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Observer-based Adaptive Fuzzy Control for Strict-feedback Nonlinear
Systems with Prescribed Performance and Dead Zone
Wen Zeng, Zhigang Li* � , Chuang Gao, and Libing Wu

Abstract: This paper proposes an observer-based fuzzy controller for strict-feedback nonlinear systems. A fuzzy
state observer is designed to estimate unmeasurable system states via a fuzzy logic system to approximate the
unknown nonlinear functions of the system. A tangent prescribed performance function is utilized to gather the
tracking error in a small neighborhood of the origin. The control input is designed to deal with the dead-zone
property of the system. The proposed controller can guarantee that all the signals in the closed-loop system are
semi-globally, uniformly, and ultimately bounded. Simulation results demonstrate the effectiveness of the proposed
controller.
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1. INTRODUCTION

The backstepping method has become a general tool
to construct controllers for dynamic nonlinear systems.
It was first presented to obtain asymptotic tracking
and global stability for single-input single-output (SISO)
strict-feedback nonlinear systems [1]. This method effec-
tively solves the nonlinear system controller design prob-
lem that does not satisfy the matching condition. Some
improvements of the controller design for strict-feedback
systems were developed for multi-input multi-output sys-
tems [2] and extended to switching systems [3] and pure
feedback systems [4]. Some intelligent methods with uni-
versal approximation ability were combined into the ap-
proaches of the backstepping-based tracking controller,
such as fuzzy logic systems (FLSs) [5–9] and neural
networks (NNs) [10–13]. These developments have been
widely applied to the control design of uncertain nonlinear
systems.

Most system states are not measurable in real applica-
tions. Therefore, extensive attention has been paid to non-
linear output feedback control, and some significant re-
sults have been obtained. Adaptive fuzzy observers were
designed for output feedback control of SISO nonlinear
systems [15] and MIMO nonlinear systems [16]. By con-
sidering the fault-tolerant problem, an adaptive fuzzy con-
trol approach was investigated for nonlinear non-strict

feedback systems [17,18]. A novel fuzzy observer scheme
was proposed to solve unknown virtual control coeffi-
cients of nonlinear systems [19]. With the in-depth study
of the control theory, the prescribed performance control
theory proposed by Bechlioulis and Rovithakis has at-
tracted wide attention [20]. The basic idea is to make the
error of system response fall strictly within an area preset
by the designer. Other forms of prescribed performance
control were subsequently proposed. Funnel control was
proposed by Ilchmann et al. [21], and the barrier Lya-
punov function was considered in designing a controller
[22]. A series of barrier Lyapunov function controls were
achieved [23,24]. Based on previous work [22], a tan-type
prescribed performance was proposed [25]. Further results
based on a tan-type prescribed performance function were
presented [26, 27].

Prescribed performance control has become a major
strategy in many nonlinear systems. A prescribed perfor-
mance adaptive controller was designed for tracking prob-
lems for nonlinear systems with zero dynamics [28], and
a prescribed performance controller with the method of
command filters was designed to solve the problem of “ex-
plosion of complexity” [29]. An adaptive finite-time fuzzy
funnel controller was proposed [30]. An event-triggered
funnel controller for strict-feedback nonlinear systems
with unknown parameters was constructed [31]. In indus-
trial systems, many measuring and executing mechanisms
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include uncertain dead-zone phenomena to varying de-
grees due to their design processes and for manufacturing
reasons. The existence of a dead zone will affect the out-
put accuracy of the system. Scholars have done much to
improve the effect of dead zones on system output. The
dead zone is a common nonsmooth nonlinearity with a
huge impact in many industrial processes, since it can
severely limit system performance. Many control methods
have been developed to overcome the impact of unknown
dead zones in industrial systems [32–36]. An unknown
dead zone in a MIMO nonlinear system was raised [32]. A
control scheme was developed for an SISO nonlinear sys-
tem [33]. A dynamic surface controller was designed for
a pure-feedback nonlinear system [34]. An adaptive NN
control design scheme was proposed for nonlinear discrete
systems [35]. An unknown dead zone was designed for a
nonlinear system with prescribed performance [36].

The use of adaptive fuzzy or neural network backstep-
ping controllers is important and practical for nonlinear
systems with unmeasured states and dead zones, and this
motivates our research. Based on the study of nonlinear
control theory, the exploration process of fuzzy observers
has always been valuable, but there is scant literature on
the steady-state performance of nonlinear systems with
unknown dead zones. By considering the use of recursive
design technology combined with a tan-type Lyapunov
function, a fuzzy adaptive output feedback control scheme
is developed to study the steady-state performance of a
closed-loop system.

The main contributions of this paper include: 1) This
is the first application of the tan-type Lyapunov function
to strict-feedback systems with dead zones, so as to en-
sure that the tracking error of the system converges to a
predetermined range, and the control scheme can be effi-
ciently applied to practical systems. 2) Based on a non-
linear system including the information of the dead zone
slope and the unmeasured system state, we design a state
observer, and develop a new adaptive fuzzy backstepping
output feedback control scheme. The controller ensures
that the closed-loop system obtains better steady-state per-
formance and convergence of the observer. 3) To over-
come the constraint on the unmeasured state, we adopt the
tan-type Lyapunov function, including prediction perfor-
mance, to ensure the boundedness of tracking and obser-
vation errors, and to achieve good tracking performance.

The remainder of this paper is organized as follows:
Section 2 describes the system and presents preliminar-
ies. Section 3 introduces the design of a fuzzy state ob-
server. Section 4 analyzes the design and stability of the
controller. Section 5 presents simulation results. Section 6
summarizes this work and relates our conclusions.

2. PROBLEM FORMULATION AND
PRELIMINARIES

A common form of strict-feedback nonlinear system is
considered:

ẋi = xi+1 + fi (x̄i) ,

ẋn = u+ fn (x̄n) ,

y = x1, 1≤ i≤ n−1,

(1)

where x̄i = [x1,x2, . . .xn]
T ∈ Rn is the system state, y ∈ R is

the system output, the nonlinear function fi (·) is presumed
unknown and smooth, and u ∈ R is the system input. The
input dead zone is defined by

u = D(Ξ) =


mr(Ξ), Ξ≥ br,

0, bl < Ξ < br,

ml(Ξ), Ξ≤ bl ,

(2)

where Ξ is an intermediate control input, and br and bl are
respective design parameters for the positive and negative
dead zones.

