(37)

Choosing p0i ≥ ϑ

ϑ
(1+κ)/2
1

and p1i ≥ ϑ

ϑ
(1+κ)/2
1

, combining (35)-

(37), we have

ϑ

ϑ
(1+κ)/2
1

(
1
2

m

∑
i=1

Θ̃
2
i +

1
2

m

∑
i=1

D̃2
i

)(1+κ)/2
+

m

∑
i=1

p0iD̃iD̂i

+
m

∑
i=1

p1iΘ̃iΘ̂i

≤ 1
2

ϑ

ϑ
(1+κ)/2
1

m

∑
i=1

Θ̃
2
i +

1
2

ϑ

ϑ
(1+κ)/2
1

m

∑
i=1

D̃2
i

+
2mϑ

ϑ
(1+κ)/2
1

1−κ

2
(

1+κ

2
)(1+κ)/(1−κ)− 1

2

m

∑
i=1

p0iD̃2
i

+
1
2

m

∑
i=1

p0iD∗2i −
1
2

m

∑
i=1

p1iΘ̃
2
i +

1
2

m

∑
i=1

p1iΘ
∗2
i

≤ 1
2

m

∑
i=1

p0iD∗2i +
1
2

m

∑
i=1

p1iΘ
∗2
i

+
2mϑ

ϑ
(1+κ)/2
1

1−κ

2
(

1+κ

2
)(1+κ)/(1−κ). (38)

Letting

ε̄ =ε +
1
2

m

∑
i=1

p0iD∗2i +
1
2

m

∑
i=1

p1iΘ
∗2
i

+
2mϑ

ϑ
(1+κ)/2
1

1−κ

2
(

1+κ

2
)(1+κ)/(1−κ),

and substituting (38) into (35), we have

V̇ (ξ )≤− ϑ

ϑ
(1+κ)/2
1

V (1+κ)/2(ξ )+ ε̄. (39)

This completes the proof of Theorem 1. �
Remark 3: According to Lemma 1, we can

know there exists a finite time T contenting T ≤
2ϑ

(1+κ)/2
1 V (1−κ)/2(ξ (0))/(ϑθ0(1− κ)), such that when

t ≥ T , the trajectories of the MAS are bounded as

Ω = {ξ |V (ξ )≤ (ε̄ϑ
(1+κ)/2
1 /(ϑ(1−θ0)))

2/(1+κ)}.

Remark 4: From the expression of ε , it is worth men-
tioning that if appropriate parameters p0i, p1i,gi, χi,σi and
ϑ are selected, the constant ε can make arbitrarily small.
However, considering the convergence rate of state and
parameter estimations, the parameters p0i, p1i,gi, χi,σi

and ϑ cannot be selected too small.

5. NUMERICAL EXAMPLE

A simulation example is designed to further testify the
effectiveness of the proposed method. Take into account
second-order nonlinear MAS (1), the unknown functions
fi (xi,vi) and external disturbances di(t) are set as f1 =
x1+v1, f2 = x3

2+2v2, f3 = 0.5x3
3+v3, f4 = 0.5x4+v3

4, f5 =
sin(x3

5 + v2
5)+ v5, d1 = 0.5sin(x1)+ sin(v1), d2 = sin(x2),

d3 = 0.5sin(x3), d4 = 0.8cos(x4), d5 = 0.7cos(x5 + v5).
An undirected interconnected topology is viewed, as
shown in Fig. 1.