Assumption 1 [37]: Consider the unmeasurable states
for the output of a dead zone. Assume the functions mr(Ξ)
and ml(Ξ) are uncertain and smooth, and that there exist
unknown positive constants hl0,hl1,hr0, and hr1 such that

0 < hl0 ≤ Z
′

l(Ξ)≤ hl1, ∀Ξ ∈ (−∞,bl ] ,

0 < hr0 ≤ Z
′

r(Ξ)≤ hr1, ∀Ξ ∈ [br,+∞) , (3)

where Z
′

l(Ξ) = dZl(Ξ)/dΞ and Z
′

r(Ξ) = dZr(Ξ)/dΞ. As-
sume also that β0 ≤min{hl0,hr0} is an unknown param-
eter. The function of the dead zone can be expressed via
Assumption 1 as

u(t) = D(Ξ) = HT (t)φ (t)Ξ+d(Ξ), (4)

where φ(t) = [ϕr(t),ϕl(t)]
T , H(t) = [hr (Ξ) ,hl(Ξ)]

T ,

ϕr(t) =

{
1, Ξ(t)> bl ,

0, Ξ(t)≤ bl ,

ϕl(t) =

{
1, Ξ(t)< br,

0, Ξ(t)≥ br,

hr(Ξ) =

{
0, Ξ≤ bl ,

m
′

r (g(Ξ)) , bl < Ξ <+∞,
(5)

hl(Ξ) =

{
m
′

l (g(Ξ)) , −∞ < Ξ < br,

0, Ξ≥ br,

d(Ξ) =


−m

′

r (gr(Ξ))br, Ξ≥ br,

−[m′

l(gl(Ξ))+m
′

r(gr(Ξ))]Ξ, bl <Ξ<br,

−m
′

l (gl(Ξ))bl , Ξ≤ bl ,

where gl(Ξ) ∈ (Ξ,bl) if v < bl ; gl(Ξ) ∈ (bl ,Ξ) if bl ≤ Ξ <
br; gr(Ξ) ∈ (br,Ξ) if br < Ξ; g(Ξ) ∈ (Ξ,br) if bl < Ξ <
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br; |d(Ξ)| ≤ ρ∗; and ρ∗ is an unknown positive constant,
ρ∗ = (hr1 +hl1)max{br,−bl}.

Remark 1: (4) describes most of the dead-zone mod-
els that appear in practical problems, and HT (t)φ(t) ∈
[β0,hl0 +hr0]⊂ (0,+∞) [35].

Our goal is to design a controller to make the system
output y track a given reference signal yd , and to ensure
that all the signals in the closed-loop system are semi-
globally, uniformly, and ultimately bounded.

Assumption 2: The desired signal yd(t) and its j-th
order derivative y( j)

d (t) are continuous and bounded for
j = 1, ...,n.

Assumption 3: For any X ,Y ∈ Ri+1, there are known
constants mi such that

| fi (X)− fi (Y )| ≤ mi ||X−Y || , i = 1, . . . ,n. (6)

2.1. Fuzzy logic systems
Fuzzy logic systems are affected by four factors: the

knowledge base, fuzzifier, fuzzy inference engine, and de-
fuzzifier. The knowledge base rests on some rules of fuzzy
IF-THEN.

Rr: If x1 is Lr
1, x2 is Lr

2, . . ., and xn is Lr
n, then Y is Pr, r =

1,2, · · · ,N, where X = [X1,X2, . . . ,Xn]
T is the FLS input

and Y is the FLS output. The fuzzy sets Lr
i and Pr are

associated with the fuzzy membership functions vLr
i
(Xi)

and vPr (Y ), respectively, and N is the number of IF-THEN
rules.

Based on the singleton fuzzifier, the center average de-
fuzzification, and product inference, the FLS can be de-
scribed as

Y (X) =
∑

N
r=1 ȲrΠ

n
i=1vLr

i
(Xi)

∑
N
r=1

[
Πn

i=1vLr
i
(Xi)

] , (7)

where Ȳl = maxY∈R vPr (Y ) .
The fuzzy basis functions can be defined as

Sr (X) =
Πn

i=1vLr
i
(Xi)

∑
N
l=1

[
Πn

i=1vLr
i
(Xi)

] . (8)

Define S (X) = [S1 (X) ,S2 (X) , . . . ,SN (X)]T and W T =
[Ȳ1,Ȳ2, . . . ,ȲN ] = [T1,T2, . . . ,TN ] . Then the FLS (7) can be
expressed as

y(X) = T T S (X) . (9)

Lemma 1 [38]: f (X) is defined to be continuous on a
compact set Ω. Using the approximation method of FLSs,
f (X) can attain arbitrary positive accuracy ϖ , and

sup
X∈Ω

∣∣ f (X)−T ∗T S (X)
∣∣≤ ϖ , (10)

where |ϖ | < γ is the approximation accuracy, which can
be arbitrarily small, and T ∗ is the desired weight vector.

3. FUZZY STATE OBSERVER DESIGN

To estimate the unknown states for system (1), a fuzzy
state observer is designed as follows:

ζ̇1 = ζ2 + l1 (y−ζ1)+ω
T
1 ψ1 (x1) ,

ζ̇i = ζi+1 + li (y−ζ1)+ω
T
i ψi

(
ζ̄i
)
,

ζ̇n = u+ ln (y−ζ1)+ω
T
n ψn

(
ζ̄n
)
,

(11)

where ζ̄i = [ζ1,ζ2, . . . ,ζi]
T , 1≤ i≤ n, ζi is the estimate of

xi, and li is a parameter of the observer. Furthermore, ωi

is the estimate of ω∗i , and it is an ideal constant vector for
the FLSs ωT

i ψi
(
ζ̄i
)

to approximate the unknown functions
fi
(
ζ̄i
)
, which can be defined by

f1 (x1) = ω
∗T
1 ψ1 (x1)+δ1 (x1) , |δ1 (x1)| ≤ ε1, (12)

fi
(
ζ̄i
)
= ω

∗T
i ψi

(
ζ̄i
)
+δi

(
ζ̄i
)
,
∣∣δi
(
ζ̄i
)∣∣≤ εi,

2≤ i≤ n, (13)

where δ1 (x1) and δi
(
ζ̄i
)

are the approximation errors and
εi > 0.

Then define ω̃T
i = ω∗Ti −ωT

i and the state estimation
error ei = xi−ζi, 1≤ i≤ n. The time derivatives of ei can
be derived as

ė1 =ẋ1− ζ̇1

=e2− l1e1 + ω̃
T
1 ψ1 (x1)+δ1 (x1) , (14)

and

ėi =ẋi− ζ̇i

=ei+1− lie1 + fi (x̄i)−ω
T
i ψi

(
ζ̄i
)
. (15)

Using the mid-value theorem and (13), it can be seen
that fi (x̄i)−ωT

i ψi
(
ζ̄i
)

is equivalent to

fi (x̄i)−ω
T
i ψi

(
ζ̄i
)

= fi (x̄i)− fi
(
ζ̄i
)
+ fi

(
ζ̄i
)

−ω
∗T
i ψi

(
ζ̄i
)
+ω

∗T
i ψi

(
ζ̄i
)
−ω

T
i ψi

(
ζ̄i
)

=
∂ fi

∂x
ēi +δi

(
ζ̄i
)
+ ω̃

T
i ψi

(
ζ̄i
)
, (16)

where ∂ fi/∂x = [∂ fi/∂x1, . . ., ∂ fi/∂xi] and ēi = [e1, e2,
. . ., ei]

T .
Assumption 4 [19]: Assume that fis are smooth func-

tions and there exist constants dli j and dui j satisfying

dli j ≤
∂ fi

∂x j
≤ dui j, 1≤ i≤ n, 1≤ j ≤ n. (17)

Substituting (16) in (15) gives

ėi = ei+1− liei +
∂ fi

∂x
ēi +δi

(
ζ̄i
)
+ ω̃

T
i ψi

(
ζ̄i
)
. (18)
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Similarly, ėn can be derived as

ėn =ẋn− ζ̇n = u+ fn (x̄n)−u− lne1−ω
T
n ψn

(
ζ̄n
)

=− lne1 +
∂ fn

∂x
e+δn

(
ζ̄n
)
+ ω̃

T
n ψn

(
ζ̄n
)
, (19)

where e = [e1,e2, . . . ,en]
T .

Then

ė = (K−LB)e+ Je+δ
(
ζ̄
)
+ ω̃

T
ψ
(
ζ̄
)
, (20)

where

K =



0 1 0 · · · 0

0 0 1
. . .

...
...

. . . . . . . . . 0

0 0
. . . 0 1

0 0 · · · 0 0


, (21)

L = [l1, · · · , ln]T , (22)

B =

1,0, · · · ,0︸ ︷︷ ︸
n−1

 , (23)

J =

[
0̄T ,

(
∂ f2

∂x

)T

, . . . ,

(
∂ fn

∂x

)T
]T

, (24)

0̄ =

0, · · · ,0︸ ︷︷ ︸
n

 , (25)

δ
(
ζ̄
)
=
[
δ1 (x1) ,δ2

(
ζ̄2
)
, · · · ,δn

(
ζ̄n
)]T

, (26)

ω̃
T

ψ
(
ζ̄
)
=
[
ω̃

T
1 ψ (x1) , · · · , ω̃T

n ψ
(
ζ̄n
)]T

. (27)

The Lyapunov function is chosen as

Ve = eT P̄e, (28)

where P̄ is a symmetric and positive definite matrix.
Then the time derivative of Ve can be obtained as

V̇e =eT (((K−LB)T )P̄+ P̄(A−LB)+ JT P̄

+ P̄J)e+2eT (P̄ω̃
T

ψ
(
ζ̄
)
+δ

(
ζ̄
)
). (29)

According to Young’s inequality, δi (ζi) ≤ εi and 0 <

ψ

(
ζ

)
ψT
(

ζ

)
≤ 1, we can obtain

2eT P̄δ
(
ζ̄
)
≤ κeT P̄e+

1
κ
||P̄||

n

∑
i=1

δ
2
i

(
ζ̄
)

≤ κeT P̄e+
1
κ
||P̄||

n

∑
i=1

ε
2
i , (30)

2eT P̄ω̃
T

ψ
(
ζ̄
)
≤ κeT P̄e+

1
κ
||P̄|| ω̃T

ψ
(
ζ̄
)

ψ
(
ζ̄
)T

ω̃

≤ κeT P̄e+
1
κ
||P̄|| ω̃T

ω̃, (31)

where κ > 0 is a design parameter. Substituting (30) and
(31) in (29) gives

V̇e ≤eT (((K−LB)T )P̄+ P̄(K−LB)+ JT P̄

+ P̄J+2κP̄)e+
1
κ
||P̄||

n

∑
i=1

ε
2
i

+
1
κ
||P̄|| ω̃T

ω̃. (32)

4. CONTROLLER DESIGN AND STABILITY
ANALYSIS

We present a computationally and structurally efficient
controller.

Define the state errors as

zi = ζi−αi−1, (33)

where αi is the virtual control signal with α0 = yd .
Then the system can be rewritten as

ż1 = ζ2 + l1e1 +ω
T
1 ψ1 (x1)− ẏd ,

żi = ζi+1 + lie1 +ω
T
i ψi

(
ζ̄i
)
− α̇i−1,

żn = u+ lne1 +ω
T
n ψn

(
ζ̄n
)
− α̇n−1.

(34)

The design process for the controller is carried out in
steps. For simplicity, let ψi

(
ζ̄n
)
= ψi and fi

(
ζ̄i
)
= fi.

Step 1:
Considering both the prescribed performance control

and fuzzy state observer, the Lyapunov function has the
form

Vz1 =
1
2

tan2
(

π

2
z1

κ

)
+

1
2r1

θ̃
2
1 +

1
2η1

ω̃
T
1 ω̃1, (35)

where κ(t) = (k0− k∞)e−τt + k∞ is the prescribed perfor-
mance function; k0, k∞, and τ are positive constants satis-
fying k0 > k∞; and r1 and η1 are positive design parame-
ters. The approximation error is θ̃ , θ̃1 = θ ∗1 −θ1, and θ1 is
the estimate of θ ∗1 . Define

D(t) =
tan
(

π

2
zi
κ
)

cos2
(

π

2
zi
κ
) . (36)

It is worth noting that the prescribed performance function
κ(t) and its j-th order derivative κ( j)(t) are continuous
and bounded for j = 1, ...,n.