By the above design procedure, the consensus protocols
(22) and adaptive laws (29) are given by

ui =−
1

1−δi
η

2κ−1
i

(
(2−κ)21−κ k1+1/κ

1 (ϑ + k2)

Fig. 1. Interconnected topology.
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+
2−κ

1+κ
σi

√
1+ D̂2

i

+
2−κ

1+κ
χi(gi +1)

1+κ

2(2−κ)

√
1+ Θ̂2

i

)
,

˙̂Di =
1

(1+κ)21−κ k1+1/κ

1

σiη
1+κ

i − p0iD̂i,

˙̂
Θi =

1

(1+κ)21−κ k1+1/κ

1

χi(gi +1)
1+κ

2(2−κ) η
1+κ

i − p1iΘ̂i,

(40)

where i ∈ 5 = {1,2,3,4,5} .
According to Fig. 1, we can obtain m= 5, a= 2.7, b= 1

and λ2 = 1.1642. In the simulation, the parameters of the
hysteretic quantizer are δi = 0.01, ūi = 0.2. The parame-
ters of consensus protocols and adaptive laws are set as

κ =
3
5
, k1= 1.1

(
21−κ

1+κ
+

aκ

1+κ
+

mbκ

1+κ

)
, ϑ = 0.1k1,

gi = 25, χi = 25, σi = 120,

k2 =
κ21−κ

1+κ
+ τ1 +

mβ

k1

21−κ κ

1+κ
,

τ1 =
a
k1

21−κ + k1 +21−κ κ

1+κ
+

mb
k1

21−κ + k1

1+κ
,

ϑ1 = max
{

1/2λ2,1/(2−κ)k1+1/κ

1

}
= 1/2λ2,

p01 = 7.6, p02 = 8.3, p03 = 9.1, p04 = 7.9, p05 = 9.9,

p11 = 8.3, p12 = 9.2, p13 = 7.8, p14 = 8.5, p15 = 7.9.

Besides, the initial conditions are set as

P1(0) = [0.2,−0.3]T , P2(0) = [−0.5,0.2]T ,

P3(0) = [0.4,−0.3]T , P4(0) = [−0.2,0.1]T ,

P5(0) = [0.6,−0.5]T , Θ̂i(0) = 0, D̂i(0) = 0, i ∈ 5.

To further demonstrate the effectiveness of the pro-
posed scheme, the proposed finite-time consensus proto-
col is compared with the traditional asymptotic conver-
gence method with input quantization. In the compared
method, the control parameters are chosen as δi = 0.3,
ūi = 0.25, gi = 30, χi = 30 and σi = 12.

Figs. 2-6 show the simulation results. In Fig. 2, the tra-
jectories of x between any two agents is bounded in fi-
nite time. It can be seen that the proposed control algo-
rithm can guarantee the trajectories of x have fast con-
vergence performance. The trajectories of v are shown in
Fig. 3, from which we can see that the errors of v between
arbitrary two agents can reach a region of zero in finite
time. However, it is obvious that the proposed control al-
gorithm can guarantee the trajectories of v have fast con-
vergence performance. The parameter estimations Θ̂i and
D̂i are shown in Figs. 4-5, it is obvious that Θ̂i and D̂i can
achieve a region of zero in finite time. In Fig. 6, the value
of the quantized control input for each agent is bounded.
Therefore, simulation results testify the effectiveness of
the designed method.

(a) Trajectory of velocity x under the proposed control algorithm.

(b) Trajectory of velocity x using compared method.

Fig. 2. Trajectory of position x.

6. CONCLUSION

The adaptive FTC for second-order nonlinear MASs
with input quantization, unknown dynamics and unknown
disturbances has been presented in this paper. By em-
ploying a hysteretic quantizer, the quantization input sig-
nals have been obtained. Meanwhile, the quantization in-
put signals and unknown disturbances have been han-
dled together by using recursive method. On the basis of
RBFNNs theories, the unknown functions have been ap-
proximated. Under the consensus protocols and adaptive
laws, it has been proved that consensus could be reached
in finite time. Finally, the effectiveness of the designed
scheme has been illustrated by the obtained simulation re-
sults.Our future work will focus on the research of fixed-
time consensus for high-order MASs and multiple Euler-
Lagrange systems with input quantization.
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(a) Trajectory of velocity v under the proposed control algorithm.

(b) Trajectory of velocity v using compared method.

Fig. 3. Trajectory of velocity v.

Fig. 4. Parameter estimation Θ̂.

Fig. 5. Parameter estimation D̂.

Fig. 6. Quantized control inputs q(u).
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