The time-derivative of Vz1 is

V̇z1 =ρD
(

ż1−
κ̇
κ

z1

)
− 1

r1
θ̃1θ̇1−

1
η1

ω̃
T
1 ω̇1

=ρD(ζ2 + l1e1 +ω
∗T
1 ψ1 (x1)− ω̃

T
1 ψ1 (x1)

− ẏd−
κ̇
κ

z1 +
1
2

ρD)− 1
r1

θ̃1θ̇1

− 1
η1

ω̃
T
1 ω̇1−

1
2

ρ
2D2
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=ρDζ2−ρDω̃
T
1 ψ1 (x1)−

1
r1

θ̃1θ̇1

− 1
η1

ω̃
T
1 ω̇1−

1
2

ρ
2D2 +ρD(l1e1− ẏd

− κ̇
κ

z1 +ω
∗T
1 ψ1 (x1)+

1
2

ρD), (37)

where ρ = π

2κ .

Define an unknown packaged function as F1(x1, ζ1, yd ,ẏd ,
κ, κ̇) = l1e1− ẏd − κ̇

κ z1 +ω∗T1 ψ1 (x1)+
1
2 ρD. By substi-

tuting z2 = ζ2−α1 into (37), V̇z1 can be described as

V̇z1 ≤ ρDz2 +ρDα1−ρDω̃
T
1 ψ1 (x1)+ρDF1

− 1
r1

θ̃1θ̇1−
1

η1
ω̃

T
1 ω̇1−

1
2

ρ
2D2. (38)

According to Lemma 1, the unknown function F1 can be
approximated by FLS as

F1 =W ∗T
1 S1 +ϖ1, |ϖ1| ≤ γ1. (39)

It follows from Young’s inequality that

ρDF1 ≤
1

2a2
1

ρ
2D2

θ
∗
1 ST

1 S1 +
1
2

a2
1

+
1
2

ρ
2D2 +

1
2

γ
2
1 , (40)

where θ ∗1 = ||W1||2, and a1 > 0 is a design parameter.
Substituting (40) in (38) gives

V̇z1 ≤
1

2a2
1

ρ
2D2

θ1ST
1 S1 +

1
2a2

1
ρ

2D2
θ̃1ST

1 S1

+
1
2

a2
1 +

1
2

γ
2
1 +ρDz2 +ρDα1

− 1
r1

θ̃1θ̇1−
1

η1
ω̃

T
1 (ω̇1 +η1ρDψ1 (x1)). (41)

Define the following virtual control:

α1 =−
c1

ρ
tan(ρz1)cos2 (ρz1)−

1
2a2

1
ρDθ1ST

1 S1, (42)

where c1 > 0 is a design parameter.
Substituting (42) in (41) gives

V̇z1 ≤− c1 tan2 (ρz1)+
1

2a2
1

ρ
2D2

θ̃1ST
1 S1

− 1
η1

ω̃
T
1 (ω̇1 +η1ρDψ1 (x1))−

1
r1

θ̃1θ̇1

+ρDz2 +
1
2

a2
1 +

1
2

γ
2
1 . (43)

The adaptive laws θ̇1 and ω̇1 can be designed as

θ̇1 =
r1

2a2
1

ρ
2D2ST

1 S1−m1θ1 (44)

and

ω̇1 =−η1ρDψ1 (x1)−q1ω1, (45)

where m1 > 0 and q1 > 0 are design parameters.
Substituting (44) and (45) in (43) , we obtain

V̇z1 ≤− c1 tan2 (ρz1)+ρDz2 +
1
2

a2
1 +

1
2

γ
2
1

+
m1

r1
θ1θ̃1 +

q1

η1
ω1ω̃

T
1 . (46)

Since

θ1θ̃1 =θ̃1
(
θ
∗
1 − θ̃1

)
≤1

2
θ
∗2
1 +

1
2

θ̃
2
1 − θ̃

2
1

=
1
2

θ
∗2
1 −

1
2

θ̃
2
1 , (47)

and

ω1ω̃
T
1 ≤

1
2

ω
∗T
1 ω

∗
1 −

1
2

ω̃
T
1 ω̃1, (48)

we can rewrite (46) as

V̇z1 ≤− c1 tan2 (ρz1)−
m1

2r1
θ̃

2
1 −

q1

2η1
ω̃

T
1 ω̃1

+ρDz2 +
1
2

a2
1 +

1
2

γ
2
1 +

m1

2r1
θ
∗2
1

+
q1

2η1
ω
∗T
1 ω

∗
1 . (49)

Step 2:
Construct the Lyapunov function as

Vz2 =Vz1 +
1
2

z2
2 +

1
2r2

θ̃
2
2 +

1
2η2

ω̃
T
2 ω̃2. (50)

The time yields of Vz2 can be described as

V̇z2 =V̇z1 + z2
(
ζ3 + l2e1 +ω

T
2 ψ2

(
ζ̄2
)
− α̇1

)
− 1

r2
θ̃2θ̇2−

1
η2

ω̃
T
2 ω̇2. (51)

By substituting (49) in (51), we can write

V̇z2 =− c1 tan2 (ρz1)−
m1

2r1
θ̃

2
1 −

q1

2η1
ω̃

T
1 ω̃1

+
1
2

a2
1 +

1
2

γ
2
1 +

m1

2r1
θ
∗2
1 +

q1

2η1
ω
∗T
1 ω

∗
1

+ z2
(
ζ3 + l2e1 +ω

T
2 ψ2

(
ζ̄2
)
− α̇1

)
− 1

r2
θ̃2θ̇2−

1
η2

ω̃
T
2 ω̇2 +ρDz2. (52)

Substituting z3 = ζ3−α2 into (52) gives

V̇z2 =− c1 tan2 (ρz1)−
m1

2r1
θ̃

2
1 −

q1

2η1
ω̃

T
1 ω̃1 + z2α2
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+
1
2

a2
1 +

1
2

γ
2
1 +

m1

2r1
θ
∗2
1 +

q1

2η1
ω
∗T
1 ω

∗
1 + z2z3

− 1
r2

θ̃2θ̇2−
1

η2
ω̃

T
2 ω̇2−

1
2

z2
2− z2ω̃

T
2 ψ2

(
ζ̄2
)

+ z2(
1
2

z2 + l2e1 +ω
∗T
2 ψ2

(
ζ̄2
)

− α̇1 +ρD). (53)

Define F2
(
x1, ζ1, ζ2, θ1, χ , χ (2), χ (3), yd , y(1)d , y(2)d

)
= ρD+

l2e1 +ω∗T2 ψ2
(
ζ̄2
)
− α̇1 +

1
2 z2, which can be approximated

by FLS as

F2 =W ∗T
2 S2 +ϖ2, |ϖ2| ≤ γ2. (54)

Then we can obtain the inequality

z2F2 =z2W ∗T
2 S2 + z2ϖ2

≤ 1
2a2

2
z2

2θ
∗
2 ST

2 S2 +
1
2

a2
2 +

1
2

z2
2 +

1
2

γ
2
2 , (55)

where θ ∗2 = ||W2||2, and a2 > 0 is a design parameter.
Design the virtual control

α2 =−c2z2−
1

2a2
2

z2θ2ST
2 S2, (56)

where c2 > 0 is a design parameter.
Combining (55) and (56), we can derive

V̇z2 ≤− c1 tan2 (ρz1)− c2z2
2−

m1

2r1
θ̃

2
1 −

q1

2η1
ω̃

T
1 ω̃1

+
1

2a2
2

z2
2θ̃2ST

2 S2−
1
r2

θ̃2θ̇2 + z2z3

− z2ω̃
T
2 ψ2

(
ζ̄2
)
− 1

η2
ω̃

T
2 ω̇2 +

1
2

a2
1

+
1
2

γ
2
1 +

1
2r1

θ
∗2
1 +

1
2η1

ω
∗T
1 ω

∗
1

+
1
2

a2
2 +

1
2

γ
2
2 . (57)

Construct the adaptive laws θ̇2 and ω̇2 as

θ̇2 =
r2

2a2
2

z2
2ST

2 S2−m2θ2, (58)

ω̇2 =−η2z2ψ2
(
ζ̄2
)
−q2ω2, (59)

where m2 > 0 and q2 > 0 are design parameters.
Moreover, (57) can be transformed to

V̇z2 ≤− c1 tan2 (ρz1)− c2z2
2−

1
2r1

θ̃
2
1 −

1
2η1

ω̃
T
1 ω̃1

− m2

r2
θ̃2θ2−

q2

η2
ω̃

T
2 ω2 + z2z3

+
1
2

a2
1 +

1
2

γ
2
1 +

m1

2r1
θ
∗2
1

+
q1

2η1
ω
∗T
1 ω

∗
1 +

1
2

a2
2 +

1
2

γ
2
2 . (60)

Similarly, it can be seen that

θ̃2θ2 ≤
1
2

θ
∗2
2 −

1
2

θ̃
2
2 , (61)

ω̃
T
2 ω2 ≤

1
2

ω
∗T
2 ω

∗
2 −

1
2

ω̃
T
2 ω̃2. (62)

Therefore, we can write

V̇z2 ≤− c1 tan2 (ρz1)− c2z2
2−

m1

2r1
θ̃

2
1 −

m2

2r2
θ̃

2
2

− q2

2η2
ω̃

T
2 ω̃2 +

1
2

2

∑
i=1

a2
i

+
1
2

2

∑
i=1

γ
2
i + z2z3−

q1

2η1
ω̃

T
1 ω̃1

+
2

∑
i=1

mi

2ri
θ
∗2
i +

2

∑
i=1

qi

2ri
ω
∗T
i ω

∗
i . (63)

Step iii:
For the i-th subsystem, we choose the Lyapunov func-

tion

Vzi =Vzi−1 +
1
2

z2
i +

1
2ri

θ̃
2
i +

1
2ηi

ω̃
T
i ω̃i. (64)

The time derivative of Vzi can be obtained as

V̇zi =V̇zi−1 + zi
(
ζi+1 + lie1 +ω

T
i ψi

(
ζ̄i
)
− α̇i−1

)
− 1

ri
θ̃iθ̇i−

1
ηi

ω̃
T
i ω̇i. (65)

Since zi+1 = ζi+1−αi, we can derive that

V̇zi =− c1 tan2 (ρz1)−
i−1

∑
j=2

c jz2
j −

i−1

∑
j=1

m j

2r j
θ̃

2
j + ziαi

−
i−1

∑
j=1

q j

2η j
ω̃

T
j ω̃ j +

i−1

∑
j=1

q j

2η j
ω
∗T
j ω

∗
j

+
1
2

i−1

∑
j=1

a2
j +

1
2

i−1

∑
j=1

γ
2
j

+
i−1

∑
j=1

m j

2r j
θ
∗2
j −

1
2

z2
i + zizi+1

+ zi(zi−1 + lie1 +ω
∗T
i ψi

(
ζ̄i
)

− α̇i−1 +
1
2

zi)−
1
ri

θ̃iθ̇i

− 1
ηi

ω̃
T
i ω̇i− ziω̃

T
i ψi

(
ζ̄i
)
. (66)

Define Fi

(
x1, ζ1, · · · , ζi, θ1, · · · , θi−1, κ, · · · , κ(i), yd , · · · ,

y(i)d

)
= zi−1 + lie1 +ω∗Ti ψi

(
ζ̄i
)
− α̇i−1 +

1
2 zi, which can be

approximated by FLS as

Fi =W ∗T
i Si +ϖi, |ϖi| ≤ γi. (67)
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Similar to Step 1, we can obtain

ziFi =ziW ∗T
i Si + ziϖi

≤ 1
2a2

i
z2

i θ
∗
i ST

i Si +
1
2

a2
i +

1
2

z2
i +

1
2

γ
2
i , (68)

where θ ∗i = ||Wi||2 and ai > 0 is a positive design parame-
ter.
Then a virtual control αi is designed as

αi =−cizi−
1

2a2
i

ziθiST
i Si, (69)

where ci is a design parameter.
Combining (68) and (69) produces

V̇zi ≤− c1 tan2 (ρz1)−
i−1

∑
j=2

c jz2
i −

i−1

∑
j=1

m j

2r j
θ̃

2
j

−
i−1

∑
j=1

q j

2η j
ω̃

T
j ω̃ j +

i−1

∑
j=1

m j

2r j
θ
∗2
j

+
1
2

i

∑
j=1

a2
j +

1
2

i

∑
j=1

γ
2
j

+
i−1

∑
j=1

q j

2η j
ω
∗T
j ω

∗
j + zizi+1

− ziω̃
T
i ψi

(
ζ̄i
)
+

1
2a2

i
z2

i θ̃iST
i Si

− 1
ri

θ̃iθ̇i−
1
ηi

ω̃
T
i ω̇i. (70)

Construct the adaptive laws θ̇2 and ω̇2 as

θ̇i =
ri

2a2
i

z2
i ST

i Si−miθi, (71)

ω̇i =−ηiziψi
(
ζ̄i
)
−qiωi, (72)

where mi > 0 and qi > 0 are design parameters.
Then it can be seen that

θ̃iθi ≤
1
2

θ
∗2
i −

1
2

θ̃
2
i , (73)

ω̃
T
i ωi ≤

1
2

ω
∗T
i ω

∗
i −

1
2

ω̃
T
i ω̃i. (74)

Moreover, V̇zi can be expressed as

V̇zi ≤− c1 tan2 (ρz1)−
i

∑
j=2

ciz2
i −

i

∑
j=1

m j

2r j
θ̃

2
j

−
i

∑
j=1

q j

2η j
ω̃

T
j ω̃ j +

1
2

i

∑
j=1

a2
j

+
1
2

i

∑
j=1

γ j + zizi+1

+
i

∑
j=1

m j

2r j
θ
∗2
j +

i

∑
j=1

q j

2η j
ω
∗T
j ω

∗
j . (75)

Step nnn:
Consider the Lyapunov function candidate

Vzn =Vn−1 +
1
2

z2
n +

β0

2rn
θ̃

2
n +

1
2ηn

ω̃
T
n ω̃n. (76)

The time yields of Vzn can be described as

V̇zn =V̇n−1 + znżn−β0θ̃nθ̇n− ω̃
T
n ω̇n

=− c1 tan2 (ρz1)−
n−1

∑
j=2

c jz2
j −

n−1

∑
j=1

m j

2r j
θ̃

2
j

−
n−1

∑
j=1

q j

2η j
ω̃

T
j ω̃ j +

1
2

n−1

∑
j=1

a2
j

+
1
2

n−1

∑
j=1

γ
2
j − znω̃

T
n ψn

(
ζ̄n
)
+

n−1

∑
j=1

m j

2r j
θ
∗2
j

+
n−1

∑
j=1

q j

2η j
ω
∗T
j ω

∗
j + zn

(
HT (t)φ(t)v+d (v)

)
+ zn

(
zn−1 + lne1 +ω

∗T
n ψn

(
ζ̄n
)
− α̇n−1 + zn

)
− β0

rn
θ̃nθ̇n−

1
ηn

ω̃
T
n ω̇n− z2

n. (77)

Define Fn

(
x1, ζ1, · · · , ζn, θ1, · · · , θn−1, κ, · · · , κ(n), yd , · · · ,

y(n)d

)
= zn−1 + lne1 +ω∗Tn ψn

(
ζ̄n
)
− α̇n−1 + zn, which can

be approximated by FLS as

Fn =W ∗T
n Sn +ϖn, |ϖn| ≤ γn. (78)

Similar to Step 1, we can obtain the inequality

znFn =znW ∗T
n Sn + znϖn

≤ β0

2a2
n

z2
nθ
∗
n ST

n Sn +
1
2

a2
n

+
1
2

z2
n +

1
2

γ
2
n , (79)

where θ ∗n = ||Wn||2 /β0, and an is a positive design param-
eter.
Define the intermediate control law

Ξ =−c0zn−
1

2a2
n

znθnST
n Sn, (80)

where c0 > 0 is a design parameter.
According to Remark 1, we have HT (t)φ(t) ≥ β0 and
|d(Ξ)|< ρ∗, hence

znHT (t)φ(t)Ξ≤−c0β0z2
n−

β0

2a2
n

z2
nθnST

n Sn, (81)

znd(Ξ)≤ |zn| |d (Ξ)| ≤
1
2

z2
n +

1
2

ρ
∗2. (82)

Combining (79), (80) , (81), (82), and (77) yields

V̇zn ≤− c1 tan2 (ρz1)−
n−1

∑
i=2

ciz2
i −

n−1

∑
i=1

mi

2ri
θ̃

2
i
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− c0β0z2
n +

1
2

n−1

∑
i=1

a2
i

+
1
2

n−1

∑
i=1

γ
2
i −

β0

rn
θ̃nθ̇n

− 1
ηn

ω̃
T
n ω̇n− znω̃

T
n ψn

(
ζ̄n
)

−
n−1

∑
i=1

qi

2ηi
ω̃

T
i ω̃i +

β0

2a2
n

z2
nθ̃nST

n Sn

+
n−1

∑
i=1

mi

2ri
θ
∗2
i +

n−1

∑
i=1

qi

2ηi
ω
∗T
i ω

∗
i

+
1
2

a2
n +

1
2

γ
2
n +

1
2

ρ
∗2, (83)

where cn = c0β0.
The adaptive laws θ̇n and ω̇n are constructed as

θ̇n =
rn

2a2
n

z2
nST

n Sn−mnθn, (84)

ω̇n =−r2nznψn
(
ζ̄n
)
−qnωn, (85)

where mn > 0 and qn > 0 are design parameters.
Similarly, V̇zn can be expressed as

V̇zn ≤− c1 tan2 (ρz1)−
n

∑
i=2

ciz2
i −

n−1

∑
i=1

mi

2ri
θ̃

2
i

− mnβ0

2rn
θ̃

2
n −

n

∑
i=1

qi

2ηi
ω̃

T
i ω̃i

+
n

∑
i=1

qi

2ηi
ω
∗T
i ω

∗
i +

1
2

n

∑
i=1

a2
i

+
1
2

n

∑
i=1

γ
2
i +

n−1

∑
i=1

mi

2ri
θ
∗2
i

+
mnβ0

2rn
θ
∗2
n +

1
2

ρ
∗2. (86)

Define V =Ve +Vzn. Then we can obtain

V̇ =V̇e +V̇zn

≤eT (
(
(K−LB)T

)
P̄+P(K−LB)

+ JT P̄+ P̄J+2κP̄)e+
1
κ
||P̄||

n

∑
i=1

ε
2
i

+
1
κ
||P̄|| ω̃T

ω̃− c1 tan2 (ρz1)

−
n−1

∑
i=2

ciz2
i −

n−1

∑
i=1

mi

2ri
θ̃

2
i

− mnβ0

2rn
θ̃

2
n −

n

∑
i=1

qi

2ηi
ω̃

T
i ω̃i

+
1
2

n

∑
i=i

a2
i +

1
2

n

∑
i=i

γ
2
i

+
n−1

∑
i=1

mi

2ri
θ
∗2
i +

mnβ0

2
θ
∗2
n

+
n

∑
i=1

qi

2ηi
ω
∗T
i ω

∗
i +

1
2

ρ
∗2. (87)

To ensure the stability of the error dynamics, it must hold
that (K−LB)T P̄+ P̄(K−LB)+ JT P̄+ P̄J + 2κP̄+M =
−Q. Then L and P̄ can be determined with Q being a pos-
itive matrix, and

V̇ ≤− eT Qe+
1
κ
||P||

n

∑
i=1

ε
2
i +

1
κ
||P|| ω̃T

ω̃

− c1 tan2 (ρz1)−
n−1

∑
i=2

ciz2
i −

n−1

∑
i=1

mi

2ri
θ̃

2
i

− mnβ0

2rn
θ̃

2
n −

n

∑
i=1

qi

2ηi
ω̃

T
i ω̃i

+
n

∑
i=1

qi

2ηi
ω
∗T
i ω

∗
i +

1
2

n

∑
i=i

a2
i +

1
2

n

∑
i=i

γ
2
i

+
n−1

∑
i=1

mi

2ri
θ
∗2
i +

mnβ0

2
θ
∗2
n +

1
2

ρ
∗2. (88)

According to Assumption 3, there exists 0 < σ0i j < 1 such
that

∂ fi

∂x j
= σ0i jdli j +(1−σ0i j)dui j. (89)

To ensure that (89) holds, we must have

(K−LB)T P̄+P(K−LB)+ JT
σ P̄+ P̄Jσ +2κP̄ < 0,

(90)

where

[Jσ ]i j =

{
dli j or dui j, j ≤ i, 1≤ i≤ n, 1≤ j ≤ n,

0, j > i, 1≤ i≤ n, 1≤ j ≤ n.
(91)

The controller design procedure is complete, with the
following main results.

Theorem 1: Based on system (1) with Assumptions 1-
3, the controller was designed as (80) , the state observer
was designed as (11), and the adaptive control laws (44) ,
(45) , (71), and (72) ensure that: i) all the signals of the
stable closed-loop system are semi-globally, uniformly,
and ultimately bounded; ii) the tracking error z1 and pre-
scribed performance function κ satisfy |z1| < κ; and iii)
the tracking error z1 converges to a small neighborhood
around zero under the prescribed performance.

Proof:
V̇ can be rewritten as

V̇ ≤−a0V +b0. (92)

Define

a0 = min
{

λmin (Q)

λmax (P)
,2ci,mi,qi, i = 1, · · · ,n

}
, (93)
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and

b0 =
1
2

n

∑
i=1

a2
i +

1
2

n

∑
i=1

γ
2
i +

n−1

∑
i=1

mi

2ri
θ
∗2
i

+
mnβ0

2rn
θ
∗2
n +

n

∑
i=1

qi

2ηi
ω
∗T
i ω

∗
i +

1
2

ρ
∗2. (94)

Equation (92) implies that for all t ≥ 0,

V (t)≤V (0)e−a0t +
b0

a0
. (95)

Therefore, zi,ei,θi, and ωi, the signals of the closed-
loop system, are semi-globally, uniformly, and ultimately
bounded. Similarly, ζi and x1 are obviously bounded.

In addition, it follows from (95) that

1
2

tan2
(

π

2
z1

κ

)
≤V (0)e−a0t +

b0

a0
. (96)

Then it holds that

|z1|6
2
π

arctan

((
2
(

V (0)e−a0(t−t0)+
b0

a0

)) 1
2

)
κ < κ.

This shows that |z1|<κ, hence the tracking error |z1| con-
verges to a small area of the origin within the prescribed
performance function κ. This completes the proof.

5. SIMULATION RESULTS

We provide two examples to verify the proposed ap-
proach. To more clearly illustrate the effectiveness of the
proposed method, we consider a simulation comparison
for examples with the control method proposed in [39].

Example 1: Consider a 2nd-order strict feedback non-
linear system:

ẋ1 = x2 +0.5x3,

ẋ2 = u+ sinx1 cosx2,

y = x1.

(97)

Assume that −1≤ ∂ f2
∂x2
≤ 1 for i = 1, 2. Moreover,

K =

[
0 1
0 0

]
(98)

and

J0 ∈
{[

0 0
−1 −1

]
,

[
0 0
1 −1

]
,

[
0 0
−1 1

]
,

[
0 0
1 1

]}
.

(99)

Select κ = 1
3 , and solve LMI (90) to obtain

P̄ =

[
79.298 −52.901
−52.901 50.714

]
and L =

[
37.78
78.63

]
. (100)

To approximate the packaged unknown nonlinear func-
tions, nine fuzzy sets are adopted over the interval [−3,3].
The fuzzy membership functions of this system are de-
fined as

si (Xi) = exp
(
−0.5(Xi + p j)

2
)
, (101)

where 1≤ i≤ 10, 1≤ j ≤ 9, p j ∈ {3, 0, −3} are the par-
titioning points, and X1 = x1, X2 = yd , X3 = ẏd , X4 = κ,
X5 = κ̇, X6 = ζ1, X6 = ζ2, X8 = θ1, X9 = y(2)d , and X10 =
κ(2).
Then S1 = [S1

1, . . ., S36

1 ]T and S2 = [S1
2, . . ., S310

2 ]T can be
calculated by

Sa
1 =

6

∏
i=1

(s j(Xi))/
a

∑
j=1

(
6

∏
i=1

s j(Xi)

)
, a = 1, · · · ,36,

Sb
2 =

10

∏
i=1

(s j(Xi))/
b

∑
j=1

(
10

∏
i=1

s j(Xi)

)
, b = 1, · · · ,310.

Similarly, for the observer, five fuzzy sets are adopted over
the interval [−5,5] , with fuzzy membership functions

hi (ζi) = exp
(
−0.5(ζi +q j)

2
)
, (102)

where 1≤ i≤ 2, 1≤ j≤ 5, and q j ∈ {5, 2, 0,−2,−5} are
the partitioning points.
Then ψ1 = [ψ1

1 , . . ., ψ5
1 ]

T and ψ2 = [ψ1
2 , . . ., ψ25

2 ]T can be
given by

ψ
c
1 = h j (x1)/∑

c
j=1 h j (x1) , c = 1, · · · ,5,

ψ
d
2 = h j(x1)h j(ζ2)/

d

∑
j=1

(h j(x1)h j(ζ2)), d=1, · · · ,25.

The virtual control α1 and intermediate control law Ξ are
determined as

α1 =−
c1

ρ
tan(ρz1)cos2 (ρz1)

− 1
2a2

1
ρDθ1ST

1 S1, (103)

and

Ξ =−
(

c0 +
1
2

)
zn−

1
2a2

n
znθnST

n Sn. (104)

The model of the dead-zone input u is

u =D(Ξ)

=


(1−0.2sin(Ξ))(Ξ−1.25), Ξ≥ 1.25,

0, −2.5 < Ξ < 1.25,

(0.8−0.2cos(Ξ))(Ξ+2.5), Ξ≤−2.5.

The adaptive laws are constructed as
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Fig. 1. Trajectory of tracking error.

Fig. 2. Tracking performance of system.



θ̇1 =
ρ2r1

2a2
1

D2ST
1 S1−m1θ1,

θ̇2 =
r2

2a2
2

z2
2ST

2 S2−m2θ2,

ω̇1 =−η1ρDψ1
(
ζ̄1
)
−q1ω1,

ω̇2 =−η2z2ψ2
(
ζ̄2
)
−q2ω2.

(105)

The relative parameters are chosen through constant ad-
justment as follows: x1(0) = 0.7, x2(0) = 0.2, ζ1(0) =
ζ2(0) = 0, θ1(0) = 0, θ2(0) = 0.8, ω1(0) = [0, . . . ,0︸ ︷︷ ︸

5

]T ,

ω2(0) = [0, . . . ,0︸ ︷︷ ︸
25

]T , k0 = 1.5, k∞ = 0.105, τ = 2, a1 = 6,

a2 = 100, r1 = 15, r2 = 20, η1 = 15, η2 = 20, m1 = m2 =
0.1, q1 = q2 = 0.1, c1 = 85, and c0 = 60. The target refer-
ence trajectory is given as yd = sin t.

The tracking performance and tracking error e1 of the
proposed controller are shown in Fig. 1. The results show
that the system has good tracking performance and the

Fig. 3. Control input u and intermediate control input Ξ.

Fig. 4. Trajectory of x2 and its observer state.

tracking error e1 trajectory is limited under the specified
performance, eventually converging from 0.5 to a small
neighborhood around zero within 0.8 second. Fig. 2 shows
the good tracking performance of the system output x1 and
the trajectory of the reference signal yd . The results show
that the reference signal is well tracked in about 0.18 sec-
ond. By comparison to [39], it can be seen that the tracking
speed is slightly slower. The tracking effect of the control
method in this paper is more accurate than that of refer-
ence [39]. Fig. 3 shows the trajectories of control input
u in this paper, control input u in [39], and intermediate
control law Ξ. The results show that the control input pro-
posed in this paper has good control performance in over-
coming the influence of the dead zone. The trajectories
of the system state x2 and its observer state ζ2 are shown
in Fig. 4, indicating that the proposed fuzzy state observer
well solves the problem of the unmeasured state of the sys-
tem. Fig. 5 shows that the adaptive laws θ1 and θ2 are ul-
timately restricted. The final simulation results show that
the proposed controller is reasonable.
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Fig. 5. Trajectory of adaptive parameters θ1 and θ2.

Example 2: To more clearly illustrate the effectiveness
of the proposed method, we consider a simulation com-
parison for a model with the control method proposed in
[39],Kϑ̈ +

1
2

mnGN sinϑ = u,

y = ϑ ,
(106)

where ϑ is the angle of the system, u is the input torque
of the system, K is the moment of inertia, G is the accel-
eration of gravity, mn is the mass of the linkage, and N
is the length of the linkage. We choose parameter values
mn = 1,N = 1,K = 2, and G= 9.8. Rewrite the single-link
robot equation as

ẋ1 = x2,

ẋ2 =
1
K

(
u− mnGN sinϑ

2

)
,

y = x1,

(107)

where x1 = ϑ , x2 = ϑ̇ . The above conditions are chosen to
be x1(0) = 0.7, x2(0) = 0.3.

The matrix P, L, the fuzzy membership functions of
FLSs, the virtual control law, the model of the dead-
zone input, and the adaptive laws are the same as in
the above simulation. The other parameters are selected
as follows: ζ1(0) = ζ2(0) = 0, θ1 (0) = 0, θ2(0) = 0.4,
ω1(0) = [0, . . . ,0︸ ︷︷ ︸

5

]T , ω2(0) = [0, . . . ,0︸ ︷︷ ︸
25

]T , k0 = 1.5, k∞ =

0.105, τ = 2, a1 = 6, a2 = 70, r1 = 15, r2 = 20, η1 = 10,
η2 = 22, m1 =m2 = 2, q1 = q2 = 0.5, c1 = 80, and c0 = 60.

Fig. 6 shows the trajectory of the tracking error e1, from
which it can be seen that the tracking error converges
from 0.9 to a small neighborhood near the origin within
about 0.2 second within the specified performance range.
In addition, the tracking error is under the bound of the

Fig. 6. Trajectory of tracking error.

Fig. 7. Tracking performance of system.

prescribed performance. Fig. 7 shows the tracking perfor-
mance of the output x1 of the system, the output x1 of the
system in [39], and the trajectory of the reference signal
yd . The results show that x1 in [39] takes about 0.4 sec-
ond to track the reference signal, and the control method
proposed in this paper takes about 0.2 second. In terms of
tracking accuracy, the results show that the proposed con-
trol method is better. Fig. 8 shows the trajectories of the
control input u in this paper, the control input u in [39],
and the intermediate control law Ξ. The results show that
the control method proposed in this paper has good control
performance in overcoming the influence of the dead zone.
Fig. 9 shows the trajectory of system state x2 and its ob-
server state ζ2. From the figure, the observer state ζ2 can
estimate the system state with a small error. This shows
the effectiveness of the fuzzy state observer. Fig. 10 shows
the adaptive parameters θ1 and θ2. With the same results
as the above example, they finally became bounded. These
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Fig. 8. Control input u and intermediate control input Ξ.

Fig. 9. Trajectory of x2 and its observer state.

simulation results show that the proposed controller is ef-
fective.

6. CONCLUSIONS

We introduced an observer-based adaptive fuzzy con-
trol scheme for a class of strict-feedback nonlinear sys-
tems with prescribed performance and a dead zone. The
proposed scheme ensures the stability of a closed-loop
system, and the tracking error falls within a preset bound-
ary. Simulation results confirm its feasibility.
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